留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非热成熟度因素对高—过成熟页岩激光拉曼光谱的影响——以四川盆地南部下古生界海相页岩为例

张鸿飞 焦堃 王佳玉 许宁 马丽君 刘岚锋 吴赟骏 邓宾 吴娟 叶玥豪 管全中 王周祥昕 张丛科

张鸿飞, 焦堃, 王佳玉, 许宁, 马丽君, 刘岚锋, 吴赟骏, 邓宾, 吴娟, 叶玥豪, 管全中, 王周祥昕, 张丛科. 非热成熟度因素对高—过成熟页岩激光拉曼光谱的影响——以四川盆地南部下古生界海相页岩为例[J]. 石油实验地质, 2025, 47(4): 895-903. doi: 10.11781/sysydz2025040895
引用本文: 张鸿飞, 焦堃, 王佳玉, 许宁, 马丽君, 刘岚锋, 吴赟骏, 邓宾, 吴娟, 叶玥豪, 管全中, 王周祥昕, 张丛科. 非热成熟度因素对高—过成熟页岩激光拉曼光谱的影响——以四川盆地南部下古生界海相页岩为例[J]. 石油实验地质, 2025, 47(4): 895-903. doi: 10.11781/sysydz2025040895
ZHANG Hongfei, JIAO Kun, WANG Jiayu, XU Ning, MA Lijun, LIU Lanfeng, WU Yunjun, DENG Bin, WU Juan, YE Yuehao, GUAN Quanzhong, WANGZHOU Xiangxin, ZHANG Congke. Influence of non-thermal maturity factors on laser Raman spectroscopy of highly to overmature shale: a case study of Lower Paleozoic marine shale in southern Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(4): 895-903. doi: 10.11781/sysydz2025040895
Citation: ZHANG Hongfei, JIAO Kun, WANG Jiayu, XU Ning, MA Lijun, LIU Lanfeng, WU Yunjun, DENG Bin, WU Juan, YE Yuehao, GUAN Quanzhong, WANGZHOU Xiangxin, ZHANG Congke. Influence of non-thermal maturity factors on laser Raman spectroscopy of highly to overmature shale: a case study of Lower Paleozoic marine shale in southern Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(4): 895-903. doi: 10.11781/sysydz2025040895

非热成熟度因素对高—过成熟页岩激光拉曼光谱的影响——以四川盆地南部下古生界海相页岩为例

doi: 10.11781/sysydz2025040895
基金项目: 

国家自然科学基金面上项目 42372174

四川省自然科学基金面上项目 2023NSFSC0262

详细信息
    作者简介:

    张鸿飞(2000—),男,硕士生,从事非常规油气地质、有机岩石学相关研究。E-mail: 1049723359@qq.com

    通讯作者:

    焦堃(1985—),男,博士,研究员,从事非常规油气地质、有机岩石学相关研究。E-mail: jiaokun@cdut.edu.cn

  • 中图分类号: TE135

Influence of non-thermal maturity factors on laser Raman spectroscopy of highly to overmature shale: a case study of Lower Paleozoic marine shale in southern Sichuan Basin

  • 摘要: 激光拉曼光谱技术因其样品制备过程简单、测试便捷及具备无损分析等优势,在古老海相页岩热成熟度评价领域的应用日益广泛。目前,国内外研究主要聚焦于激光拉曼相关参数对热成熟度变化的响应,而对于非热成熟度因素(如谱图处理、样品预处理、激光波长设置等)对实验精度影响的研究相对匮乏且认识不一。采用激光拉曼光谱技术对四川盆地上奥陶统五峰组—下志留统龙马溪组及下寒武统筇竹寺组高—过成熟黑色页岩进行系统对比分析,重点探讨非热成熟度因素对激光拉曼光谱峰间距(RBS)、半峰宽(FWHM)、峰强比(ID/IG)等参数的影响,主要获得如下认识:(1)在图谱处理方法方面,双峰拟合较五峰拟合的不确定性更小、处理效率更高,更契合高—过成熟页岩热成熟度测试的需求,适用于筇竹寺组页岩拉曼谱图处理;(2)在参数选择方面,位置参数(WDWG、RBS)经分峰拟合后,热成熟度差异小于2%,稳定性较高,而峰形参数(ID/IG、FWHM-D、FWHM-G)中的ID/IG受分峰拟合影响较小且样品间区分度高,建议在热成熟度相关性研究中优先选用位置参数RBS与峰形参数ID/IG;(3)在样品预处理方面,抛光处理对五峰组—龙马溪组高—过成熟黑色页岩拉曼参数的影响整体小于3%,但为确保能够准确定位黑色页岩中的分散有机质,建议在实验前对样品进行抛光处理。

     

  • 图  1  激光拉曼光谱参数示意图

    Figure  1.  Schematic diagram of laser Raman spectral parameters

    图  2  川南上寒武统五峰组—下奥陶统龙马溪组典型页岩样品激光拉曼光谱平滑处理与基线校准对比

    Figure  2.  Comparison of smoothed laser Raman spectra and baseline calibration of typical shale samples from Upper Cambrian Wufeng Formation to Lower Ordovician Longmaxi Formation in southern Sichuan Basin

    图  3  川南上奥陶统五峰组—下志留统龙马溪组与下寒武统筇竹寺组典型样品不同分峰方式拟合效果

    Figure  3.  Fitting results of different peak fitting methods for typical samples from Upper Ordovician Wufeng Formation to Lower Silurian Longmaxi Formation and Lower Cambrian Qiongzhusi Formation in southern Sichuan Basin

    图  4  川南下古生界样品双峰拟合与五峰拟合对比

    Figure  4.  Comparison between double-peak and five-peak fitting of samples in Lower Paleozoic of southern Sichuan Basin

    图  5  川南下古生界筇竹寺组典型样品抛光与未抛光镜下照片对比

    Figure  5.  Microscopic images comparing polished and unpolished typical samples from Lower Paleozoic Qiongzhusi Formation in southern Sichuan Basin

    表  1  川南下古生界黑色页岩样品信息

    Table  1.   Information of black shale samples from Lower Paleozoic in southern Sichuan Basin

    井号 样品编号 深度/m 层位 ω(TOC)/% 样品数量
    Z213 1~9 4 108.70~4 092.78 五峰组—龙马溪组 2.11~4.88 9
    Z205 18~25 4 103.73~4 099.05 龙马溪组 8
    W120 47~55 2 822.13~2 829.52 筇竹寺组 9
    N206 76~82 1 889.73~1 330.11 筇竹寺组 0.83~3.58 7
    W201 83~88 2 629.15~2 819.40 筇竹寺组 0.37~5.69 6
    H201 89~100 4 052.80-4 085.60 龙马溪组 13
    下载: 导出CSV

    表  2  川南上奥陶统五峰组—下志留统龙马溪组典型页岩样品平滑处理中不同窗口对各类参数的影响

    Table  2.   Influence of different smoothing window sizes on each parameter of typical shale samples from Upper Ordovician Wufeng Formation to Lower Silurian Longmaxi Formation in southern Sichuan Basin

    窗口大小 RBS/cm-1 WG/cm-1 WD/cm-1 FWHM-G/cm-1 FWHM-D/cm-1 ID/IG
    原始数据 270.40 1 603.16 1 332.76 32.15 60.73 0.75
    5 270.38 1 603.16 1 332.78 32.16 60.99 0.75
    7 270.42 1 603.18 1 332.75 31.92 60.23 0.74
    9 270.61 1 603.24 1 332.63 31.51 55.90 0.66
    11 270.62 1 603.24 1 332.61 31.43 55.82 0.66
    13 270.58 1 603.24 1 332.65 31.56 56.21 0.67
    15 270.58 1 603.23 1 332.65 31.61 56.25 0.67
    17 270.88 1 603.24 1 332.36 30.19 54.61 0.68
    19 270.74 1 603.23 1 332.49 30.81 55.55 0.68
    21 270.55 1 603.22 1 332.66 31.79 56.62 0.67
    下载: 导出CSV

    表  3  川南上奥陶统五峰组—下志留统龙马溪组典型页岩样品不同基线校准拉曼参数对比

    Table  3.   Comparison of Raman parameters with different baseline calibrations for typical shale samples from Upper Ordovician Wufeng Formation to Lower Silurian Longmaxi Formation in southern Sichuan Basin

    基线类型 WD/cm-1 WG/cm-1 RBS ID/IG FWHM-G/cm-1 FWHM-G/cm-1
    未校准 1 324.85 1 597.68 272.83 1.25 - -
    线性 1 331.55 1 599.03 267.48 0.84 116.09 39.74
    最佳拟合 1 329.62 1 599.22 269.60 0.80 117.94 41.16
    三次多项式 1 324.92 1 597.24 272.31 0.91 113.16 75.70
    对数 1 331.00 1 598.59 267.59 0.85 118.17 40.75
    下载: 导出CSV

    表  4  川南上古生界样品双峰拟合与五峰拟合差值百分比

    Table  4.   Percentage difference between double-peak and five-peak fitting of samples in Upper Paleozoic of southern Sichuan Basin  %

    井号 WD WG RBS ID/IG FWHM-D FWHM-G
    W120 0.71 0.24 -1.92 17.74 -36.32 -18.38
    N206 0.14 0.25 0.78 10.09 -6.95 -13.47
    W201 0.41 0.16 -1.14 10.29 -24.92 -12.04
    Z213 0.43 0.17 -1.11 7.46 -32.31 -13.69
    Z205 0.48 0.15 -1.48 4.55 -31.95 -15.03
    H201 0.17 0.16 0.39 11.54 -20.28 -10.21
    下载: 导出CSV

    表  5  川南上奥陶统五峰组—下志留统龙马溪组抛光与未抛光样品拉曼参数对比

    Table  5.   Comparison of Raman parameters between polished and unpolished samples from Upper Ordovician Wufeng Formation to Lower Silurian Longmaxi Formation in southern Sichuan Basin

    抛光情况 样品编号 WD/cm-1 WG/cm-1 RBS/cm-1 ID/IG FWHM-D/cm-1 FWHM-G/cm-1
    抛光 Z205-22-1 1 327.93 1 598.63 270.70 0.68 162.42 44.45
    Z205-22-2 1 328.54 1 600.61 272.07 0.64 162.78 43.21
    Z205-22-3 1 328.61 1 597.58 268.97 0.70 172.26 46.67
    Z205-22-5 1 329.44 1 599.04 269.60 0.66 173.82 45.88
    未抛光 Z205-22-1 1 325.71 1 595.88 270.17 0.66 172.58 45.85
    Z205-22-2 1 325.41 1 594.61 269.20 0.70 175.36 49.31
    Z205-22-3 1 324.68 1 594.85 270.17 0.69 159.92 44.41
    Z205-22-5 1 325.00 1 595.13 270.13 0.69 164.66 46.12
    下载: 导出CSV
  • [1] HENRY D G, JARVIS I, GILLMORE G, et al. Assessing low-maturity organic matter in shales using Raman spectroscopy: effects of sample preparation and operating procedure[J]. International Journal of Coal Geology, 2018, 191: 135-151.
    [2] HENRY D G, JARVIS I, GILLMORE G, et al. Raman spectroscopy as a tool to determine the thermal maturity of organic matter: application to sedimentary, metamorphic and structural geology[J]. Earth-Science Reviews, 2019, 198: 102936.
    [3] HENRY D G, JARVIS I, GILLMORE G, et al. A rapid method for determining organic matter maturity using Raman spectroscopy: application to Carboniferous organic-rich mudstones and coals[J]. International Journal of Coal Geology, 2019, 203: 87-98.
    [4] HOU Yuguang, ZHANG Kunpeng, WANG Furong, et al. Structural evolution of organic matter and implications for graphitization in over-mature marine shales, south China[J]. Marine and Petroleum Geology, 2019, 109: 304-316.
    [5] MI Jingkui, HE Kun, FAN Junjia, et al. Thermal maturity determination for oil prone organic matter based on the Raman spectra of artificial matured samples[J]. Vibrational Spectroscopy, 2019, 104: 102940.
    [6] 刘德汉, 肖贤明, 田辉, 等. 固体有机质拉曼光谱参数计算样品热演化程度的方法与地质应用[J]. 科学通报, 2013, 58(13): 1228-1241.

    LIU Dehan H, XIAO Xianming, TIAN Hui, et al. Sample maturation calculated using Raman spectroscopic parameters for solid organics: methodology and geological applications[J]. Chinese Science Bulletin, 2013, 58(13): 1285-1298.
    [7] ZUO Zhaoxi, CAO Jian, WANG Xiaolin, et al. Characterizing maturity of reservoir pyrobitumen with strong anisotropy: a calibration between reflectance and laser Raman spectral parameters[J]. AAPG Bulletin, 2022, 106(7): 1373-1401.
    [8] 王晔. 四川盆地下古生界页岩成熟度表征和成熟过程研究[D]. 北京: 中国石油大学, 2019.

    WANG Ye. Thermal maturity and maturity history of the Lower Paleozoic shale in Sichuan Basin[D]. Beijing: China University of Petroleum, 2019.
    [9] TUINSTRA F, KOENIG J L. Raman spectrum of graphite[J]. The Journal of Chemical Physics, 1970, 53(3): 1126-1130.
    [10] BENY-BASSEZ C, ROUZAUD J N. Characterization of carbonaceous materials by correlated electron and optical microscopy and Raman microspectroscopy[J]. Scanning Electron Microscopy, 1985, 1985(1): 119-132.
    [11] WOPENKA B, PASTERIS J D. Structural characterization of kerogens to granulite-facies graphite: applicability of Raman microprobe spectroscopy[J]. American Mineralogist, 1993, 78(5/6): 533-557.
    [12] JEHLI KA J, BENY C. First and second order Raman spectra of natural highly carbonified organic compounds from metamorphic rocks[J]. Journal of Molecular Structure, 1999, 480-481: 541-545.
    [13] BEYSSAC O, GOFFÉ B, PETITET J P, et al. On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2003, 59(10): 2267-2276.
    [14] KELEMEN S R, FANG H L. Maturity trends in Raman spectra from kerogen and coal[J]. Energy & Fuels, 2001, 15(3): 653-658.
    [15] KHATIBI S, OSTADHASSAN M, TUSCHEL D, et al. Raman spectroscopy to study thermal maturity and elastic modulus of kerogen[J]. International Journal of Coal Geology, 2018, 185: 103-118.
    [16] KHATIBI S, OSTADHASSAN M, TUSCHEL D, et al. Evaluating molecular evolution of kerogen by Raman spectroscopy: correlation with optical microscopy and rock-eval pyrolysis[J]. Energies, 2018, 11(6): 1406.
    [17] KHATIBI S, AGHAJANPOUR A. Raman spectroscopy: an analytical tool for evaluating organic matter[J]. Journal of Oil Gas and Petrochemical Sciences, 2018, 1(1): 28-33.
    [18] 王茂林, 肖贤明, 魏强, 等. 页岩中固体沥青拉曼光谱参数作为成熟度指标的意义[J]. 天然气地球科学, 2015, 26(9): 1712-1718.

    WANG Maolin, XIAO Xianming, WEI Qiang, et al. Thermal maturation of solid bitumen in shale as revealed by Raman spectroscopy[J]. Natural Gas Geoscience, 2015, 26(9): 1712-1718.
    [19] ZHOU Qin, XIAO Xianming, PAN Lei, et al. The relationship between micro-Raman spectral parameters and reflectance of solid bitumen[J]. International Journal of Coal Geology, 2014, 121: 19-25.
    [20] 肖贤明, 周秦, 程鹏, 等. 高—过成熟海相页岩中矿物—有机质复合体(MOA)的显微激光拉曼光谱特征作为成熟度指标的意义[J]. 中国科学: 地球科学, 2020, 50(9): 1228-1241.

    XIAO Xianming, ZHOU Qin, CHENG Peng, et al. Thermal maturation as revealed by micro-Raman spectroscopy of mineral-organic aggregation (MOA) in marine shales with high and over maturities[J]. Scientia Sinica Terrae, 2020, 50(9): 1228-1241.
    [21] BEYSSAC O, GOFFÉ B, CHOPIN C, et al. Raman spectra of carbonaceous material in metasediments: a new geothermometer[J]. Journal of Metamorphic Geology, 2002, 20(9): 859-871.
    [22] WILKINS R W T, BOUDOU R, SHERWOOD N, et al. Thermal maturity evaluation from inertinites by Raman spectroscopy: the 'RaMM' technique[J]. International Journal of Coal Geology, 2014, 128-129: 143-152.
    [23] SAUERER B, CRADDOCK P R, ALJOHANI M D, et al. Fast and accurate shale maturity determination by Raman spectroscopy measurement with minimal sample preparation[J]. International Journal of Coal Geology, 2017, 173: 150-157.
    [24] SCHITO A, ROMANO C, CORRADO S, et al. Diagenetic thermal evolution of organic matter by Raman spectroscopy[J]. Organic Geochemistry, 2017, 106: 57-67.
    [25] KANEKI S, HIRONO T, MUKOYOSHI H, et al. Organochemical characteristics of carbonaceous materials as indicators of heat recorded on an ancient plate‐subduction fault[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(7): 2855-2868.
    [26] LIU Jiang, LI Haibing, ZHANG Jinjiang, et al. Origin and formation of carbonaceous material veins in the 2008 Wenchuan earthquake fault zone[J]. Earth, Planets and Space, 2016, 68: 19.
    [27] SCHMIDT J S, HINRICHS R, ARAUJO C V. Maturity estimation of phytoclasts in strew mounts by micro-Raman spectroscopy[J]. International Journal of Coal Geology, 2017, 173: 1-8.
    [28] KANEKI S, HIRONO T. Kinetic effect of heating rate on the thermal maturity of carbonaceous material as an indicator of frictional heat during earthquakes[J]. Earth, Planets and Space, 2018, 70(1): 92.
    [29] MUKOYOSHI H, KANEKI S, HIRONO T. Slip parameters on major thrusts at a convergent plate boundary: regional heterogeneity of potential slip distance at the shallow portion of the subducting plate[J]. Earth, Planets and Space, 2018, 70(1): 36.
    [30] 王义凤, 谢林丰, 李剑, 等. 基于激光拉曼和傅里叶变换质谱实验的高—过成熟有机质特征评价[J]. 天然气工业, 2023, 43(11): 83-99.

    WANG Yifeng, XIE Linfeng, LI Jian, et al. Characteristics evaluation of high-over mature organic matter based on laser Raman and Fourier transform mass spectrometry experiments[J]. Natural Gas Industry, 2023, 43(11): 83-99.
    [31] KOUKETSU Y, SHIMIZU I, WANG Yu, et al. Raman spectra of carbonaceous materials in a fault zone in the Longmenshan thrust belt, China; comparisons with those of sedimentary and metamorphic rocks[J]. Tectonophysics, 2017, 699: 129-145.
    [32] NAKAMURA Y, YOSHINO T, SATISH-KUMAR M. An experimental kinetic study on the structural evolution of natural carbonaceous material to graphite[J]. American Mineralogist, 2017, 102(1): 135-148.
    [33] BALUDIKAY B K, FRANÇOIS C, SFORNA M C, et al. Raman microspectroscopy, bitumen reflectance and illite crystallinity scale: comparison of different geothermometry methods on fossiliferous Proterozoic sedimentary basins (DR Congo, Mauritania and Australia)[J]. International Journal of Coal Geology, 2018, 191: 80-94.
    [34] GOLUBEV Y A, MARTIROSYAN O V, KUZMIN D V, et al. Transformations of natural bitumens of different degrees of metamorphism at a low vacuum heating in the temperature range of 400~1 000 ℃[J]. Journal of Petroleum Science and Engineering, 2019, 173: 315-325.
    [35] SONG Yu, JIANG Bo, QU Meijun. Macromolecular evolution and structural defects in tectonically deformed coals[J]. Fuel, 2019, 236: 1432-1445.
    [36] MENG Kang, ZHANG Tongwei, SHAO Deyong, et al. Assessment of thermal maturity in Lower Cambrian organic-rich shale in south China using integrated optical reflectance and Raman spectroscopy of pyrobitumen[J]. Marine and Petroleum Geology, 2024, 160: 106609.
    [37] LÜNSDORF N K. Raman spectroscopy of dispersed vitrinite—methodical aspects and correlation with reflectance[J]. International Journal of Coal Geology, 2016, 153: 75-86.
    [38] 李国辉, 苑保国, 朱华, 等. 四川盆地超级富气成因探讨[J]. 天然气工业, 2022, 42(5): 1-10.

    LI Guohui, YUAN Baoguo, ZHU Hua, et al. Genesis of super-rich gas in the Sichuan Basin[J]. Natural Gas Industry, 2022, 42(5): 1-10.
    [39] WANG Xiaolin, WANG Xiaoyu, CHOU I M, et al. Properties of lithium under hydrothermal conditions revealed by in situ Raman spectroscopic characterization of Li2O-SO3-H2O (D2O) systems at temperatures up to 420 ℃[J]. Chemical Geology, 2017, 451: 104-115.
    [40] QIU Ye, ZHANG Rongqing, CHOU I M, et al. Boron-rich ore-forming fluids in hydrothermal W-Sn deposits from South China: insights from in situ Raman spectroscopic characterization of fluid inclusions[J]. Ore Geology Reviews, 2021, 132: 104048.
    [41] 高志伟. 激光拉曼光谱在有机显微组分分析中的应用研究[D]. 北京: 中国石油大学(北京), 2022.

    GAO Zhiwei. Application of laser Raman spectroscopy in organic maceral analysis[D]. Beijing: China University of Petroleum, 2022.
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  5
  • HTML全文浏览量:  1
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-29
  • 修回日期:  2025-06-04
  • 刊出日期:  2025-07-28

目录

    /

    返回文章
    返回