Geochemical effects of intra-layer hydrocarbon micro-migration in shale layers: a case study of the No. 5 shale layer of the No. Ⅲ sand group in the upper submember of the third member of the Paleogene Hetaoyuan Formation in the deep sag area of Biyang Sag, Nanxiang Basin
-
摘要: 烃源岩层内烃类微运移是页岩油富集的重要途径,所产生的地球化学效应是其发生的有力证据。为了证实南襄盆地泌阳凹陷深凹区烃类微运移存在,研究页岩油富集机理,以泌页1井和程2井核桃园组三段上亚段Ⅲ号砂层组5号页岩层为研究对象,运用岩石热解、抽提色层、色谱—质谱等地球化学分析手段,以及岩石薄片观察等技术,揭示了研究区页岩层内烃类微运移的存在及其所产生的地球化学效应。结果表明:根据热释烃(S1)含量与总有机碳(TOC)含量关系,将研究区页岩层内烃类微运移划分为弱排烃(Ⅰ类)、强排烃(Ⅱ类)和外来烃(Ⅲ类)三种情况,并定量计算出相应的排烃强度;三类烃类微运移的地球化学特征:Ⅲ类样品饱芳比最高,Ⅱ类样品饱芳比最小,Ⅰ类样品介于两者之间;正构烷烃nC19与甲基菲比值出现相似的规律。另外,岩石薄片观察进一步证实:Ⅲ类样品具有较多的储集空间,外来烃可进入赋存;Ⅱ类样品裂缝发育,油气可顺畅排出;Ⅰ类样品的孔喉半径小、渗透率低、毛细管阻力大且裂缝不发育,其排烃不畅,这与其产生的地球化学效应相吻合。Abstract: Hydrocarbon micro-migration within source rock layers is an important pathway for shale oil enrichment, and the resulting geochemical effects provide strong evidence for its occurrence. To verify the existence of hydrocarbon micro-migration in the deep sag area of the Biyang Sag of Nanxiang Basin and to investigate the enrichment mechanism of shale oil, the No. 5 shale layer of the No. Ⅲ sand group in the upper submember of the third member of the Paleogene Hetaoyuan Formation in wells BY1 and Cheng 2 was selected as the research object. By using geochemical analysis methods such as rock pyrolysis, extraction and chromatographic techniques, chromatography-mass spectrometry, and rock thin-section observation, the existence of hydrocarbon micro-migration within the shale layer in the study area and its resulting geochemical effects were revealed. The results indicated that, based on the relationship between pyrolytically desorbed hydrocarbon (S1) and total organic carbon (TOC), hydrocarbon micro-migration within the shale layer in the study area was divided into three types: weak hydrocarbon expulsion (type Ⅰ), strong hydrocarbon expulsion (type Ⅱ), and indigenous hydrocarbons (type Ⅲ), and their corresponding hydrocarbon expulsion intensities were quantitatively calculated. The geochemical characteristics of the three types of hydrocarbon micro-migration were as follows: type Ⅲ samples had the highest saturate/aromatic ratio, type Ⅱ samples had the lowest saturate/aromatic ratio, and type Ⅰ samples were in between. The ratio of n-alkane nC19 to methylphenanthrene (MP) showed a similar pattern. Additionally, rock thin-section observation further confirmed that type Ⅲ samples contained more reservoir space, allowing for indigenous hydrocarbon influx and storage. Type Ⅱ samples developed fractures, enabling smooth expulsion of oil and gas. Type Ⅰ samples had small pore and throat radii, low permeability, high capillary resistance, and undeveloped fractures, leading to poor expulsion capacity, which aligned with their resulting geochemical effects.
-
Key words:
- ud shale /
- intra-layer micro-migration /
- geochemical effect /
- No. 5 shale layer /
- Biyang Sag /
- Nanxiang Basin
-
图 4 南襄盆地泌阳凹陷深凹区沁页1井和程2井5号页岩层单位质量岩石排油量与比值(nC19/∑MP)关系
Figure 4. Relationship between nC19/∑MP ratio (ratio of relative content of nonadecane in saturated fractions to total relative content of all methylphenanthrenes in aromatic fractions) in chloroform asphalt "A" and oil expulsion amount per unit rock mass for No. 5 shale layer in deep sag area of Biyang Sag, Nanxiang Basin
表 1 南襄盆地泌阳凹陷深凹区5号页岩层样品基本地球化学特征
Table 1. Basic geochemical characteristics of samples from No. 5 shale layer in deep sag area of Biyang Sag, Nanxiang Basin
井
名样号 深度/m 岩性 ω(TOC) /% S1/(mg/g) 氢指数HI/(mg/g) H/C 饱和烃/芳烃 nC19/∑MP Ro/% 有机质
类型泌
页1井BY1 2 415.72 隐晶灰质页岩 0.71 0.46 278.87 1.23 3.25 1.21 0.58 Ⅱ2 BY2 2 416.40 隐晶灰质页岩 0.48 0.11 175.00 1.30 2.74 1.04 0.58 Ⅲ BY3 2 417.46 灰质泥岩 1.16 0.36 202.59 1.24 1.34 0.24 0.58 Ⅱ2 BY4 2 418.72 泥岩 3.18 1.80 488.05 1.65 3.68 0.92 0.58 Ⅱ1 BY5 2 419.30 泥质粉砂岩 1.76 0.68 373.30 1.18 2.39 0.71 0.58 Ⅱ1 BY6 2 420.92 隐晶灰质页岩 1.56 0.57 430.77 1.66 3.45 0.28 0.58 Ⅱ1 BY7 2 421.65 隐晶灰质页岩 2.61 0.61 536.78 1.95 2.29 0.91 0.58 Ⅱ1 BY8 2 422.49 粉砂质页岩 3.46 1.20 565.61 1.94 2.33 0.32 0.59 Ⅱ1 BY9 2 423.70 粉砂质页岩 1.56 0.64 276.28 1.06 3.23 1.85 0.59 Ⅱ2 BY10 2 424.50 重结晶灰质页岩 4.23 0.87 649.88 1.88 1.70 0.27 0.59 Ⅰ BY11 2 425.72 隐晶灰质页岩 3.94 0.81 586.29 1.82 1.46 0.22 0.59 Ⅱ1 BY12 2 426.44 隐晶灰质页岩 2.36 0.91 406.36 1.63 3.12 0.61 0.59 Ⅱ1 BY13 2 427.46 泥质粉砂岩 5.56 0.87 592.45 1.87 1.79 0.30 0.59 Ⅱ1 BY14 2 428.50 隐晶灰质页岩 3.90 0.93 525.64 1.79 1.85 0.46 0.59 Ⅱ1 BY15 2 429.83 泥岩 1.12 0.39 216.96 1.23 2.43 1.09 0.59 Ⅱ2 BY16 2 430.50 泥岩 1.62 0.76 409.88 1.47 2.83 1.34 0.59 Ⅱ1 BY17 2 431.75 泥岩 2.58 1.23 551.55 1.51 3.20 1.53 0.59 Ⅱ1 BY18 2 432.95 重结晶灰质页岩 2.15 0.64 597.67 1.90 1.52 0.15 0.59 Ⅱ1 BY19 2 433.64 重结晶灰质页岩 5.58 0.69 615.41 1.82 1.33 0.12 0.59 Ⅰ BY20 2 434.41 重结晶灰质页岩 4.56 0.80 528.51 1.64 1.90 0.27 0.59 Ⅱ1 BY21 2 435.40 泥质粉砂岩 2.92 1.29 517.12 1.66 2.28 0.80 0.59 Ⅱ1 BY22 2 436.60 重结晶灰质页岩 7.64 1.22 645.03 1.57 1.40 0.16 0.59 Ⅰ BY23 2 437.21 重结晶灰质页岩 5.02 2.31 315.94 1.23 1.39 0.61 0.59 Ⅱ2 BY24 2 438.45 重结晶灰质页岩 2.86 0.92 479.37 1.24 2.97 0.77 0.59 Ⅱ1 BY25 2 439.55 粉砂质页岩 2.18 0.90 321.10 0.91 4.80 1.31 0.59 Ⅱ2 BY26 2 440.70 隐晶灰质页岩 1.09 0.34 348.62 1.08 4.03 0.48 0.59 Ⅱ2 BY27 2 441.51 隐晶灰质页岩 1.64 0.84 246.95 0.78 4.70 1.64 0.59 Ⅱ2 BY28 2 442.72 粉砂质页岩 3.70 0.53 537.30 1.38 3.47 0.55 0.59 Ⅱ1 BY29 2 443.65 隐晶灰质页岩 2.56 0.76 448.44 1.18 4.09 0.59 0.59 Ⅱ1 BY30 2 445.40 隐晶灰质页岩 2.88 1.35 401.39 1.18 2.52 0.44 0.59 Ⅱ1 BY31 2 445.90 泥质粉砂岩 2.56 2.55 348.83 1.25 2.09 0.53 0.59 Ⅱ2 BY32 2 446.68 泥质粉砂岩 4.20 0.88 529.76 1.62 2.14 0.50 0.59 Ⅱ1 BY33 2 447.86 重结晶灰质页岩 1.88 1.96 379.79 1.10 5.96 1.99 0.59 Ⅱ1 BY34 2 448.45 重结晶灰质页岩 1.73 4.09 401.16 1.43 4.98 3.27 0.59 Ⅱ1 BY35 2 449.90 泥质白云岩 2.17 1.76 329.49 1.05 3.48 0.90 0.59 Ⅱ2 BY36 2 450.15 泥质粉砂岩 4.01 0.77 621.45 1.54 1.11 0.18 0.59 Ⅰ 程2井 CH1 2 773.04 泥岩 3.56 1.10 457.58 1.27 2.94 0.33 0.72 Ⅱ1 CH2 2 775.17 泥岩 2.06 2.40 280.10 0.77 4.30 1.45 0.72 Ⅱ2 CH3 2 779.09 泥质粉砂岩 2.15 2.93 232.09 0.87 4.76 0.47 0.72 Ⅱ2 CH4 2 781.89 泥岩 3.53 1.78 511.90 1.26 2.48 0.20 0.72 Ⅱ1 CH5 2 785.59 泥质粉砂岩 4.15 1.22 509.16 1.48 2.59 0.13 0.72 Ⅱ1 CH6 2 788.00 隐晶灰质页岩 2.16 4.70 456.02 1.29 5.11 3.23 0.72 Ⅱ1 CH7 2 791.80 粉砂质页岩 2.52 2.07 429.37 1.42 3.61 1.10 0.72 Ⅱ1 CH8 2 796.85 泥岩 1.26 0.59 319.05 1.12 3.84 0.21 0.73 Ⅱ2 CH9 2 801.77 重结晶灰质页岩 3.72 2.62 488.98 1.33 3.20 0.12 0.73 Ⅱ1 CH10 2 805.60 白云质页岩 2.52 1.27 472.22 1.51 1.86 0.13 0.73 Ⅱ1 CH11 2 808.73 白云质页岩 2.69 1.96 422.68 1.27 3.29 0.74 0.73 Ⅱ1 CH12 2 812.83 隐晶灰质页岩 4.28 4.28 501.64 1.27 4.57 1.13 0.73 Ⅱ1 CH13 2 817.19 泥质白云岩 2.36 2.09 418.64 1.28 3.72 0.60 0.73 Ⅱ1 CH14 2 821.32 隐晶灰质页岩 3.42 0.75 466.37 1.42 1.89 0.20 0.74 Ⅱ1 CH15 2 824.71 泥岩 2.15 1.85 446.05 1.33 3.96 0.96 0.74 Ⅱ1 CH16 2 827.51 泥岩 2.31 2.72 459.74 0.49 4.00 1.09 0.74 Ⅱ1 CH17 2 829.16 隐晶灰质页岩 3.31 3.35 446.83 1.06 3.21 0.62 0.74 Ⅱ1 表 2 南襄盆地泌阳凹陷深凹区5号页岩层样品单位质量岩石排油量计算结果
Table 2. Calculated oil expulsion amount per unit rock mass for samples from No. 5 shale layer in deep sag area of Biyang Sag, Nanxiang Basin
泌页1井 泌页1井 样号 有机碳
恢复系
数Kc干酪根
产油率k /(mg/g)单位质量
岩石生油
量/(mg/g)单位质量
岩石残油
量/ (mg/g)单位质量
岩石排油
量/ (mg/g)类别 样号 有机碳
恢复系
数Kc干酪根
产油率k /(mg/g)单位质量
岩石生油
量/(mg/g)单位质量
岩石残油
量/ (mg/g)单位质量
岩石排油
量/ (mg/g)类别 BY1 1.20 54.76* 0.47 0.46** 0.01 Ⅰ类 BY28 1.21 70.87 3.17 0.53 2.64 Ⅱ类 BY2 1.20 29.13 0.17 0.11 0.06 Ⅰ类 BY29 1.21 70.87 2.20 0.76 1.44 Ⅰ类 BY3 1.20 54.76 0.76 0.36 0.40 Ⅰ类 BY30 1.21 70.87 2.47 1.35 1.12 Ⅰ类 BY4 1.20 69.24 2.64 1.80 0.84 Ⅰ类 BY31 1.21 55.36 1.71 2.55 -0.84 Ⅲ类 BY5 1.20 69.24 1.46 0.68 0.78 Ⅰ类 BY32 1.21 70.87 3.60 0.88 2.72 Ⅱ类 BY6 1.20 69.24 1.30 0.57 0.73 Ⅰ类 BY33 1.21 70.87 1.61 1.96 -0.35 Ⅲ类 BY7 1.20 69.24 2.17 0.61 1.56 Ⅰ类 BY34 1.21 70.87 1.48 4.09 -2.61 Ⅲ类 BY8 1.21 69.66 2.92 1.20 1.72 Ⅰ类 BY35 1.21 55.36 1.45 1.76 -0.31 Ⅲ类 BY9 1.21 55.16 1.04 0.64 0.40 Ⅰ类 BY36 1.21 115.19 5.59 0.77 4.82 Ⅱ类 BY10 1.21 115.19 5.90 0.87 5.03 Ⅱ类 程2井 BY11 1.21 70.87 3.38 0.81 2.57 Ⅱ类 CH1 1.28 85.79 3.91 1.10 2.81 Ⅱ类 BY12 1.21 70.87 2.02 0.91 1.11 Ⅰ类 CH2 1.28 65.48 1.73 2.40 -0.67 Ⅲ类 BY13 1.21 70.87 4.77 0.87 3.90 Ⅱ类 CH3 1.28 65.48 1.80 2.93 -1.13 Ⅲ类 BY14 1.21 70.87 3.34 0.93 2.41 Ⅱ类 CH4 1.28 85.79 3.88 1.78 2.10 Ⅱ类 BY15 1.21 55.36 0.75 0.39 0.36 Ⅰ类 CH5 1.28 85.79 4.56 1.22 3.34 Ⅱ类 BY16 1.21 70.87 1.39 0.76 0.63 Ⅰ类 CH6 1.28 85.79 2.37 4.70 -2.33 Ⅲ类 BY17 1.21 70.87 2.21 1.23 0.98 Ⅰ类 CH7 1.28 85.79 2.77 2.07 0.70 Ⅰ类 BY18 1.21 70.87 1.84 0.64 1.20 Ⅰ类 CH8 1.29 67.68 1.10 0.59 0.51 Ⅰ类 BY19 1.21 115.19 7.78 0.69 7.09 Ⅱ类 CH9 1.29 87.69 4.21 2.62 1.59 Ⅰ类 BY20 1.21 70.87 3.91 0.80 3.11 Ⅱ类 CH10 1.29 87.69 2.85 1.27 1.58 Ⅰ类 BY21 1.21 70.87 2.50 1.29 1.21 Ⅰ类 CH11 1.29 87.69 3.04 1.96 1.08 Ⅰ类 BY22 1.21 115.19 10.65 1.22 9.43 Ⅱ类 CH12 1.29 87.69 4.84 4.28 0.56 Ⅰ类 BY23 1.21 55.36 3.36 2.31 1.05 Ⅰ类 CH13 1.29 87.69 2.67 2.09 0.58 Ⅰ类 BY24 1.21 70.87 2.45 0.92 1.53 Ⅰ类 CH14 1.30 90.19 4.01 0.75 3.26 Ⅱ类 BY25 1.21 55.36 1.46 0.90 0.56 Ⅰ类 CH15 1.30 90.19 2.52 1.85 0.67 Ⅰ类 BY26 1.21 55.36 0.73 0.34 0.39 Ⅰ类 CH16 1.30 90.19 2.71 2.72 -0.01 Ⅲ类 BY27 1.21 55.36 1.10 0.84 0.26 Ⅰ类 CH17 1.30 90.19 3.88 3.35 0.53 Ⅰ类 注:*表中Ⅰ型干酪根采用泌80井数据,Ⅱ1型干酪根采用泌214井数据,Ⅱ2型干酪根采用泌308井数据,Ⅲ型干酪根采用王24井数据,根据参考文献[23-24]修改。
**单位质量岩石残油量为热释烃S1。 -
[1] 陈中红, 查明. 烃源岩地质色层效应的模拟实验[J]. 地球化学, 2006, 35(2): 157-166. doi: 10.3321/j.issn:0379-1726.2006.02.006CHEN Zhonghong, ZHA Ming. Simulation experiment of geochromatographic effect during hydrocarbon expulsion[J]. Geochimica, 2006, 35(2): 157-166. doi: 10.3321/j.issn:0379-1726.2006.02.006 [2] 戴卿林, 郝石生, 卢双舫, 等. 煤与泥岩排烃过程中甾、萜烷色层效应差异[J]. 地球化学, 1996, 25(4): 400-408. doi: 10.3321/j.issn:0379-1726.1996.04.012DAI Qinglin, HAO Shisheng, LU Shuangfang, et al. Fractionation difference of steranes and terpanes in coal and mudstone during hydrocarbon expulsion[J]. Geochimica, 1996, 25(4): 400-408. doi: 10.3321/j.issn:0379-1726.1996.04.012 [3] 陈中红, 查明. 芳烃地质色层效应的模拟实验[J]. 石油实验地质, 2007, 29(6): 612-616. doi: 10.3969/j.issn.1001-6112.2007.06.016CHEN Zhonghong, ZHA Ming. Simulation experiment of the geochromatographic effect of aromatic hydrocarbons during hydrocarbon expulsion[J]. Petroleum Geology & Experiment, 2007, 29(6): 612-616. doi: 10.3969/j.issn.1001-6112.2007.06.016 [4] 王艺帆, 刚文哲, 朱传真, 等. 歧口凹陷沙三段烃源岩评价及生排烃特征[J]. 油气地质与采收率, 2023, 30(3): 11-27.WANG Yifan, GANG Wenzhe, ZHU Chuanzhen, et al. Source rock evaluation and hydrocarbon generation and expulsion characteristics in Es3 in Qikou Sag[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(3): 11-27. [5] 于燕, 林刚, 卓龙成, 等. 浅谈页岩油效益开发[J]. 复杂油气藏, 2023, 16(2): 144-148.YU Yan, LIN Gang, ZHUO Longcheng, et al. Discussion on the benefit development of shale oil[J]. Complex Hydrocarbon Reservoirs, 2023, 16(2): 144-148. [6] 李志鹏, 余麒麟, 昝灵, 等. 苏北盆地溱潼凹陷阜二段不同岩性烃源岩的地球化学特征及生烃潜力对比[J]. 现代地质, 2023, 37(5): 1345-1357.LI Zhipeng, YU Qiling, ZAN Lin, et al. Geochemical characteristics and hydrocarbon generation potential of different lithologic source rocks in the second member of Funing Formation in Qintong Sag, Subei Basin[J]. Geoscience, 2023, 37(5): 1345-1357. [7] 冯家乐, 杨升宇, 胡钦红, 等. 沧东凹陷孔二段页岩生排烃效率及对含油性的影响[J]. 中国石油大学学报(自然科学版), 2024, 48(2): 45-56.FENG Jiale, YANG Shengyu, HU Qinhong, et al. Hydrocarbon generation and expulsion efficiency and influence on oilbearing property of shale in the second member of Paleogene Kongdian Formation in Cangdong Sag[J]. Journal of China University of Petroleum (Edition of Natural Science), 2024, 48(2): 45-56. [8] CHEN J H, PHILP R P, FU J M, et al. A geochemical study of primary oil migration in Biyang Basin, China[J]. Journal of Southeast Asian Earth Sciences, 1994, 9(3): 207-220. [9] MACKENZIE A S, LEYTHAEUSER D, SCHAEFER R G, et al. Expulsion of petroleum hydrocarbons from shale source rocks[J]. Nature, 1983, 301(5900): 506-509. [10] STAINFORTH J G, REINDERS J E A. Primary migration of hydrocarbons by diffusion through organic matter networks, and its effect on oil and gas generation[J]. Organic Geochemistry, 1990, 16(1/3): 61-74. [11] LEYTHAEUSER D, LITTKE R, RADKE M, et al. Geochemical effects of petroleum migration and expulsion from Toarcian source rocks in the Hils syncline area, NW-Germany[J]. Organic Geochemistry, 1988, 13(1/3): 489-502. [12] 文杰, 徐尚, 苟启洋, 等. 页岩油微运移研究进展及意义[J]. 地质科技通报, 2024, 43(4): 1-14.WEN Jie, XU Shang, GOU Qiyang, et al. Research status and significance of shale oil micromigration[J]. Bulletin of Geological Science and Technology, 2024, 43(4): 1-14. [13] 李明诚. 石油与天然气运移[M]. 2版. 北京: 石油工业出版社, 1994: 1-3.LI Mingcheng. Oil and gas migration[M]. 2nd ed. Beijing: Petroleum Industry Press, 1994: 1-3. [14] TISSOT B P, WELTE D H. Petroleum formation and occurrence[M]. 2nd ed. Berlin: Springer, 1984: 330-340. [15] WANG Pengwei, LIU Zhongbao, ZHANG Dianwei, et al. Source rock and reservoir qualities of Middle Jurassic Lianggaoshan lacustrine shale at Fuxing area, Sichuan Basin: implication for shale-oil enrichment[J]. Unconventional Resources, 2023, 3: 37-43. [16] 地质矿产部地质词典办公室. 地质辞典(四)矿床地质应用地质分册[M]. 北京: 地质出版社, 1986: 212-213.Office Editor of the "Geological Dictionary" of the Ministry of Geology and Mineral Resources. Geology dictionary (Ⅳ) geological application geology section[M]. Beijing: Geological Publishing House, 1986: 212-213. [17] 吴冠昀. 玛湖凹陷风城组页岩油微运移烃影响因素与定量评价[D]. 北京: 中国石油大学(北京), 2023.WU Guanyun. Controlling factors and quantitative evaluation of hydrocarbon micromigration of Fengcheng Formation shale in Mahu Sag[D]. Beijing: China University of Petroleum (Beijing), 2023. [18] 彭勇民, 周子勇, 曾联波, 等. 南阳地区泌阳凹陷沉积相展布与油气勘探[J]. 中国地质, 2012, 39(1): 119-126.PENG Yongmin, ZHOU Ziyong, ZENG Lianbo, et al. Facies distribution and petroleum exploration in Biyang Sag of Nanyang area[J]. Geology in China, 2012, 39(1): 119-126. [19] 孙家振, 李兰斌, 杨振峰, 等. 泌阳凹陷的含油气构造特征与演化历史[J]. 石油学报, 1995, 16(4): 55-61.SUN Jiazhen, LI Lanbin, YANG Zhenfeng, et al. The character and evolution history of hydrocarbon bearing structure in Miyang Depression[J]. Acta Petrolei Sinica, 1995, 16(4): 55-61. [20] 朱景修. 泥页岩不同介质中可溶有机质组成差异性及对页岩油富集的意义[J]. 石油实验地质, 2016, 38(4): 429-437.ZHU Jingxiu. Composition difference of soluble organic matter in different media in mudstones and its significance for shale oil enrichment[J]. Petroleum Geology & Experiment, 2016, 38(4): 429-437. [21] 金芸芸, 李艳然, 李圯, 等. 陆相断陷咸化湖盆细粒沉积岩特征及沉积环境: 以泌阳凹陷核桃园组H3Ⅲ亚段为例[J]. 断块油气田, 2024, 31(2): 289-298.JIN Yunyun, LI Yanran, LI Yi, et al. Characteristics and sedimentary environment of fine-grained sedimentary rocks in continental rift-subsidence saline lacustrine basin: a case study of H3Ⅲ submember of Hetaoyuan Formation in Biyang Sag[J]. Fault-Block Oil & Gas Field, 2024, 31(2): 289-298. [22] 王敏, 陈祥, 严永新, 等. 南襄盆地泌阳凹陷陆相页岩油地质特征与评价[J]. 古地理学报, 2013, 15(5): 663-671.WANG Min, CHEN Xiang, YAN Yongxin, et al. Geological characteristics and evaluation of continental shale oil in Biyang Sag of Nanxiang Basin[J]. Journal of Palaeogeography, 2013, 15(5): 663-671. [23] LI Shuifu, HU Shouzhi, XIE Xinong, et al. Assessment of shale oil potential using a new free hydrocarbon index[J]. International Journal of Coal Geology, 2016, 156: 74-85. [24] 程克明. 烃源岩地球化学[M]. 北京: 科学出版社, 1995: 203-233.CHENG Keming. Geochemistry of source rocks[M]. Beijing: Science Press, 1995: 203-233. [25] 陈国达, 黄瑞华. 关于构造地球化学的几个问题[J]. 大地构造与成矿学, 1984, 8(1): 7-18.CHEN Guoda, HUANG Ruihua. Some problems on tectono-geochemistry[J]. Geotectonica et Metallogenia, 1984, 8(1): 7-18. [26] 张本仁. 地球化学的基本观念与方法论[J]. 地球科学(中国地质大学学报), 1992, 17(S1): 18-25.ZHANG Benren. Basic concepts and methodology of geochemistry[J]. Earth Science (Journal of China University of Geosciences), 1992, 17(S1): 18-25. [27] 赵晨旭, 李忠诚, 郭世超, 等. 松辽盆地南部长岭断陷青一段陆相页岩地球化学和沉积环境特征[J]. 特种油气藏, 2023, 30(6): 55-61.ZHAO Chenxu, LI Zhongcheng, GUO Shichao, et al. Characteristics of geochemistry and depositional environment of terrestrial shales in the First Member of Qingshankou Formation of Changling Fault Depression in the southern Songliao Basin[J]. Special Oil & Gas Reservoirs, 2023, 30(6): 55-61. [28] 陈军红. 泌阳盆地中生物标志物的分布和石油初次运移的地球化学研究[D]. 广州: 中国科学地球化学研究所, 1990.CHEN Junhong. The geochemical research of the biomarkers distribution and hydrocarbon migration in Biyang Basin[D]. Guangzhou: Institute of Geochemistry, Chinese Academy of Sciences, 1990. [29] 昝灵, 白鸾羲, 印燕铃, 等. 苏北盆地溱潼凹陷古近系阜宁组二段页岩油基本特征及成因分析[J]. 石油实验地质, 2023, 45(2): 356-365. doi: 10.11781/sysydz202302356ZAN Ling, BAI Luanxi, YIN Yanling, et al. Basic characteristics and genesis analysis of shale oil in the second member of Paleogene Funing Formation in Qintong Sag, Subei Basin[J]. Petroleum Geology & Experiment, 2023, 45(2): 356-365. doi: 10.11781/sysydz202302356 [30] 李志明, 钱门辉, 黎茂稳, 等. 盐间页岩油形成有利条件与地质甜点评价关键参数: 以潜江凹陷潜江组潜34-10韵律为例[J]. 石油实验地质, 2020, 42(4): 513-523. doi: 10.11781/sysydz202004513LI Zhiming, QIAN Menhui, LI Maowen, et al. Favorable conditions of inter-salt shale oil formation and key parameters for geological sweet spots evaluation: a case study of Eq34-10 rhythm of Qianjiang Formation in Qianjiang Sag, Jianghan Basin[J]. Petroleum Geology & Experiment, 2020, 42(4): 513-523. doi: 10.11781/sysydz202004513 [31] 蒋启贵, 黎茂稳, 马媛媛, 等. 页岩油可动性分子地球化学评价方法: 以济阳坳陷页岩油为例[J]. 石油实验地质, 2018, 40(6): 849-854. doi: 10.11781/sysydz201806849JIANG Qigui, LI Maowen, MA Yuanyuan, et al. Molecular geochemical evaluation of shale oil mobility: a case study of shale oil in Jiyang Depression[J]. Petroleum Geology & Experiment, 2018, 40(6): 849-854. doi: 10.11781/sysydz201806849 [32] 李洪波, 王铁冠, 李美俊. 塔北隆起雅克拉凝析油气田油气充注途径示踪[J]. 石油学报, 2013, 34(2): 219-224.LI Hongbo, WANG Tieguan, LI Meijun. Tracing study on oil-gas filling pathways of Yakela gas condensate field in Tabei Uplift[J]. Acta Petrolei Sinica, 2013, 34(2): 219-224. [33] 柳波, 蒙启安, 付晓飞, 等. 松辽盆地白垩系青山口组一段页岩生、排烃组分特征及页岩油相态演化[J]. 石油与天然气地质, 2024, 45(2): 406-419.LIU Bo, MENG Qi'an, FU Xiaofei, et al. Composition of generated and expelled hydrocarbons and phase evolution of shale oil in the 1st member of Qingshankou Formation, Songliao Basin[J]. Oil & Gas Geology, 2024, 45(2): 406-419. [34] 徐勤琪, 张黎, 李斌, 等. 塔河油田下寒武统烃源岩生排烃史差异演化及成藏效应[J]. 特种油气藏, 2024, 31(1): 20-30.XU Qinqi, ZHANG Li, LI Bin, et al. Differential evolutions of hydrocarbon generation and expulsion history of Lower Cambrian source rocks in Tahe Oilfield and accumulation effects[J]. Special Oil & Gas Reservoirs, 2024, 31(1): 20-30. [35] LEYTHAEUSER D, SCHAEFER R G, RADKE M. Geochemical effects of primary migration of petroleum in Kimmeridge source rocks from Brae field area, North Sea. Ⅰ: gross composition of C15+-soluble organic matter and molecular composition of C15+-saturated hydrocarbons[J]. Geochimica et Cosmochimica Acta, 1988, 52(3): 701-713. [36] LEYTHAEUSER D, RADKE M, WILLSCH H. Geochemical effects of primary migration of petroleum in Kimmeridge source rocks from Brae field area, North Sea. Ⅱ: molecular composition of alkylated naphthalenes, phenanthrenes, benzo- and dibenzothiophenes[J]. Geochimica et Cosmochimica Acta, 1988, 52(12): 2879-2891. [37] 李志明, 金芸芸, 李楚雄, 等. 南襄盆地泌阳凹陷渐新统核桃园组三Ⅲ亚段页岩油富集模式: 以中部深凹带YYY1井取心段为例[J]. 石油实验地质, 2023, 45(5): 952-962. doi: 10.11781/sysydz202305952LI Zhiming, JIN Yunyun, HUANG Chuxiong, et al. Discussion on shale oil enrichment pattern in the Ⅲ submember of the third member of Oligocene Hetaoyuan Formation, Biyang Sag, Nanxiang Basin: a case study of cored interval of well YYY1 in the central deep sag zone[J]. Petroleum Geology & Experiment, 2023, 45(5): 952-962. doi: 10.11781/sysydz202305952 [38] WILHELMS A, LARTER S R, LEYTHAEUSER D, et al. Recognition and quantification of the effects of primary migration in a Jurassic clastic source-rock from the Norwegian continental shelf[J]. Organic Geochemistry, 1990, 16(1/3): 103-113. [39] 高玉巧, 蔡潇, 夏威, 等. 苏北盆地古近系阜宁组二段页岩油储集空间特征及甜点段评价: 以溱潼凹陷QY1井为例[J]. 石油实验地质, 2024, 46(5): 916-926. doi: 10.11781/sysydz202405916GAO Yuqiao, CAI Xiao, XIA Wei, et al. Characteristics of reservoir space and sweet spot evaluation of shale oil in the second member of Paleogene Funing Formation in Subei Basin: a case study of well QY1 in Qintong Sag[J]. Petroleum Geology & Experiment, 2024, 46(5): 916-926. doi: 10.11781/sysydz202405916 [40] 姜龙燕, 钱门辉, 何发岐, 等. 鄂尔多斯盆地富县地区三叠系延长组长7页岩油特征及其主控因素[J]. 石油实验地质, 2024, 46(5): 941-953. doi: 10.11781/sysydz202405941JIANG Longyan, QIAN Menhui, HE Faqi, et al. Characteristics and main controlling factors of Chang 7 shale oil in Triassic Yanchang Formation, Fuxian area, Ordos Basin[J]. Petroleum Geology & Experiment, 2024, 46(5): 941-953. doi: 10.11781/sysydz202405941 -