留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全直径岩心核磁扫描数据超分辨率重建技术——一种基于全局非负最小二乘的方法

马莹颖 彭泽波 陈敬智 吴飞 聂昕 廖中枢 张宫

马莹颖, 彭泽波, 陈敬智, 吴飞, 聂昕, 廖中枢, 张宫. 全直径岩心核磁扫描数据超分辨率重建技术——一种基于全局非负最小二乘的方法[J]. 石油实验地质, 2025, 47(4): 904-912. doi: 10.11781/sysydz2025040904
引用本文: 马莹颖, 彭泽波, 陈敬智, 吴飞, 聂昕, 廖中枢, 张宫. 全直径岩心核磁扫描数据超分辨率重建技术——一种基于全局非负最小二乘的方法[J]. 石油实验地质, 2025, 47(4): 904-912. doi: 10.11781/sysydz2025040904
MA Yingying, PENG Zebo, CHEN Jingzhi, WU Fei, NIE Xin, LIAO Zhongshu, ZHANG Gong. Super-resolution reconstruction technology for full-diameter core nuclear magnetic resonance scanning data: a global non-negative least squares-based approach[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(4): 904-912. doi: 10.11781/sysydz2025040904
Citation: MA Yingying, PENG Zebo, CHEN Jingzhi, WU Fei, NIE Xin, LIAO Zhongshu, ZHANG Gong. Super-resolution reconstruction technology for full-diameter core nuclear magnetic resonance scanning data: a global non-negative least squares-based approach[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(4): 904-912. doi: 10.11781/sysydz2025040904

全直径岩心核磁扫描数据超分辨率重建技术——一种基于全局非负最小二乘的方法

doi: 10.11781/sysydz2025040904
基金项目: 

油气资源与勘探技术教育部重点实验室(长江大学)开放基金资助项目 PI2023-03

详细信息
    作者简介:

    马莹颖(2000—),女,硕士生,从事核磁共振岩心实验及数据分析。E-mail: mayying.st@yangtzeu.cn

    通讯作者:

    张宫(1987—),男,博士,副教授,从事核磁共振测井理论、方法及数据处理软件开发研究。E-mail: zhanggong@yangtzeu.edu.cn

  • 中图分类号: TE135

Super-resolution reconstruction technology for full-diameter core nuclear magnetic resonance scanning data: a global non-negative least squares-based approach

  • 摘要: 全直径岩心核磁共振扫描技术是非常规油气勘探中重要的探测分析技术之一,可以得到连续高分辨的钻井岩心孔隙度、渗透率及流体饱和度等信息。但由于其测量敏感区较大,不同位置信号混叠在一起,测量结果纵向分辨率远低于仪器采样的分辨率,无法满足薄互层储层对纵向分辨率的要求。为提高全直径岩心核磁共振测量结果的纵向分辨率,将测量数据作为仪器敏感区函数和岩心真实信号的卷积,并通过全局非负最小二乘的方法实现原始信号的高分辨率重建,无需改变现有仪器结构和测量模式。通过数值模拟、物理实验和实测数据分析验证了该方法的可行性,实际资料应用表明,高分辨率处理后的核磁共振测井孔隙度与气测孔隙度符合率更高,该方法能够显著提高全直径岩心核磁测量结果的纵向分辨率,可以为薄互层储层带来更好的探测效果。

     

  • 图  1  全直径岩心核磁共振扫描仪示意图

    Figure  1.  Schematic diagram of nuclear magnetic resonance scanner for full-diameter cores

    图  2  核磁共振T2测量示意图

    Figure  2.  Schematic diagram of nuclear magnetic resonance T2 measurement

    图  3  物理分辨率与测量分辨率不匹配示意图

    Figure  3.  Schematic diagram of incompatibility between physical resolution and measurement resolution

    图  4  数据采集示意图

    Figure  4.  Schematic diagram of data acquisition

    图  5  仪器敏感区响应函数测量示意图

    Figure  5.  Schematic diagram of response function measurement of instrument's sensitive area

    图  6  超分辨率重建数值模拟示意图

    Figure  6.  Schematic diagrams of numerical simulation of super-resolution reconstruction

    图  7  超分辨重建效果对比

    Figure  7.  Comparison of super-resolution reconstruction results

    图  8  物理模型示意图

    Figure  8.  Schematic diagram of physical model

    图  9  测量得到的仪器敏感区响应特征曲线

    Figure  9.  Response characteristic curve of instrument's sensitive area obtained through measurement

    图  10  超分辨重建处理效果对比

    Figure  10.  Comparison of effects of super-resolution reconstruction processing

    图  11  实际测井资料分析结果

    Figure  11.  Analysis results of actual logging data

    表  1  多场景核磁共振仪器主要性能参数对比

    Table  1.   Comparison of main performance parameters of multi-scenario NMR instruments

    仪器参数 核磁共振测井仪 移动式全直径岩心核磁扫描仪(纽迈) 核磁共振岩心分析仪
    共振频率/MHz <2 6 ≥2
    线圈尺寸/mm 100 120~130 25~38
    测量方式 井中上提测量 现场出桶全直径岩心扫描 室内柱塞样岩心扫描
    仪器运动速度/(ft/h) 800~3 600 590~3 150
    纵向分辨率/mm >200 10
    最小回波间隔/ms 0.4 0.15 0.06
    最小等待时间/ms 0.4 0.058 0.058
    下载: 导出CSV

    表  2  全直径岩心测量孔隙度与实验孔隙度误差

    Table  2.   Errors between experimental porosity and full-diameter core-measured porosity

    深度/m 实验孔隙度/% 未处理孔隙度/% 高分辨率孔隙度/% 相对误差(未处理)/% 相对误差(高分辨率)/%
    3 262.53 7.8 4.32 7.80 44.61 0.00
    3 263.09 8.2 8.25 8.25 0.61 0.57
    3 263.21 7.7 6.29 8.09 18.37 5.06
    3 263.72 7.4 8.40 7.64 13.49 3.26
    3 264.46 8.2 8.07 7.94 1.63 3.13
    3 264.68 6.9 8.75 7.32 26.81 6.06
    3 265.83 7.1 8.82 7.56 24.23 6.46
    3 267.68 8.9 5.65 8.23 36.49 7.57
    3 268.65 7.4 8.13 7.73 9.80 4.42
    3 268.72 6.7 8.93 7.58 33.28 13.13
    3 269.24 8.3 7.59 7.78 8.60 6.24
    下载: 导出CSV
  • [1] 刘国强. 非常规油气勘探测井评价技术的挑战与对策[J]. 石油勘探与开发, 2021, 48(5): 891-902.

    LIU Guoqiang. Challenges and countermeasures of log evaluation in unconventional petroleum exploration[J]. Petroleum Exploration and Development, 2021, 48(5): 891-902.
    [2] 赖锦, 李红斌, 张梅, 等. 非常规油气时代测井地质学研究进展[J]. 古地理学报, 2023, 25(5): 1118-1138.

    LAI Jin, LI Hongbin, ZHANG Mei, et al. Advances in well logging geology in the era of unconventional hydrocarbon resources[J]. Journal of Palaeogeography(Chinese Edition), 2023, 25(5): 1118-1138.
    [3] 王鸣川, 王燃, 岳慧, 等. 页岩油微观渗流机理研究进展[J]. 石油实验地质, 2024, 46(1): 98-110. doi: 10.11781/sysydz202401098

    WANG Mingchuan, WANG Ran, YUE Hui, et al. Research progress of microscopic percolation mechanism of shale oil[J]. Petroleum Geology & Experiment, 2024, 46(1): 98-110. doi: 10.11781/sysydz202401098
    [4] 刘国强, 赵先然, 袁超, 等. 陆相页岩油宏观结构测井评价及其甜点优选[J]. 中国石油勘探, 2023, 28(1): 120-134.

    LIU Guoqiang, ZHAO Xianran, YUAN Chao, et al. Logging evaluation of macro-structure of continental shale oil reservoir and sweet spots selection[J]. China Petroleum Exploration, 2023, 28(1): 120-134.
    [5] 孙颖. 核磁共振在页岩储层参数评价中的应用综述[J]. 地球物理学进展, 2023, 38(1): 254-270.

    SUN Ying. Review of the application of nuclear magnetic resonance in the evaluation of shale reservoir parameters[J]. Progress in Geophysics, 2023, 38(1): 254-270.
    [6] 陈龙川, 张兆谦, 郑建东, 等. 核磁共振测井在古龙页岩油评价中的应用[J]. 测井技术, 2024, 48(1): 110-116.

    CHEN Longchuan, ZHANG Zhaoqian, ZHENG Jiandong, et al. Application of NMR logging in the evaluation of Gulong shale oil[J]. Well Logging Technology, 2024, 48(1): 110-116.
    [7] 刘继龙, 谢然红, 卫弘媛, 等. 基于核磁共振T2分布的页岩油流体组分含量计算方法[J]. 测井技术, 2023, 47(5): 533-541.

    LIU Jilong, XIE Ranhong, WEI Hongyuan, et al. Calculation method of shale oil fluid component content based on nuclear magnetic resonance T2 distribution[J]. Well Logging Technology, 2023, 47(5): 533-541.
    [8] 丁绍卿, 郭和坤, 刘卫, 等. 核磁共振岩样分析技术在储层评价中的应用[J]. 大庆石油地质与开发, 2006, 25(6): 22-23.

    DING Shaoqing, GUO Hekun, LIU Wei, et al. Application of NMR rock sample analysis technique in reservoir evaluation[J]. Petroleum Geology & Oilfield Development in Daqing, 2006, 25(6): 22-23.
    [9] 孙中良, 李志明, 申宝剑, 等. 核磁共振技术在页岩油气储层评价中的应用[J]. 石油实验地质, 2022, 44(5): 930-940. doi: 10.11781/sysydz202205930

    SUN Zhongliang, LI Zhiming, SHEN Baojian, et al. NMR technology in reservoir evaluation for shale oil and gas[J]. Petroleum Geology & Experiment, 2022, 44(5): 930-940. doi: 10.11781/sysydz202205930
    [10] 李宁, 冯周, 武宏亮, 等. 中国陆相页岩油测井评价技术方法新进展[J]. 石油学报, 2023, 44(1): 28-44.

    LI Ning, FENG Zhou, WU Hongliang, et al. New advances in methods and technologies for well logging evaluation of continental shale oil in China[J]. Acta Petrolei Sinica, 2023, 44(1): 28-44.
    [11] 章海宁, 韩雪, 覃莹瑶, 等. 薄互层页岩油核磁共振测井响应特征: 以准噶尔盆地二叠系风城组为例[J]. 科学技术与工程, 2023, 23(16): 6752-6759.

    ZHANG Haining, HAN Xue, QIN Yingyao, et al. NMR logging response characteristics of thin interbedded shale oil: an example from the Permian Fengcheng Formation in the Junggar Basin[J]. Science Technology and Engineering, 2023, 23(16): 6752-6759.
    [12] 吉尔吉佐夫, 侯学理, 穆尔扎卡耶夫. 移动式全直径岩心核磁共振测量仪在俄罗斯超稠油地层评价中的应用[J]. 测井技术, 2017, 41(5): 506-511.

    KIRGIZOV D I, HOU Xueli, MURZAKAEV V M. Application of complex nuclear magnetic resonance measurements to super-vicious oil deposits in Russian Republic of Tatarstan[J]. Well Logging Technology, 2017, 41(5): 506-511.
    [13] ARNOLD J, CLAUSER C, PECHNIG R, et al. Porosity and permeability from mobile NMR core-scanning[J]. Petrophysics, 2006, 47(4): 306-314.
    [14] 闫伟林, 张兆谦, 陈龙川, 等. 基于核磁共振技术的古龙页岩含油饱和度评价新方法[J]. 大庆石油地质与开发, 2021, 40(5): 78-86.

    YAN Weilin, ZHANG Zhaoqian, CHEN Longchuan, et al. New evaluating method of oil saturation in Gulong shale based on NMR technique[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(5): 78-86.
    [15] 石玉江, 蔡文渊, 刘国强, 等. 页岩油储层孔隙流体的全直径岩心二维核磁共振图谱特征及评价方法[J]. 中国石油勘探, 2023, 28(3): 132-144.

    SHI Yujiang, CAI Wenyuan, LIU Guoqiang, et al. Full diameter core 2D NMR spectrum characteristics of pore fluid in shale oil reservoir and evaluation method[J]. China Petroleum Exploration, 2023, 28(3): 132-144.
    [16] 肖立志, 罗嗣慧, 龙志豪. 井场核磁共振技术及其应用的发展历程与展望[J]. 石油钻探技术, 2023, 51(4): 140-148.

    XIAO Lizhi, LUO Sihui, LONG Zhihao. The course of development and the future of wellsite NMR technologies and their applications[J]. Petroleum Drilling Techniques, 2023, 51(4): 140-148.
    [17] YAN Weichao, SUN Jianmeng, CHENG Zhigang, et al. Petrophysical characterization of tight oil formations using 1D and 2D NMR[J]. Fuel, 2017, 206: 89-98.
    [18] LU Shuangfang, HUANG Wenbiao, CHEN Fangwen, et al. Classification and evaluation criteria of shale oil and gas resources: discussion and application[J]. Petroleum Exploration and Development, 2012, 39(2): 268-276.
    [19] HU Falong, ZHOU Cancan, LI Chaoliu, et al. Water spectrum method of NMR logging for identifying fluids[J]. Petroleum Exploration and Development, 2016, 43(2): 268-276.
    [20] YUE Linwei, SHEN Huanfeng, LI Jie, et al. Image super-resolution: the techniques, applications, and future[J]. Signal Processing, 2016, 128: 389-408.
    [21] YI Yang, YANG Ke, ZENG Shan, et al. Super-resolution reconstruction of LF NMR image based on DDPM for fruit non-destructive testing[J]. Journal of Food Composition and Analysis, 2024, 131: 106219.
    [22] CHEN Songhua, LI Lilong, SHAO Wei, et al. Systematic optimization approach for high-resolution NMR logging[C]//SPWLA 59th Annual Logging Symposium. London, UK: SPWLA, 2018.
    [23] MUKHAMETDINOVA A, HABINA-SKRZYNIARZ I, KAZAK A, et al. NMR relaxometry interpretation of source rock liquid saturation: a holistic approach[J]. Marine and Petroleum Geology, 2021, 132: 105165.
    [24] 刘忠华, 李霞, 赵文智, 等. 核磁共振增强扩散方法在复杂储集层流体识别中的应用[J]. 石油勘探与开发, 2010, 37(6): 703-708.

    LIU Zhonghua, LI Xia, ZHAO Wenzhi, et al. Enhanced diffusion theory of nuclear magnetic resonance (NMR) and its application to fluid identification of complex reservoirs[J]. Petroleum Exploration and Development, 2010, 37(6): 703-708.
    [25] 李鹏举, 张智鹏, 姜大鹏. 核磁共振测井流体识别方法综述[J]. 测井技术, 2011, 35(5): 396-401.

    LI Pengju, ZHANG Zhipeng, JIANG Dapeng. Review on fluid identification methods with NMR logging[J]. Well Logging Technology, 2011, 35(5): 396-401.
    [26] NGUYEN N, HUANG H, ORAINTARA S, et al. Mass spectrometry data processing using zero-crossing lines in multi-scale of Gaussian derivative wavelet[J]. Bioinformatics, 2010, 26(18): 1659-1665.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  5
  • HTML全文浏览量:  2
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-03
  • 修回日期:  2025-06-08
  • 刊出日期:  2025-07-28

目录

    /

    返回文章
    返回