留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CT扫描与图像处理技术的岩心多尺度裂缝提取方法

吴丰 陈学武 赵辉 石祥超 刘建锋

吴丰, 陈学武, 赵辉, 石祥超, 刘建锋. 基于CT扫描与图像处理技术的岩心多尺度裂缝提取方法[J]. 石油实验地质, 2025, 47(4): 882-894. doi: 10.11781/sysydz2025040882
引用本文: 吴丰, 陈学武, 赵辉, 石祥超, 刘建锋. 基于CT扫描与图像处理技术的岩心多尺度裂缝提取方法[J]. 石油实验地质, 2025, 47(4): 882-894. doi: 10.11781/sysydz2025040882
WU Feng, CHEN Xuewu, ZHAO Hui, SHI Xiangchao, LIU Jianfeng. Computed tomography and image processing based multi-scale fracture extraction method for core samples[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(4): 882-894. doi: 10.11781/sysydz2025040882
Citation: WU Feng, CHEN Xuewu, ZHAO Hui, SHI Xiangchao, LIU Jianfeng. Computed tomography and image processing based multi-scale fracture extraction method for core samples[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(4): 882-894. doi: 10.11781/sysydz2025040882

基于CT扫描与图像处理技术的岩心多尺度裂缝提取方法

doi: 10.11781/sysydz2025040882
基金项目: 

国家自然科学基金区域创新发展联合基金项目 U20A20266

中国石油—西南石油大学创新联合体科技合作项目 2020CX010303

详细信息
    作者简介:

    吴丰(1983—),男,博士,副教授,从事非常规储层测井评价与三维数字岩心模拟研究。E-mail: wfswpu@126.com

  • 中图分类号: TE135

Computed tomography and image processing based multi-scale fracture extraction method for core samples

  • 摘要: 裂缝广泛存在于各类岩石中,其特征对于储层评价、油气藏开发和地质灾害预测等领域具有重要意义。现有基于图像处理的裂缝提取技术在微裂缝识别、裂缝细节特征提取、裂缝与孔隙区分等方面存在明显不足。提出了一种多尺度裂缝滤波核叠加降噪方法,采用多个滤波核叠加对岩心CT扫描图像进行滤波降噪,再将滤波结果叠加;提出了一种多尺度信息增强裂缝分割方法,将阈值分割、顶帽分割等图像分割方法与边缘增强技术相结合,以增强微裂缝信息,并针对不同尺度裂缝采取不同的分割策略;分析了图像分割三维体的长度、宽度、表面积、体积、形状因子、平整度和伸长率等形态参数之间的关系。研究结果表明,多尺度裂缝滤波核叠加降噪方法显著降低了岩心CT扫描图像噪声干扰,精准地保留了裂缝细节特征;多尺度信息增强裂缝分割方法提高了多尺度裂缝的提取精确度和稳定性;裂缝形态参数图版能剔除与裂缝相似的孔隙、特殊矿物边界等非裂缝,最终实现多尺度裂缝的准确提取。

     

  • 图  1  三块不同裂缝特征岩心的照片与CT扫描图像

    Figure  1.  Photographs and CT scanning images of three rock cores with different fracture characteristics

    图  2  三种滤波方法在样品C裂缝区域的降噪效果对比

    Figure  2.  Comparison of noise reduction effects of three filtering methods in fracture region of sample C

    图  3  样品A采用滤波核3、7、15的叠加降噪优化效果

    Figure  3.  Optimized noise reduction effects using superimposition of filter kernels 3, 7, and 15 with sample A

    图  4  样品C中常用图像分割方法裂缝提取效果对比

    Figure  4.  Comparison of fracture extraction effects using common image segmentation methods with sample C

    图  5  样品C宏观裂缝与微裂缝差异化提取效果对比

    Figure  5.  Comparison of differential extraction effects of macro- and micro-fractures in sample C

    图  6  样品A、B、C裂缝形状因子分析

    Figure  6.  Fracture shape factor analysis of samples A, B, and C

    图  7  样品A、B、C裂缝平整度、伸长率分析

    Figure  7.  Fracture flatness and elongation analysis of samples A, B, and C

    图  8  样品A、B、C岩心裂缝提取结果

    Figure  8.  Fracture extraction results of samples A, B, and C

  • [1] 施振生, 赵圣贤, 赵群, 等. 川南地区下古生界五峰组—龙马溪组含气页岩岩心裂缝特征及其页岩气意义[J]. 石油与天然气地质, 2022, 43(5): 1087-1101.

    SHI Zhensheng, ZHAO Shengxian, ZHAO Qun, et al. Fractures in cores from the Lower Paleozoic Wufeng-Longmaxi shale in southern Sichuan Basin and their implications for shale gas exploration[J]. Oil & Gas Geology, 2022, 43(5): 1087-1101.
    [2] 徐效平. 渤海湾盆地东营凹陷古近系富碳酸盐矿物页岩储集特征及其控制因素[J]. 石油实验地质, 2023, 45(3): 413-421. doi: 10.11781/sysydz202303413

    XU Xiaoping. Reservoir characteristics and controlling factors of Paleogene carbonate-rich shale in Dongying Sag, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2023, 45(3): 413-421. doi: 10.11781/sysydz202303413
    [3] 马聪, 周军军, 胡亮, 等. 盆1井西凹陷三工河组储层特征与形成机理[J]. 西南石油大学学报(自然科学版), 2023, 45(5): 1-13.

    MA Cong, ZHOU Junjun, HU Liang, et al. Reservoir characteristics and formation mechanism of Sangonghe Formation in the sag west of well Pen-1[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2023, 45(5): 1-13.
    [4] 郭晶晶, 王帝贺, 王攀荣, 等. 基于数字岩心的低渗储层孔隙结构及水驱剩余油分布特征[J]. 特种油气藏, 2023, 30(2): 101-108. doi: 10.3969/j.issn.1006-6535.2023.02.014

    GUO Jingjing, WANG Dihe, WANG Panrong, et al. Pore structure of low-permeability reservoir and distribution characteristics of remaining oil after water flooding based on digital core[J]. Special Oil & Gas Reservoirs, 2023, 30(2): 101-108. doi: 10.3969/j.issn.1006-6535.2023.02.014
    [5] 张玥, 汤济广, 胡美玲, 等. 松辽盆地南部大安地区青山口组一段页岩储层微观孔隙结构[J]. 特种油气藏, 2023, 30(5): 58-66.

    ZHANG Yue, TANG Jiguang, HU Meiling, et al. Microscopic pore structure of shale reservoir in member 1 of Qingshankou Formation, Daan area of southern Songliao Basin[J]. Special Oil & Gas Reservoirs, 2023, 30(5): 58-66.
    [6] 夏海帮, 韩克宁, 宋文辉, 等. 页岩气藏多尺度孔缝介质压裂液微观赋存机理研究[J]. 油气藏评价与开发, 2023, 13(5): 627-635.

    XIA Haibang, HAN Kening, SONG Wenhui, et al. Pore scale fracturing fluid occurrence mechanisms in multi-scale matrix-fracture system of shale gas reservoir[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 627-635.
    [7] 韩月卿, 李双建, 韩文彪, 等. 川东南地区中二叠统茅口组灰泥灰岩储层孔隙特征[J]. 石油实验地质, 2022, 44(4): 666-676. doi: 10.11781/sysydz202204666

    HAN Yueqing, LI Shuangjian, HAN Wenbiao, et al. Pore characte-ristics of marl reservoir in Maokou Formation of Middle Permian, southeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2022, 44(4): 666-676. doi: 10.11781/sysydz202204666
    [8] 黄兴, 李天太, 王香增, 等. 致密砂岩储层可动流体分布特征及影响因素: 以鄂尔多斯盆地姬塬油田延长组长8油层组为例[J]. 石油学报, 2019, 40(5): 557-567.

    HUANG Xing, LI Tiantai, WANG Xiangzeng, et al. Distribution characteristics and its influence factors of movable fluid in tight sandstone reservoir: a case study from Chang-8 oil layer of Yanchang Formation in Jiyuan oilfield, Ordos Basin[J]. Acta Petrolei Sinica, 2019, 40(5): 557-567.
    [9] 王俊鹏, 张惠良, 张荣虎, 等. 裂缝发育对超深层致密砂岩储层的改造作用: 以塔里木盆地库车坳陷克深气田为例[J]. 石油与天然气地质, 2018, 39(1): 77-88.

    WANG Junpeng, ZHANG Huiliang, ZHANG Ronghu, et al. Enhancement of ultra-deep tight sandstone reservoir quality by fractures: a case study of Keshen gas field in Kuqa Depression, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(1): 77-88.
    [10] 王俊杰, 胡勇, 刘义成, 等. 碳酸盐岩储层多尺度孔洞缝的识别与表征: 以川西北双鱼石构造中二叠统栖霞组自云岩储层为例[J]. 天然气工业, 2020, 40(3): 48-57.

    WANG Junjie, HU Yong, LIU Yicheng, et al. Identification and characterization of multi-scale pores, vugs and fractures in carbonate reservoirs: a case study of the Middle Permian Qixia dolomite reservoirs in the Shuangyushi Structure of the northwestern Sichuan Basin[J]. Natural Gas Industry, 2020, 40(3): 48-57.
    [11] 王飞, 吴翔, 段朝伟, 等. 基于三维CT重构的页岩裂缝定量表征及可压裂性评价[J]. 地球物理学进展, 2023, 38(5): 2147-2159.

    WANG Fei, WU Xiang, DUAN Chaowei, et al. CT scan-based quantitative characterization and fracability evaluation of fractures in shale reservoirs[J]. Progress in Geophysics, 2023, 38(5): 2147-2159.
    [12] 刘学锋, 张晓伟, 曾鑫, 等. 采用机器学习分割算法和扫描电镜分析页岩微观孔隙结构[J]. 中国石油大学学报(自然科学版), 2022, 46(1): 23-33.

    LIU Xuefeng, ZHANG Xiaowei, ZENG Xin, et al. Pore structure characterization of shales using SEM and machine learning-based segmentation method[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(1): 23-33.
    [13] PURSWANI P, KARPYN Z T, ENAB K, et al. Evaluation of image segmentation techniques for image-based rock property estimation[J]. Journal of Petroleum Science and Engineering, 2020, 195: 107890.
    [14] 邓乃尔, 徐浩, 周文, 等. 基于深度学习的页岩黄铁矿扫描电镜图像分割及环境指示意义: 以四川盆地泸州Ⅰ区为例[J]. 地球科学进展, 2024, 39(5): 476-488.

    DENG Naier, XU Hao, ZHOU Wen, et al. Deep learning SEM image segmentation of shale pyrite and environmental indications: a study of Luzhou block, Sichuan Basin[J]. Advances in Earth Science, 2024, 39(5): 476-488.
    [15] 李长海, 赵伦, 刘波, 等. 微裂缝研究进展、意义及发展趋势[J]. 天然气地球科学, 2020, 31(3): 402-416.

    LI Changhai, ZHAO Lun, LIU Bo, et al. Research status, significance and development trend of microfractures[J]. Natural Gas Geoscience, 2020, 31(3): 402-416.
    [16] 帅燕华, 李剑, 田兴旺, 等. 四川盆地川中—川西震旦系—三叠系天然气成藏分析及勘探意义[J]. 地质学报, 2023, 97(5): 1526-1543.

    SHUAI Yanhua, LI Jian, TIAN Xingwang, et al. Accumulation mechanisms of Sinian to Triassic gas reservoirs in the central and western Sichuan Basin and their significance for oil and gas prospecting[J]. Acta Geologica Sinica, 2023, 97(5): 1526-1543.
    [17] 夏钦禹, 闫海军, 徐伟, 等. 川中地区磨溪区块震旦系顶面古岩溶微地貌及其发育特征[J]. 石油学报, 2021, 42(10): 1299-1309.

    XIA Qinyu, YAN Haijun, XU Wei, et al. Paleokarst microtopo-graphy of the Sinian top and its development characteristics in Moxi area, central Sichuan Basin[J]. Acta Petrolei Sinica, 2021, 42(10): 1299-1309.
    [18] 王蓓, 刘向君, 司马立强. 四川盆地磨溪地区寒武系龙王庙组缝洞型储集层分级评价及预测[J]. 石油勘探与开发, 2019, 46(2): 290-301.

    WANG Bei, LIU Xiangjun, SIMA Liqiang. Grading evaluation and prediction of fracture-cavity reservoirs in Cambrian Longwangmiao Formation of Moxi area, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2019, 46(2): 290-301.
    [19] 高阳东, 彭光荣, 张向涛, 等. 珠江口盆地白云凹陷古近系文昌组源—汇系统特征及演化[J]. 石油与天然气地质, 2023, 44(3): 584-599.

    GAO Yangdong, PENG Guangrong, ZHANG Xiangtao, et al. Characteristics and evolution of the source-to-sink system of the Paleogene Wenchang Formation in Baiyun Sag, Pearl River Mouth Basin[J]. Oil & Gas Geology, 2023, 44(3): 584-599.
    [20] 段威, 田金强, 李三忠, 等. 南海珠江口盆地惠州凹陷东南缘远源凸起带油气成因及来源[J]. 地学前缘, 2022, 29(5): 176-187.

    DUAN Wei, TIAN Jinqiang, LI Sanzhong, et al. Crude oil in the uplifts of the Huizhou Depression, Pearl River Mouth Basin, South China Sea: source and formation mechanisms[J]. Earth Science Frontiers, 2022, 29(5): 176-187.
    [21] LIU Caixia, ZHANG Li. A novel denoising algorithm based on wavelet and non-local moment mean filtering[J]. Electronics, 2023, 12(6): 1461.
    [22] YU Jingning. Based on Gaussian filter to improve the effect of the images in Gaussian noise and pepper noise[J]. Journal of Physics: Conference Series, 2023, 2580: 012062.
    [23] SUN Tong, NEUVO Y. Detail-preserving median based filters in image processing[J]. Pattern Recognition Letters, 1994, 15(4): 341-347.
    [24] HOUSSEIN E H, EL-DIN HELMY B, OLIVA D, et al. An efficient multi-thresholding based COVID-19 CT images segmentation approach using an improved equilibrium optimizer[J]. Biomedical Signal Processing and Control, 2022, 73: 103401.
    [25] 黄彦庆, 肖开华, 金武军, 等. 川东北元坝西部须家河组致密砂岩裂缝发育特征及控制因素[J]. 地质科技通报, 2023, 42(2): 105-114.

    HUANG Yanqing, XIAO Kaihua, JIN Wujun, et al. Characteristics and controlling factors of tight sandstone reservoir fractures in the Xujiahe Formation of the western Yuanba area, northeastern Sichuan Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 105-114.
    [26] 苏晓明, 吴若宁, 赵常举, 等. 塔中区块高温高压裂缝性气藏封堵层气蚀剪切失效机理[J]. 地质科技通报, 2022, 41(4): 21-29.

    SU Xiaoming, WU Ruoning, ZHAO Changju, et al. Failure mechanism of cavitation-induced shear of the plugging layer in high-temperature high-pressure fractured gas reservoirs in the Tazhong block, NW China[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 21-29.
    [27] 段建民, 战宇辰, 刘冠宇. 基于TopHat分割和曲线模型的三车道检测方法[J]. 北京工业大学学报, 2016, 42(8): 1174-1181.

    DUAN Jianmin, ZHAN Yuchen, LIU Guanyu. Three-lane detection method based on TopHat segmentation and curve models[J]. Journal of Beijing University of Technology, 2016, 42(8): 1174-1181.
    [28] CHEN Xuechang, WANG Gang, CHEN Hao, et al. Analysis of the effects of coal facture shape factor on water seepage based on computerized tomography (CT) 3D reconstructed artificial fractures[J]. Fuel, 2023, 348: 128571.
    [29] DE FILIPPIS L, BILLI A. Morphotectonics of fissure ridge travertines from geothermal areas of Mammoth Hot Springs (Wyoming) and Bridgeport (California)[J]. Tectonophysics, 2012, 548-549: 34-48.
    [30] MAABOUD N F A, EL-BAHRAWI M S, ABDEL-AZIZ F. Digital holography in flatness and crack investigation[J]. Metrology and Measurement Systems, 2010, 17(4): 583-587.
  • 加载中
图(8)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  4
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-29
  • 修回日期:  2025-05-18
  • 刊出日期:  2025-07-28

目录

    /

    返回文章
    返回