"NMR+" shale oil experimental technology system and application
-
摘要: 为准确获取页岩油孔隙度、含油饱和度、可动油饱和度等储层评价关键参数,以岩心核磁共振为基础,结合氦气法、重水抑制法、多温阶加热法联测实验,建立了“核磁+”页岩油实验技术体系,实现一套实验流程、多岩石物理参数的获取。“核磁+氦气”通过测试岩心赋存及逸散流体含量,获取总孔隙度;“核磁+重水抑制”基于重水抑制及毛管渗吸原理,明确二维核磁图谱不同流体分布及含量,获取含油饱和度;“核磁+多温阶加热”基于加热前、后不同状态二维核磁分布,明确重质烃流动起始温度点及油气逸散量,获取可动油饱和度。应用该技术体系,对鄂尔多斯盆地陇东地区X井三叠系延长组长73段(2 285.26 m)新鲜富有机质页岩样品进行测试,明确总孔隙度为5.5%,含油饱和度为53.66%,可动油饱和度为42.68%;同时基于实验结果,计算该段储层核磁测井可动孔隙度T2截止值为4 ms。“核磁+”页岩油实验技术体系的建立和应用,丰富了室内实验室获取岩心孔隙度、饱和度的手段与方法。Abstract: To accurately obtain the key reservoir evaluation parameters such as porosity, oil saturation, and movable oil saturation in shale oil, an experimental technology system "NMR+" was established based on core nuclear magnetic resonance (NMR), combined with helium gas method, heavy water inhibition method, and multi-temperature heating method. Through this set of experimental workflow, multiple petrophysical parameters were obtained. Total porosity was obtained via the "NMR + helium" method by measuring the content of retained and escaping fluids in the cores. The "NMR + heavy water inhibition" method determined the distribution and content of different fluids using 2D NMR spectra based on the principles of heavy water inhibition and capillary imbibition, thereby obtaining oil saturation. The "NMR + multi-temperature heating" method determined the initial temperature point at which heavy hydrocarbons began to move and the amount of escaped hydrocarbon, based on the differences in 2D NMR distributions before and after heating, thereby obtaining movable oil saturation. This technical system was applied to fresh organic-rich shale samples from the third submember of the seventh member of the Triassic Yanchang Formation (Chang 73) (2 285.26 m) of well X in the Longdong area, Ordos Basin. A total porosity of 5.5%, oil saturation of 53.66%, and movable oil saturation of 42.68% were determined. At the same time, based on the experimental results, a 4 ms T2 cut-off value for movable porosity was calculated for this reservoir submember using NMR logging. The establishment and application of the "NMR+" experimental technology system for shale oil have enriched the laboratory methods and approaches for obtaining core porosity and saturation.
-
图 3 页岩油样品二维核磁标准图版[23]
Figure 3. Standard 2D NMR spectra of shale oil samples
-
[1] 郭秋麟, 米石云, 张倩, 等. 中国页岩油资源评价方法与资源潜力探讨[J]. 石油实验地质, 2023, 45(3): 402-412. doi: 10.11781/sysydz202303402GUO Qiulin, MI Shiyun, ZHANG Qian, et al. Assessment methods and potential of shale oil resources in China[J]. Petroleum Geology & Experiment, 2023, 45(3): 402-412. doi: 10.11781/sysydz202303402 [2] 张金晴, 陶国亮, 黄代, 等. 页岩油岩心孔隙度测量的若干问题[J]. 石油实验地质, 2025, 47(2): 433-440. doi: 10.11781/sysydz2025020433ZHANG Jinqing, TAO Guoliang, HUANG Dai, et al. Issues in shale oil core porosity measurement[J]. Petroleum Geology & Experiment, 2025, 47(2): 433-440. doi: 10.11781/sysydz2025020433 [3] 侯连华, 吴松涛, 姜晓华, 等. 页岩油地质评价实验方法现状、挑战与发展方向[J]. 石油学报, 2023, 44(1): 72-90.HOU Lianhua, WU Songtao, JIANG Xiaohua, et al. Situation, challenge and future direction of experimental methods for geological evaluation of shale oil[J]. Acta Petrolei Sinica, 2023, 44(1): 72-90. [4] 袁士义, 雷征东, 李军诗, 等. 陆相页岩油开发技术进展及规模效益开发对策思考[J]. 中国石油大学学报(自然科学版), 2023, 47(5): 13-24.YUAN Shiyi, LEI Zhengdong, LI Junshi, et al. Progress in technology for the development of continental shale oil and thoughts on the development of scale benefits and strategies[J]. Journal of China University of Petroleum(Edition of Natural Science), 2023, 47(5): 13-24. [5] 文家成, 胡钦红, 杨升宇, 等. 渤海湾盆地沧东凹陷孔二段页岩储层特征及页岩油可动性评价[J]. 特种油气藏, 2023, 30(4): 63-70.WEN Jiacheng, HU Qinhong, YANG Shengyu, et al. Shale reservoir characteristics and shale oil mobility in memher 2 of Kongdian Formation of Cangdong Sag, Bohai Bay Basin[J]. Special Oil & Gas Reservoirs, 2023, 30(4): 63-70. [6] 张哲豪, 李新, 赵建斌, 等. 页岩油储层岩石物理实验技术现状及发展[J]. 测井技术, 2022, 46(6): 656-663.ZHANG Zhehao, LI Xin, ZHAO Jianbin, et al. Current situation and development of petrophysical experiment technology in shale oil reservoir[J]. Well Logging Technology, 2022, 46(6): 656-663. [7] 白龙辉, 柳波, 迟亚奥, 等. 二维核磁共振技术表征页岩所含流体特征的应用: 以松辽盆地青山口组富有机质页岩为例[J]. 石油与天然气地质, 2021, 42(6): 1389-1400.BAI Longhui, LIU Bo, CHI Yaao, et al. 2D NMR studies of fluids in organic-rich shale from the Qingshankou Formation, Songliao Basin[J]. Oil & Gas Geology, 2021, 42(6): 1389-1400. [8] 闫伟林, 张兆谦, 陈龙川, 等. 基于核磁共振技术的古龙页岩含油饱和度评价新方法[J]. 大庆石油地质与开发, 2021, 40(5): 78-86.YAN Weilin, ZHANG Zhaoqian, CHEN Longchuan, et al. New evaluating method of oil saturation in Gulong shale based on NMR technique[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(5): 78-86. [9] 王伟, 王振林, 刘财广, 等. 页岩油甜点评价关键技术及甜点类型划分: 以玛湖凹陷二叠系风城组为例[J]. 地球科学, 2023, 48(1): 223-234.WANG Wei, WANG Zhenlin, LIU Caiguang, et al. Key technology of shale oil sweet spot evaluation and sweet spot type division in Fengcheng Formation of Mahu Sag[J]. Earth Science, 2023, 48(1): 223-234. [10] 覃建华, 李映艳, 杜戈峰, 等. 基于核磁共振测井的页岩油产能分析及甜点评价[J]. 新疆石油地质, 2024, 45(3): 317-326.QIN Jianhua, LI Yingyan, DU Gefeng, et al. NMR logging-based productivity analysis and sweet spot evaluation for shale oil[J]. Xinjiang Petroleum Geology, 2024, 45(3): 317-326. [11] 何梦卿, 吴珂. 基于核磁共振驱替技术的页岩含油性评价[J]. 石油化工应用, 2017, 36(11): 83-86.HE Mengqing, WU Ke. Evaluation of shale oil based on NMR displacement technology[J]. Petrochemical Industry Application, 2017, 36(11): 83-86. [12] 贾梦瑶, 鲍云杰, 李志明, 等. 陆相页岩层系岩心中气态烃井场测定技术初步应用及展望[J]. 石油实验地质, 2024, 46(1): 183-190. doi: 10.11781/sysydz202401183JIA Mengyao, BAO Yunjie, LI Zhiming, et al. Preliminary application and prospect of well site determination technology of gaseous hydrocarbon in continental shale cores[J]. Petroleum Geology & Experiment, 2024, 46(1): 183-190. doi: 10.11781/sysydz202401183 [13] 陈曼霏, 王丽, 何家欢, 等. 岩石热解实验在页岩油储层含油性评价中的应用: 以川东北地区侏罗系凉高山组为例[J]. 中国石油勘探, 2024, 29(1): 166-176.CHEN Manfei, WANG Li, HE Jiahuan, et al. Application of rock pyrolysis experiment in oil-bearing property evaluation of shale oil reservoir: a case study of the Jurassic Lianggaoshan Formation in the northeastern Sichuan Basin[J]. China Petroleum Exploration, 2024, 29(1): 166-176. [14] 李政, 包友书, 朱日房, 等. 页岩油赋存特征、可动性实验技术及研究方法进展[J]. 油气地质与采收率, 2024, 31(4): 84-95.LI Zheng, BAO Youshu, ZHU Rifang, et al. Progress in experimental techniques and research methods for shale oil occurrence characteristics and mobility[J]. Petroleum Geology and Recovery Efficiency, 2024, 31(4): 84-95. [15] 朱晓萌, 朱文兵, 曹剑, 等. 页岩油可动性表征方法研究进展[J]. 新疆石油地质, 2019, 40(6): 745-753.ZHU Xiaomeng, ZHU Wenbing, CAO Jian, et al. Research progress on shale oil mobility characterization[J]. Xinjiang Petroleum Geology, 2019, 40(6): 745-753. [16] 孙颖. 核磁共振在页岩储层参数评价中的应用综述[J]. 地球物理学进展, 2023, 38(1): 254-270.SUN Ying. Review of the application of nuclear magnetic resonance in the evaluation of shale reservoir parameters[J]. Progress in Geophysics, 2023, 38(1): 254-270. [17] LU J, LIU M, LIU K, et al. A novel method for quantitative evaluation of oil content and mobility in shale oil reservoirs by NMR logging: a case study of the inter-salt shale oil in the Jianghan Basin[J]. Unconventional Resources, 2024, 4, 100067. [18] 李新. 页岩气储层岩石物理实验及可压裂性表征研究[D]. 西安: 西北大学, 2016.LI Xin. Physical experiment and fracturing potential characterization of shale gas reservoir[D]. Xi'an: Northwest University, 2016. [19] SUN Boqin, DUNK K J. Core analysis with two dimensional NMR[C]//2002 International Symposium of the Society of Core Analysts. Monterey: SCA, 2002. [20] MEHANA M, EL-MONIER I. Shale characteristics impact on nuclear magnetic resonance (NMR) fluid typing methods and correlations[J]. Petroleum, 2016, 2(2): 138-147. [21] OZEN A E, SIGAL R F. T1/T2 NMR surface relaxation ratio for hydrocarbons and brines in contact with mature organic-shale reservoir rocks[J]. Petrophysics, 2013, 54(1): 11-19. [22] 樊睿琦. 页岩油核磁共振响应机理与含油性评价方法研究[D]. 北京: 中国石油大学(北京), 2023.FAN Ruiqi. Nuclear magnetic resonance response characteristics and oil saturation evaluation of lacustrine shale oil reservoir[D]. Beijing: China University of Petroleum (Beijing), 2023. [23] LI Jinbu. Adsorbed and free hydrocarbons in unconventional shale reservoir: a new insight from NMR T1-T2 maps[J]. Marine and Petroleum Geology, 2020, 116: 104311. [24] 杨婕, 张世平, 孙伟, 等. 活泼氢的核磁共振氢谱[J]. 大学化学, 2019, 34(1): 82-88.YANG Jie, ZHANG Shiping, SUN Wei, et al. Proton nuclear magnetic resonance spectroscopy of active hydrogen[J]. University Chemistry, 2019, 34(1): 82-88. [25] 赵羽, 欧阳捷, 孟勇, 等. 重水氘代率的NMR测定方法[J]. 现代仪器, 2009, 15(1): 23-25.ZHAO Yu, OUYANG Jie, MENG Yong, et al. Determination of isotopic purity in deuterated water by NMR[J]. Modern Instruments & Medical Treatment, 2009, 15(1): 23-25. [26] 郭芪恒, 李士祥, 金振奎, 等. 鄂尔多斯盆地延长组长73亚段页岩油特征及勘探方向[J]. 石油勘探与开发, 2023, 50(4): 767-781.GUO Qiheng, LI Shixiang, JIN Zhenkui, et al. Characteristics and exploration targets of Chang 7 shale oil in Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2023, 50(4): 767-781. [27] 李辉, 张涛, 侯雨庭, 等. 鄂尔多斯盆地三叠系延长组长7段陆相页岩层系致密储层充注物性下限及其控制因素[J]. 现代地质, 2024, 38(6): 1498-1510.LI Hui, ZHANG Tao, HOU Yuting, et al. Lower limit of physical properties of filling materials in tight reservoirs of the Chang 7 member, Triassic Yanchang Formation, Ordos Basin, and their controlling factors[J]. Geoscience, 2024, 38(6): 1498-1510. [28] 姜龙燕, 钱门辉, 何发岐, 等. 鄂尔多斯盆地富县地区三叠系延长组长7页岩油特征及其主控因素[J]. 石油实验地质, 2024, 46(5): 941-953. doi: 10.11781/sysydz202405941JIANG Longyan, QIAN Menhui, HE Faqi, et al. Characteristics and main controlling factors of Chang 7 shale oil in Triassic Yanchang Formation, Fuxian area, Ordos Basin[J]. Petroleum Geology & Experiment, 2024, 46(5): 941-953. doi: 10.11781/sysydz202405941 [29] 张凤奇, 孙越, 刘思瑶, 等. 构造抬升区泥页岩脆性破裂泄压特征及对页岩油富集的影响: 以延安地区延长组长73亚段为例[J]. 石油实验地质, 2023, 45(5): 936-951. doi: 10.11781/sysydz202305936ZHANG Fengqi, SUN Yue, LIU Siyao, et al. Characteristics of pressure relief induced by shale brittle fracture in tectonic uplift area and its influence on shale oil enrichment: a case study of Chang 73 sub-member of Yanchang Formation in Yan'an area[J]. Petroleum Geology & Experiment, 2023, 45(5): 936-951. doi: 10.11781/sysydz202305936 [30] 刘孝锐, 路俊刚, 谭开俊, 等. 鄂尔多斯盆地西南部HQ地区长7段烃源岩地球化学特征与长8段原油来源分析[J]. 现代地质, 2024, 38(5): 1306-1324.LIU Xiaorui, LU Jungang, TAN Kaijun, et al. Geochemical characteristics and oil source analysis of the Chang 7 and Chang 8 members in the HQ area, southwestern Ordos Basin[J]. Geoscience, 2024, 38(5): 1306-1324. [31] 石玉江, 蔡文渊, 刘国强, 等. 页岩油储层孔隙流体的全直径岩心二维核磁共振图谱特征及评价方法[J]. 中国石油勘探, 2023, 28(3): 132-144.SHI Yujiang, CAI Wenyuan, LIU Guoqiang, et al. Full diameter core 2D NMR spectrum characteristics of pore fluid in shale oil reservoir and evaluation method[J]. China Petroleum Exploration, 2023, 28(3): 132-144. [32] 覃莹瑶. 页岩油储层核磁共振响应机理及评价方法[D]. 武汉: 长江大学, 2023.QIN Yingyao. NMR response mechanism and evaluation method of shale oil reservoirs[D]. Wuhan: Yangtze University, 2023. -