Geochemical and hydrocarbon generation evolution characteristics of marine-continental transitional facies shale: a case study of the Lower Permian Shanxi Formation in the Daning-Jixian area, eastern margin of Ordos Basin
-
摘要: 为明确海陆过渡相页岩地球化学和生烃演化特征,以鄂尔多斯盆地东缘大宁—吉县地区下二叠统山西组页岩为研究对象,通过总有机碳(TOC)、岩石热解、干酪根碳同位素、有机显微组分、古生物、镜质体反射率(Ro)、生烃热模拟等分析测试,开展了山西组页岩矿物组成、成烃母质、生烃潜力、生烃动力学过程和累计产气率计算模型等研究。研究结果表明:(1)大宁—吉县地区山西组页岩矿物组成以石英和黏土矿物为主,平均TOC含量为4.06%,有机显微组分以腐殖无定形体和镜质组为主,平均Ro为2.61%,整体上表现为高有机质丰度、腐殖型有机质、过成熟演化阶段的特征,具有较高的生气潜力。(2)封闭体系下,山西组页岩气态烃C1和C1-5最大产率分别为138.74和139.22 mg/g;半封闭体系下,山西组页岩气态烃C1和C1-5的最大产率分别为86.51和102.59 mg/g,远低于封闭条件下气态烃最大产率。(3)山西组页岩气态烃产物C1和C1-5的活化能均出现了两个明显的高峰,分别代表了干酪根降解和重烃二次裂解,C1活化能两个高峰分别为56 kcal/mol(26.53%)和61 kcal/mol(30.10%),频率因子为2.0×1011 S-1,C1-5活化能两个高峰分别为56 kcal/mol(28.45%)和61 kcal/mol(19.18%),频率因子为2.2×1011 S-1。(4)山西组海陆过渡相页岩累积产气率与Ro的变化趋势具有y=1/(1+e-x)的函数特征,并建立了两种体系下的累计产气率计算模型。研究成果为海陆过渡相页岩气资源量计算和有利区预测提供了重要的理论支持。Abstract: To clarify the geochemical and hydrocarbon evolution characteristics of marine-continental transitional facies shale, the shale in the Lower Permian Shanxi Formation of the Daning-Jixian area in the eastern margin of the Ordos Basin was taken as the research object. By analyzing and determining total organic carbon (TOC) content, rock pyrolysis, kerogen carbon isotopes, maceral composition, paleontology, vitrinite reflectance (Ro), and conducting hydrocarbon generation thermal simulations, the study investigated the mineral composition, hydrocarbon source, generation potential, generation kinetics, and cumulative gas production rate calculation models of the shale in the Shanxi Formation. The results showed that: (1) The mineral composition of the shale in the Shanxi Formation of the Daning-Jixian area was mainly composed of quartz and clay minerals, with an average TOC content of 4.06%. The organic macerals were mainly composed of humic amorphous bodies and vitrinites, with an average Ro value of 2.61%. Overall, the shale was characterized by high organic matter abundance, dominated by humic-type organic matter, and was at an overmature stage of evolution, demonstrating high gas generation potential. (2) In a closed system, the maximum yields of gaseous hydrocarbons C1 and C1-5 from the shale in the Shanxi Formation were 138.74 and 139.22 mg/g, respectively. In a semi-closed system, the maximum yields of C1 and C1-5 were 86.51 and 102.59 mg/g, respectively, which were significantly lower than the maximum yields under closed conditions. (3) The activation energy for the generation of gaseous hydrocarbon C1 and C1-5 from the shale in the Shanxi Formation exhibited two distinct peaks, representing kerogen degradation and secondary cracking of heavy hydrocarbons. For C1, the two peaks of activation energy were 56 kcal/mol (26.53%) and 61 kcal/mol (30.10%), with a frequency factor of 2.0×1011 S-1. For C1-5, the two peaks of activation energy were 56 kcal/mol (28.45%) and 61 kcal/mol (19.18%), with a frequency factor of 2.2×1011 S-1. (4) The variation trend between cumulative gas production rate and Ro for the marine-continental transitional facies shale in the Shanxi Formation followed the pattern of a logistic function described by y=1/(1+e-x). Cumulative gas production rate calculation models for both the closed and semi-closed systems were established. The research results provide important theoretical support for the calculation of shale gas resources in marine-continental transitional facies and offer insights into favorable zone prediction.
-
图 4 鄂尔多斯盆地东缘大宁—吉县地区下二叠统山西组海陆过渡相页岩和煤有机质类型评价
a.干酪根显微组分镜下特征,发育腐泥(殖)无定形体、镜质组及惰质组;b.干酪根显微组分镜下特征,发育镜质组及惰质组;c.山西组页岩和煤显微组分端元图;d.山西组页岩干酪根碳同位素和类型指数有机质类型综合评价图。
Figure 4. Organic matter type evaluation of shale and coal in marine-continental transitional facies of Lower Permian Shanxi Formation, Daning-Jixian area, eastern margin of Ordos Basin
图 8 鄂尔多斯盆地下二叠统山西组海陆过渡相页岩不同体系下热模拟产烃率特征
a.封闭体系下气态烃C1产率;b.封闭体系下气态烃C2-5产率;c.封闭体系下气态烃C1-5产率;d.半封闭体系下C1、C1-5累积产率;e.半封闭体系下C2-5、C2、C3、C4-5累积产率;f.半封闭体系下总油、排出油、滞留油累积产率。
Figure 8. Characteristics of hydrocarbon generation rate in thermal simulation experiments for different systems of marine-continental transitional facies shale in Lower Permian Shanxi Formation, Ordos Basin
表 1 鄂尔多斯盆地半封闭体系下不同热解温度后页岩样品相关地球化学参数
Table 1. Related geochemical parameters of shale samples after different pyrolysis temperatures in semi-closed system of Ordos Basin
样品编号 ω(TOC)/% Ro/% Tmax/℃ 氯仿沥青“A”/% S1+S2/(mg/g) HI/(mg/g) PY-原样 2.63 0.69 432 3.43 129 PY-325 2.50 0.87 448 0.097 1.73 67 PY-350 2.38 1.07 454 0.104 1.01 36 PY-375 2.31 1.45 557 0.066 0.57 19 PY-425 2.26 1.96 602 0.012 0.22 5 PY-500 2.19 2.79 605 0.006 0.16 4 PY-575 2.12 3.77 608 0.011 0.13 2 -
[1] 张君峰, 周志, 宋腾, 等. 中美页岩气勘探开发历程、地质特征和开发利用条件对比及启示[J]. 石油学报, 2022, 43(12): 1687-1701.ZHANG Junfeng, ZHOU Zhi, SONG Teng, et al. Comparison of exploration and development history, geological characteristics and exploitation conditions of shale gas in China and the United States and its enlightenment[J]. Acta Petrolei Sinica, 2022, 43(12): 1687-1701. [2] 邹才能, 赵群, 王红岩, 等. 中国海相页岩气主要特征及勘探开发主体理论与技术[J]. 天然气工业, 2022, 42(8): 1-13.ZOU Caineng, ZHAO Qun, WANG Hongyan, et al. The main characteristics of marine shale gas and the theory & technology of exploration and development in China[J]. Natural Gas Industry, 2022, 42(8): 1-13. [3] 杨魏, 李勇, 邱玉超, 等. 四川盆地简阳地区须四段致密砂岩气富集高产控制因素[J]. 成都理工大学学报(自然科学版), 2024, 51(6): 897-912.YANG Wei, LI Yong, QU Yuchao, et al. Controlling factors of tight sandstone gas enrichment and high yield in the fourth member of the Xujiahe Formation in Jianyang area, Sichuan Basin[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2024, 51(6): 897-912. [4] 邱振, 邹才能. 非常规油气沉积学: 内涵与展望[J]. 沉积学报, 2020, 38(1): 1-29.QIU Zhen, ZOU Caineng. Unconventional petroleum sedimentology: connotation and prospect[J]. Acta Sedimentologica Sinica, 2020, 38(1): 1-29. [5] QIU Zhen, ZOU Caineng. Controlling factors on the formation and distribution of "sweet-spot areas" of marine gas shales in South China and a preliminary discussion on unconventional petroleum sedimentology[J]. Journal of Asian Earth Sciences, 2020, 194, 103989. [6] 张金川, 李振, 王东升, 等. 中国页岩气成藏模式[J]. 天然气工业, 2022, 42(8): 78-95.ZHANG Jinchuan, LI Zhen, WANG Dongsheng, et al. Shale gas accumulation patterns in China[J]. Natural Gas Industry, 2022, 42(8): 78-95. [7] 王红岩, 刘德勋, 蔚远江, 等. 大面积高丰度海相页岩气富集理论及地质评价技术进展与应用[J]. 煤田地质与勘探, 2022, 50(3): 69-81.WANG Hongyan, LIU Dexun, WEI Yuanjiang, et al. Enrichment theory of large area and high abundance marine shale gas and its geological evaluation technology progress and application[J]. Coal Geology & Exploration, 2022, 50(3): 69-81. [8] 郭旭升, 赵永强, 申宝剑, 等. 中国南方海相页岩气勘探理论: 回顾与展望[J]. 地质学报, 2022, 96(1): 172-182.GUO Xunsheng, ZHAO Yongqiang, SHEN Baojian, et al. Marine shale gas exploration theory in southern China: review and prospects[J]. Acta Geologica Sinica, 2022, 96(1): 172-182. [9] 郭为, 高金亮, 李海, 等. 中国海陆过渡相页岩气地质开发特征: 以鄂尔多斯盆地东缘山西组和四川盆地龙潭组页岩气为例[J]. 矿产勘查, 2023, 14(3): 448-458.GUO Wei, GAO Jinliang, LI Hai, et al. The geological and production characteristics of marine-continental transitional shale gas in China: taking the example of shale gas from Shanxi Formation in Ordos Basin and Longtan Formation in Sichuan Basin[J]. Mineral Exploration, 2023, 14(3): 448-458. [10] 郭旭升, 胡东风, 刘若冰, 等. 四川盆地二叠系海陆过渡相页岩气地质条件及勘探潜力[J]. 天然气工业, 2018, 38(10): 11-18.GUO Xusheng, HU Dongfeng, LIU Ruobing, et al. Geological conditions and exploration potential of Permian marine-continent transitional facies shale gas in the Sichuan Basin[J]. Natural Gas Industry. 2018, 38(10): 11-18. [11] 梁兴, 单长安, 王维旭, 等. 中国南方海相浅层页岩气富集条件及勘探开发前景[J]. 石油学报, 2022, 43(12): 1730-1749.LIANG Xing, SHAN Chang'an, WANG Weixu, et al. Enrichment conditions and exploration and development prospects of shallow marine shale gas in southern China[J]. Acta Petrolei Sinica, 2022, 43(12): 1730-1749. [12] 张素荣, 董大忠, 廖群山, 等. 四川盆地南部深层海相页岩气地质特征及资源前景[J]. 天然气工业, 2021, 41(9): 35-45.ZHANG Surong, DONG Dazhong, LIAO Qunshan, et al. Geological characteristics and resource prospect of deep marine shale gas in the southern Sichuan Basin[J]. Natural Gas Industry, 2021, 41(9): 35-45. [13] 郭旭升, 腾格尔, 魏祥峰, 等. 四川盆地深层海相页岩气赋存机理与勘探潜力[J]. 石油学报, 2022, 43(4): 453-468.GUO Xusheng, TENGER B, WEI Xiangfeng, et al. Occurrence mechanism and exploration potential of deep marine shale gas in Sichuan Basin[J]. Acta Petrolei Sinica, 2022, 43(4): 453-468. [14] 刘皓天, 李雄, 万云强, 等. 陆相页岩气形成条件及勘探开发潜力: 以川东涪陵北地区侏罗系东岳庙段为例[J]. 海相油气地质, 2020, 25(2): 148-154.LIU Haotian, LI Xiong, WAN Yunqiang, et al. Formation conditions and exploration and development potential of continental shale gas: a case of Dongyuemiao Member of the Jurassic in north Fuling area, eastern Sichuan Basin[J]. Marine Origin Petroleum Geology, 2020, 25(2): 148-154. [15] 张君峰, 徐兴友, 白静, 等. 松辽盆地梨树断陷白垩系沙河子组陆相页岩气形成条件与勘探突破[J]. 石油勘探与开发, 2022, 49(3): 440-452.ZHANG Junfeng, XU Xingyou, BAI Jing, et al. Accumulation and exploration of continental shale gas resources of Cretaceous Shahezi Formation in Lishu Fault Depression, Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2022, 49(3): 440-452. [16] 钟建华, 刘闯, 吴建光, 等. 鄂尔多斯盆地东缘临兴地区煤系气共生成藏特征[J]. 煤炭学报, 2018, 43(6): 1517-1525.ZHONG Jianhua, LIU Chuang, WU Jianguang, et al. Symbiotic accumulation characteristics of coal measure gas in Linxing block, eastern Ordos Basin[J]. Journal of China Coal Society, 2018, 43(6): 1517-1525. [17] 徐立富, 邓纪梅, 杜佳, 等. 鄂尔多斯盆地东缘临兴地区海陆过渡相页岩岩相类型和储层差异[J]. 煤炭学报, 2021, 46(S2): 862-876.XU Lifu, DENG Jimei, DU Jia, et al. Lithofacies types and reservoir differences of marine continental transitional shale in Linxing area, eastern margin of Ordos Basin[J]. Journal of China Coal Society, 2021, 46(S2): 862-876. [18] 焦方正, 温声明, 刘向君, 等. 鄂尔多斯盆地海陆过渡相页岩气勘探理论与技术研究新进展[J]. 天然气工业, 2023, 43(4): 11-23.JIAO Fangzheng, WEN Shengming, LIU Xiangjun, et al. Research progress in exploration theory and technology of transitional shale gas in the Ordos Basin[J]. Natural Gas Industry, 2023, 43(4): 11-23. [19] 张吉振, 李贤庆, 王元, 等. 海陆过渡相煤系页岩气成藏条件及储层特征: 以四川盆地南部龙潭组为例[J]. 煤炭学报, 2015, 40(8): 1871-1878.ZHANG Jizhen, LI Xianqing, WANG Yuan, et al. Accumulation conditions and reservoir characteristics of marine-terrigenous facies coal measures shale gas from Longtan Formation in south Sichuan Basin[J]. Journal of China Coal Society, 2015, 40(8): 1871-1878. [20] 匡立春, 董大忠, 何文渊, 等. 鄂尔多斯盆地东缘海陆过渡相页岩气地质特征及勘探开发前景[J]. 石油勘探与开发, 2020, 47(3): 435-446.KUANG Lichun, DONG Dazhong, HE Wenyuan, et al. Geological characteristics and development potential of transitional shale gas in the east margin of the Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(3): 435-446. [21] 吴鹏, 高丽军, 李勇, 等. 海陆过渡相岩性频繁互层型页岩气潜力评价方法: 以鄂尔多斯盆地临兴区块下二叠统山西组为例[J]. 天然气工业, 2022, 42(2): 28-39.WU Peng, GAO Lijun, LI Yong, et al. An evaluation method for shale gas potential of marine-continent transitional facies with frequent interbedded lithology: a case study on the Lower Permian Shanxi Formation in Linxing block of the Ordos Basin[J]. Natural Gas Industry, 2022, 42(2): 28-39. [22] 王恩泽, 郭彤楼, 刘波, 等. 海陆过渡相页岩岩相、孔隙特征及有利岩相富气条件: 以四川盆地东南缘林滩场地区二叠系龙潭组为例[J]. 石油勘探与开发, 2022, 49(6): 1132-1142.WANG Enze, GUO Tonglou, LIU Bo, et al. Lithofacies and pore features of marine-continental transitional shale and gas enrichment conditions of favorable lithofacies: a case study of Permian Longtan Formation in the Lintanchang area, southeast of Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2022, 49(6): 1132-1142 [23] 陈鑫, 吴鹏, 高计县, 等. 临兴地区海陆过渡相页岩及页岩气地球化学特征[J]. 煤田地质与勘探, 2021, 49(6): 12-23.CHEN Xin, WU Peng, GAO Jixian, et al. Geochemical characteristics of marine-continental transitional facies shale and shale gas in Linxing area[J]. Coal Geology & Exploration, 2021, 49(6): 12-23. [24] 吴鹏, 曹地, 朱光辉, 等. 鄂尔多斯盆地东缘临兴地区海陆过渡相页岩气地质特征及成藏潜力[J]. 煤田地质与勘探, 2021, 49(6): 24-34.WU Peng, CAO Di, ZHU Guanghui, et al. Geological characteristics and reservoir-forming potential of shale gas of transitional facies in Linxing area, eastern margin of Ordos Basin[J]. Coal Geology & Exploration, 2021, 49(6): 24-34. [25] 梁岳立, 葛家旺, 赵晓明, 等. 鄂尔多斯盆地东缘山西组2段海陆过渡相页岩高分辨率层序划分及勘探地质意义[J]. 天然气地球科学, 2022, 33(3): 408-417.LIANG Yueli, GE Jiawang, ZHAO Xiaoming, et al. High-resolution sequence division and geological significance of exploration of marine-continental transitional facies shale in the 2nd member of Shanxi Formation, eastern margin of Ordos Basin[J]. Natural Gas Geoscience, 2022, 33(3): 408-417. [26] 董大忠, 邱振, 张磊夫, 等. 海陆过渡相页岩气层系沉积研究进展与页岩气新发现[J]. 沉积学报, 2021, 39(1): 29-45.DONG Dazhong, QIU Zhen, ZHANG Leifu, et al. Progress on sedimentology of transitional facies shales and new discoveries of shale gas[J]. Acta Sedimentologica Sinica, 2021, 39(1): 29-45. [27] 史彪, 吴丰, 李树新, 等. 海陆过渡相优质页岩测井识别: 以鄂尔多斯盆地大宁—吉县地区山2段为例[J]. 地质科技通报, 2023, 42(2): 115-126.SHI Biao, WU Feng, LI Shuxin, et al. Logging identification of high-quality shale of the marine-continent transitional facies: an example of the Shan 2 Member of the Daning-Jixian area in the Ordos Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 115-126. [28] 高丽军, 吴鹏, 石雪峰, 等. 海陆过渡相不同源储类型页岩储层关键参数测井识别及分类方法[J]. 天然气地球科学, 2022, 33(7): 1132-1143.GAO Lijun, WU Peng, SHI Xuefeng, et al. Logging interpretation and classification method of reservoir parameters of marine continental transitional shale based on source and reservoir type[J]. Natural Gas Geoscience, 2022, 33(7): 1132-1143. [29] 孙越, 蒋裕强, 熊先钺, 等. 鄂尔多斯盆地东缘大宁—吉县地区山西组山23亚段海陆过渡相页岩岩相与沉积环境变化[J]. 煤田地质与勘探, 2022, 50(9): 104-114.SUN Yue, JIANG Yuqiang, XIONG Xianyue, et al. Lithofacies and sedimentary environment evolution of the Shan23 submember transitional shale of the Shanxi Formation in the Daning-Jixian area, eastern Ordos Basin[J]. Coal Geology & Exploration, 2022, 50(9): 104-114. [30] 蒋裕强, 温声明, 蔡光银, 等. 鄂尔多斯盆地海陆过渡相页岩岩性组合特征及页岩气勘探潜力[J]. 天然气工业, 2023, 43(4): 62-75.JIANG Yuqiang, WEN Shengming, CAI Guangyin, et al. Lithologic assemblage characteristics and shale gas exploration potential of transitional shale in the Ordos Basin[J]. Natural Gas Industry, 2023, 43(4): 62-75. [31] 李琪琪, 徐尚. 海陆过渡相页岩储层研究现状与展望[J]. 地质通报, 2022, 41(8): 1417-1429.LI Qiqi, XU Shang. Research status and prospects of marine-continental transitional shale reservoirs[J]. Geological Bulletin of China, 2022, 41(8): 1417-1429. [32] 刘洪林, 邹辰, 梅珏, 等. 海陆过渡相地层有机质纳米孔成因及地质意义: 以鄂尔多斯盆地东部山西组为例[J]. 地质学报, 2022, 96(7): 2562-2572.LIU Honglin, ZOU Chen, MEI Jue, et al. Genesis and geological significance of organic matter nanopores in transitionalfacie strata: a case study of the Shanxi Formation in eastern Ordos Basin[J]. Acta Geologica Sinica, 2022, 96(7): 2562-2572. [33] 谷一凡, 蔡光银, 李树新, 等. 不同岩相海陆过渡相页岩孔隙结构及控制因素: 以鄂东缘地区山西组山23亚段为例[J]. 沉积学报, 2023, 41(1): 318-332.GU Yifan, CAI Guangyin, LI Shuxin, et al. Pore structure and controlling factors of different lithofacies in transitional shale: a case study of the Shanxi Formation Shan23 submember, eastern Ordos Basin[J]. Acta Sedimentologica Sinica, 2023, 41(1): 318-332. [34] 蔡光银, 蒋裕强, 李星涛, 等. 海陆过渡相与海相富有机质页岩储层特征差异[J]. 沉积学报, 2022, 40(4): 1030-1042.CAI Guangyin, JIANG Yuqiang, LI Xingtao, et al. Comparison of characteristics of transitional and marine organic-rich shale reservoirs[J]. Acta Sedimentologica Sinica, 2022, 40(4): 1030-1042. [35] 曹涛涛, 邓模, 肖娟宜, 等. 海陆过渡相页岩储层特征及含气赋存机理: 基于与海相页岩储层对比的认识[J]. 天然气地球科学, 2023, 34(1): 122-139.CAO Taotao, DENG Mo, XIAO Juanyi, et al. Reservoir characteristics of marine-continental transitional shale and gas-bearing mechanism: understanding based on comparison with marine shale reservoir[J]. Natural Gas Geoscience, 2023, 34(1): 122-139. [36] 刘峻杰, 吴建军, 熊健, 等. 海陆过渡相不同页岩岩相的岩石力学特性及能量演化特征[J]. 特种油气藏, 2022, 29(6): 83-90.LIU Junjie, WU Jianjun, XIONG Jian, et al. Rock mechanical properties and energy evolution characteristics of different shale lithofacies in marine-continental transition facies[J]. Special Oil & Gas Reservoirs, 2022, 29(6): 83-90. [37] 刘雯, 赵群, 邱振, 等. 鄂尔多斯盆地东缘海陆过渡相页岩气成藏条件研究现状与展望[J]. 天然气地球科学, 2023, 34(5): 868-887.LIU Wen, ZHAO Qun, QIU Zhen, et al. Research status and prospect of accumulation conditions of transitional facies shale gas in the eastern margin of Ordos Basin[J]. Natural Gas Geoscience, 2023, 34(5): 868-887. [38] 罗力元, 李勇, 何清波, 等. 鄂尔多斯盆地东缘海陆过渡相页岩原位含气性评价及其地质应用[J]. 天然气地球科学, 2024, 35(12): 2215-2227.LUO Liyuan, LI Yong, HE Qingbo, et al. In-situ gas-bearing evaluation of marine-continental transitional shale in the eastern margin of Ordos Basin and its geological application[J]. Natural Gas Geoscience, 2024, 35(12): 2215-2227. [39] 赵龙梅, 文桂华, 李星涛, 等. 鄂尔多斯盆地大宁—吉县区块山西组2~3亚段致密砂岩气储层"甜点区"评价[J]. 天然气工业, 2018, 38(S1): 5-10.ZHAO Longmei, WEN Guihua, LI Xingtao, et al. Evaluation of "sweet spot" of tight sandstone gas reservoir in the 2-3 sub-members of Shanxi Formation in Daning-Jixian block, Ordos Basin[J]. Natural Gas Industry, 2018, 38(S1): 5-10. [40] 张琴, 邱振, 张磊夫, 等. 海陆过渡相页岩气储层特征与主控因素: 以鄂尔多斯盆地大宁—吉县区块二叠系山西组为例[J]. 天然气地球科学, 2022, 33(3): 396-407.ZHANG Qin, QIU Zhen, ZHANG Leifu, et al. Reservoir characteristics and its influence on transitional shale: an example from Permian Shanxi Formation shale, Daning-Jixian blocks, Ordos Basin[J]. Natural Gas Geoscience, 2022, 33(3): 396-407. [41] HE Qingbo, CHEN Shijia, LI Shuxin, et al. Organic geochemical characteristics and hydrocarbon generation mechanism of marine-continental transitional organic-rich shale: a case study from the Shanxi Formation in the eastern margin of the Ordos Basin[J]. Journal of Petroleum Science and Engineering, 2022, 219: 111116. [42] 罗力元, 李勇, 李树新, 等. 鄂尔多斯盆地东缘大吉地区山2~3亚段海陆过渡相页岩气富集控制因素[J]. 天然气地球科学, 2025, 36(3): 554-566.LUO Liyuan, LI Yong, LI Shuxin, et al. Controlling factors of marine and continental transitional shale gas enrichment in Shan23 sub-member, Daji area, eastern margin of Ordos Basin[J]. Natural Gas Geoscience, 2025, 36(3): 554-566. [43] LI Yong, ZHANG Quan, LI Shuxin, et al. Methane adsorption characteristics of marine-continental transitional shales based on the experimental study of Shanxi Formation of the Lower Permian in the Ordos Basin[J]. Energy & Fuels, 2024, 38(22): 21984-21999. [44] 李楚雄, 肖七林, 陈奇, 等. 页岩纳米级孔隙在有机质熟化过程中的演化特征及影响因素[J]. 石油实验地质, 2019, 41(6): 901-909. doi: 10.11781/sysydz201906901LI Chuxiong, XIAO Qilin, CHEN Qi, et al. Evolution characteristics and controls of shale nanopores during thermal maturation of organic matter[J]. Petroleum Geology & Experiment, 2019, 41(6): 901-909. doi: 10.11781/sysydz201906901 [45] 王圣柱, 梅文科, 熊峥嵘, 等. 准噶尔盆地东北缘石炭系烃源岩生烃演化特征及其石油地质意义[J]. 石油实验地质, 2023, 45(4): 667-680. doi: 10.11781/sysydz202304667WANG Shengzhu, MEI Wenke, XIONG Zhengrong, et al. Hydrocarbon generation and evolution characteristics of Carboniferous source rocks on the northeastern margin of the Junggar Basin and its petroleum geological significance[J]. Petroleum Geology & Experiment, 2023, 45(4): 667-680. doi: 10.11781/sysydz202304667 [46] GOU Qiyang, XU Shang, HAO Fang, et al. Quantitative calculated shale gas contents with different lithofacies: a case study of Fuling gas shale, Sichuan Basin, China[J]. Journal of Natural Gas Science and Engineering, 2020, 76: 103222. [47] ZHANG Jizhen, TANG Youjun, HE Daxiang, et al. Full-scale nanopore system and fractal characteristics of clay-rich lacustrine shale combining FE-SEM, nano-CT, gas adsorption and mercury intrusion porosimetry[J]. Applied Clay Science, 2020, 196: 105758. [48] LI Yong, CHEN Shijia, WANG Yuexiang, et al. Relationships between hydrocarbon evolution and the geochemistry of solid bitumen in the Guanwushan Formation, NW Sichuan Basin[J]. Marine and Petroleum Geology, 2020, 111: 116-134. [49] 肖正录, 李勇, 喻健, 等. 致密油"近源成藏"关键地球化学证据: 以鄂尔多斯盆地延长组近源组合为例[J]. 石油实验地质, 2023, 45(3): 517-527. doi: 10.11781/sysydz202303517XIAO Zhenglu, LI Yong, YU Jian, et al. Key geochemical evidence of "near-source accumulation" of tight oil: a case study of near-source assemblage of Triassic Yanchang Formation in Ordos Basin[J]. Petroleum Geology & Experiment, 2023, 45(3): 517-527. doi: 10.11781/sysydz202303517 [50] 蒋奇君, 李勇, 刘向君, 等. 准噶尔盆地红车断裂带多源多期油气成藏控制因素及有利勘探方向[J]. 天然气地球科学, 2023, 34(5): 807-820.JIANG Qijun, LI Yong, LIU Xiangjun, et al. Controlling factors of multi-source and multi-stage complex hydrocarbon accumulation and favorable exploration area in the Hongche fault zone, Junggar Basin[J]. Natural Gas Geoscience, 2023, 34(5): 807-820. [51] 刘冠伯, 陈世加, 何文军, 等. 准噶尔盆地乌夏断裂带风城1井区油源对比及其地质意义[J]. 石油实验地质, 2025, 47(3): 621-633. doi: 10.11781/sysydz2025030621LIU Guanbo, CHEN Shijia, HE Wenjun, et al. Oil and source correlation and its geological significance of Fengcheng 1 well block in Wuxia fault zone, Junggar Basin[J]. Petroleum Geology & Experiment, 2025, 47(3): 621-633. doi: 10.11781/sysydz2025030621 [52] 钱门辉, 蒋启贵, 李志明, 等. 开放体系下页岩生烃组分动力学研究: 以渤南洼陷为例[J]. 地球化学, 2017, 46(2): 149-157.QIAN Menhui, JIANG Qigui, LI Zhiming, et al. A study on the compositional kinetics of shale hydrocarbon generation under an open system: taking the Bonan sub-sag as an example[J]. Geochimica, 2017, 46(2): 149-157. [53] 王军, 王清斌, 王飞龙, 等. 渤中地区不同热解实验条件下的烃源岩生烃动力学研究[J]. 地质科技情报, 2018, 37(1): 108-114.WANG Jun, WANG Qingbin, WANG Feilong, et al. Hydrocarbon generation kinetics of source rocks under different pyrolysis conditions in Bozhong area[J]. Geological Science and Technology Information, 2018, 37(1): 108-114. -