留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

准噶尔盆地永进油田原油中沥青质固相析出影响机理研究

杨阳 张东晓 王昊 伦增珉 高志卫 王锐 胡伟

杨阳, 张东晓, 王昊, 伦增珉, 高志卫, 王锐, 胡伟. 准噶尔盆地永进油田原油中沥青质固相析出影响机理研究[J]. 石油实验地质, 2025, 47(4): 930-940. doi: 10.11781/sysydz2025040930
引用本文: 杨阳, 张东晓, 王昊, 伦增珉, 高志卫, 王锐, 胡伟. 准噶尔盆地永进油田原油中沥青质固相析出影响机理研究[J]. 石油实验地质, 2025, 47(4): 930-940. doi: 10.11781/sysydz2025040930
YANG Yang, ZHANG Dongxiao, WANG Hao, LUN Zengmin, GAO Zhiwei, WANG Rui, HU Wei. Influencing mechanisms of solid-phase asphaltene precipitation in crude oil of Yongjin Oil Field, Junggar Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(4): 930-940. doi: 10.11781/sysydz2025040930
Citation: YANG Yang, ZHANG Dongxiao, WANG Hao, LUN Zengmin, GAO Zhiwei, WANG Rui, HU Wei. Influencing mechanisms of solid-phase asphaltene precipitation in crude oil of Yongjin Oil Field, Junggar Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(4): 930-940. doi: 10.11781/sysydz2025040930

准噶尔盆地永进油田原油中沥青质固相析出影响机理研究

doi: 10.11781/sysydz2025040930
基金项目: 

国家自然科学基金企业创新发展联合基金集成项目“三大盆地深层—超深层海相油气高效勘探开发基础研究” U24B6001

详细信息
    作者简介:

    杨阳(1991—),男,硕士,副研究员,从事复杂流体相态实验及表征方法研究。E-mail: yangyang.syky@sinopec.com

  • 中图分类号: TE622

Influencing mechanisms of solid-phase asphaltene precipitation in crude oil of Yongjin Oil Field, Junggar Basin

  • 摘要: 在油藏开发过程中常见固态沥青质析出和沉积导致的储层伤害,及生产井堵塞问题,严重影响原油开采,降低开发经济效益。沥青质的固相析出与原油本身性质及温度/压力条件有关,是涉及气—液—固三相复杂相态的热力学问题。研究永进油田原油中沥青质的固相析出规律及其影响机理,可为合理避免开发过程中的沥青质沉积提供理论支撑。以永进油田高含沥青质原油为对象,通过原油组分分析、PVT高压物性分析、注气及沥青质固相析出实验,揭示了不同条件下的沥青质析出规律。基于立方体状态方程耦合缔合理论(CPA),建立了油—气—沥青质三相相平衡计算模型,拟合了实验结果,进一步模拟了复杂条件下的沥青质析出规律,明确了流体组成、温度、压力及生产井工作制度对于沥青质固相析出的影响和机理。研究结果表明:流体组成和温度/压力条件分别是影响体系中沥青质析出的内在因素和外部条件,相似相容原理可以充分地解释沥青质的复杂相态变化机理;注气后改变了流体组成,对原油和沥青质相态的影响主要由注入气与原油的混相能力和对中间组分的萃取抽提能力决定;生产井工作制度则通过控制原油流动过程中的温度和压力变化从而影响沥青质的析出,决定了析出点的位置,对沥青质沉积堵塞风险的评价需要进一步结合油藏条件、井身结构和生产动态进行综合分析。

     

  • 图  1  高温高压流体相态分析仪

    Figure  1.  High-temperature and high-pressure fluid phase behavior analyzer

    图  2  准噶尔盆地永进油田Y3井原油恒质膨胀实验PV曲线(136.6 ℃)

    Figure  2.  Pressure-volume (PV) curve of constant composition expansion (CCE) tests for crude oil from well Y3 in Yongjin Oil Field, Junggar Basin (136.6 ℃)

    图  3  准噶尔盆地永进油田Y3井井流物PT相图

    Figure  3.  Pressure-temperature (PT) phase diagram of wellstream from well Y3 in Yongjin Oil Field, Junggar Basin

    图  4  高温高压流体固相颗粒分析仪

    Figure  4.  High-temperature and high-pressure fluid solid-phase particle analyzer

    图  5  准噶尔盆地永进油田Y3井原油不同温度下光强度随压力变化关系

    Figure  5.  Relationship between light intensity and pressure at different temperatures for crude oil from well Y3 in Yongjin Oil Field, Junggar Basin

    图  6  准噶尔盆地永进油田Y3井注CH4原油PT相图

    Figure  6.  PT phase diagram of CH4-injected crude oil from well Y3 in Yongjin Oil Field, Junggar Basin

    图  7  准噶尔盆地永进油田Y3井注CO2原油PT相图

    Figure  7.  PT phase diagram of CO2-injected crude oil from well Y3 in Yongjin Oil Field, Junggar Basin

    图  8  沥青质与拟重质组分表征

    Figure  8.  Characterization of asphaltenes and pseudo-heavy components

    图  9  准噶尔盆地永进油田Y3井油—气—沥青质三相PT相图

    Figure  9.  PT phase diagram of oil-gas-asphaltene three-phase system in well Y3 of Yongjin Oil Field, Junggar Basin

    图  10  准噶尔盆地永进油田Y3井不同产量条件下井筒流动沿程温度和压力变化

    Figure  10.  Variations of temperature and pressure along wellbore under different production rates in well Y3 of Yongjin Oil Field, Junggar Basin

    图  11  准噶尔盆地永进油田Y3井沥青质析出区间图

    Figure  11.  Asphaltene precipitation zone of well Y3 in Yongjin Oil Field, Junggar Basin

    图  12  准噶尔盆地永进油田Y3井注N2/CH4/CO2油—气—沥青质PX相图(136.6 ℃)

    Figure  12.  Pressure-injection amount (PX) phase diagram of oil-gas-asphaltene system after N2/CH4/CO2 injection in well Y3 of Yongjin Oil Field, Junggar Basin (136.6 ℃)

    表  1  准噶尔盆地永进油田Y3井脱气原油及沉积物SARA四组分分析数据

    Table  1.   Saturate, aromatic, resin, and asphaltene (SARA) fraction analysis data of degassed crude oil and sediments from well Y3 in Yongjin Oil Field, Junggar Basin

    检测样品 SARA四组分/%
    饱和分 芳香分 胶质 沥青质
    脱气原油 55.2 12.3 6.8 2.7
    固体沉淀物 19.8 11.3 14.9 42.3
    下载: 导出CSV

    表  2  准噶尔盆地永进油田Y3井脱气原油和沉淀物元素分析数据

    Table  2.   Elemental analysis data of degassed crude oil and sediments from well Y3 in Yongjin Oil Field, Junggar Basin

    样品 C/% H/% O/% S/% N/%
    体相原油 84.45 13.53 1.33 0.66 0.04
    底部沉淀物 83.06 11.09 3.54 0.33 0.15
    下载: 导出CSV

    表  3  准噶尔盆地永进油田Y3井原油井流物组成

    Table  3.   Wellstream composition of crude oil from well Y3 in Yongjin Oil Field, Junggar Basin

    组分 分离器气/mol% 分离器油/mol% 井流物/mol%
    N2 2.28 1.79 1.59
    CO2 0.68 0.53 0.47
    C1 73.94 58.19 51.62
    C2 11.79 9.28 8.23
    C3 6.47 5.09 4.52
    iC4 1.43 1.13 1.00
    nC4 1.52 1.20 1.06
    iC5 0.57 0.45 0.40
    nC5 0.45 0.36 0.32
    C6 0.86 3.68 1.54
    *C7+ - 18.30 29.25
    注:*C7+为平均摩尔质量=277 g/mol。
    下载: 导出CSV

    表  4  准噶尔盆地永进油田Y3井原油PVT流体物性分析实验数据

    Table  4.   Experimental data of pressure-volume-temperature (PVT) physical property analysis of crude oil from well Y3 in Yongjin Oil Field, Junggar Basin

    参数
    地层压力/MPa 102.8
    地层温度/℃ 136.6
    地层原油泡点压力(136.6 ℃)/MPa 32.0
    地层原油气油比(102.8 MPa,136.6 ℃)/(m3/m3) 193.62
    地层原油密度(102.8 MPa,136.6 ℃)/(g/cm3) 0.785 5
    地层原油黏度(102.8 MPa,136.6 ℃)/mPa·s 1.17
    地层原油体积系数(102.8 MPa,136.6 ℃) 1.328
    地面原油黏度(0.1 MPa,136.6 ℃)/mPa·s 3.47
    地面原油密度(0.1 MPa,136.6 ℃)/(g/cm3) 0.820 5
    下载: 导出CSV

    表  5  准噶尔盆地永进油田Y3井原油注CH4后PVT及固相颗粒析出实验数据

    Table  5.   Experimental data of PVT and solid-phase particle precipitation experiments of crude oil after CH4 injection from well Y3 in Yongjin Oil Field, Junggar Basin

    参数 原始 第1级 第2级 第3级
    注气量/mol% 0.00 13.16 22.88 33.72
    泡点压力(136.6 ℃)/MPa 32.00 37.40 41.10 45.00
    地层原油密度(102.8 MPa,136.6 ℃)/(g/cm3) 0.785 5 0.758 9 0.741 6 0.724 5
    溶解气油比/(m3/m3) 193.62 233.65 264.91 305.78
    地层原油体积系数(102.8 MPa,136.6 ℃) 1.328 1.427 1.500 1.583
    地层流体体积膨胀系数(102.8 MPa,136.6 ℃) 1.000 1.058 1.100 1.146
    沥青质析出压力(136.6 ℃)/MPa 37.50 50.80 62.90 78.00
    下载: 导出CSV

    表  6  准噶尔盆地永进油田Y3井注CO2后原油PVT及固相颗粒析出实验数据

    Table  6.   Experimental data of PVT and solid-phase particle precipitation experiments of crude oil after CO2 injection from well Y3 in Yongjin Oil Field, Junggar Basin

    参数 原始 第1级 第2级 第3级
    注气量/mol% 0.00 9.24 19.83 28.02
    泡点压力(136.6 ℃)/MPa 32.00 33.60 35.40 36.90
    地层原油密度(102.8 MPa,136.6 ℃)/(g/cm3) 0.785 5 0.783 7 0.782 9 0.783 2
    溶解气油比/(m3/m3) 193.62 226.95 256.34 283.89
    地层原油体积系数(102.8 MPa,136.6 ℃) 1.328 1.391 1.464 1.520
    地层流体体积膨胀系数(102.8 MPa,136.6 ℃) 1.000 1.045 1.095 1.132
    沥青质析出压力(136.6 ℃)/MPa 37.50 43.00 49.50 56.20
    下载: 导出CSV
  • [1] MOSCHOPEDIS S E, FRYER J F, SPEIGHT J G. Investigation of asphaltene molecular weights[J]. Fuel, 1976, 55(3): 227-232.
    [2] 张志荣, 陶国亮, SNOWDON Lloyd R, 等. 沥青质大分子的结构及其测定方法综述[J]. 石油实验地质, 2023, 45(5): 963-972. doi: 10.11781/sysydz202305963

    ZHANG Zhirong, TAO Guoliang, SNOWDON Lloyd R, et al. Review on molecular structures of asphaltene macromolecules and instrumental analytical approaches[J]. Petroleum Geology & Experiment, 2023, 45(5): 963-972. doi: 10.11781/sysydz202305963
    [3] 刘华, 孟祥雨, 任新成, 等. 准噶尔盆地盆1井西凹陷侏罗系原油成因与来源[J]. 中国石油大学学报(自然科学版), 2023, 47(1): 25-37.

    LIU Hua, MENG Xiangyu, REN Xincheng, et al. Origin and source of Jurassic crude oil in well Pen-1 western Depression, Junggar Basin[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(1): 25-37.
    [4] MULLINS O C, SHEU E Y. Molecular structure and aggregation of asphaltenes and petroleomics[C]//SPE Annual Technical Conference and Exhibition. Dallas: SPE, 2005.
    [5] HIRSCHBERG A, DEJONG L N J, SCHIPPER B A, et al. Influence of temperature and pressure on asphaltene flocculation[J]. Society of Petroleum Engineers Journal, 1984, 24(3): 283-293.
    [6] ALKAFEEF S F. An investigation of the stability of colloidal asphaltene in petroleum reservoirs[C]//SPE International Symposium on Oilfield Chemistry. Houston: SPE, 2001.
    [7] 李平平, 魏广鲁, 徐祖新, 等. 四川盆地元坝气田长兴组古原油的运移方向与聚集特征[J]. 地学前缘, 2023, 30(6): 277-288.

    LI Pingping, WEI Guanglu, XU Zuxin, et al. Migration direction and accumulation characteristics of paleo-oil in the Changxing Formation in Yuanba Gas Field, Sichuan Basin[J]. Earth Science Frontiers, 2023, 30(6): 277-288.
    [8] 廉培庆, 马翠玉, 高敏, 等. 沥青质沉积特征及控制策略研究进展[J]. 科学技术与工程, 2015, 15(16): 101-107.

    LIAN Peiqing, MA Cuiyu, GAO Min, et al. Recent research progress of asphaltene deposition characteristics and control strategies[J]. Science Technology and Engineering, 2015, 15(16): 101-107.
    [9] 王艳婷. 塔河油田井筒沥青质分散解堵剂性能评价方法研究[D]. 北京: 中国石油大学(北京), 2017.

    WANG Yanting. Study on performance evaluation method of asphaltene removers in Tahe Oilfield wellbores[D]. Beijing: China University of Petroleum (Beijing), 2017.
    [10] 李斌, 赵星星, 邬光辉, 等. 塔里木盆地塔中Ⅱ区奥陶系油气差异富集模式[J]. 石油与天然气地质, 2023, 44(2): 308-320.

    LI Bin, ZHAO Xingxing, WU Guanghui, et al. Differential hydrocarbon accumulation model of the Ordovician in Tazhong Ⅱ block, Tarim Basin[J]. Oil & Gas Geology, 2023, 44(2): 308-320.
    [11] 朱光有, 杨海军, 朱永峰, 等. 塔里木盆地哈拉哈塘地区碳酸盐岩油气地质特征与富集成藏研究[J]. 岩石学报, 2011, 27(3): 827-844.

    ZHU Guangyou, YANG Haijun, ZHU Yongfeng, et al. Study on petroleum geological characteristics and accumulation of carbonate reservoirs in Hanilcatam area, Tarim Basin[J]. Acta Petrologica Sinica, 2011, 27(3): 827-844.
    [12] 杨鹏. 原油沥青质沉积堵塞预测与防治技术研究[D]. 成都: 西南石油大学, 2014.

    YANG Peng. Research on prediction, prevention, and control technologies for crude oil asphaltene deposition and blockage[D]. Chengdu: SouthWest Petroleum University, 2014.
    [13] 邓晓娟, 李勇, 龙国清, 等. 缝洞型油藏原始油水界面刻画新方法: 以哈拉哈塘油田为例[J]. 油气地质与采收率, 2023, 30(3): 69-76.

    DENG Xiaojuan, LI Yong, LONG Guoqing, et al. A new method for characterizing original oil-water interface of fracture-cavity reservoirs: a case study of Halahatang Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(3): 69-76.
    [14] 左亮, 能源, 黄少英, 等. 哈拉哈塘地区超深层走滑断裂构造变形特征及其石油地质意义[J]. 现代地质, 2023, 37(2): 270-282.

    ZUO Liang, NENG Yuan, HUANG Shaoyin, et al. Deformation characteristics of ultra-deep glide faults in the Halahatang area and their petroleum geological significance[J]. Geoscience, 2023, 37(2): 270-282.
    [15] 刘磊, 曹畅, 程汝镇, 等. 顺北沥青质分子结构和析出沉积规律研究[J]. 复杂油气藏, 2020, 13(4): 86-91.

    LIU Lei, CAO Chang, CHENG Ruzhen, et al. Study on molecular structure and precipitation rules of Shunbei asphaltenes[J]. Complex Hydrocarbon Reservoirs, 2020, 13(4): 86-91.
    [16] 刘显, 席斌斌, 曹婷婷, 等. 超深层油气相态转化过程及其控制因素: 来自原油可视化热模拟实验的启示[J]. 现代地质, 2024, 38(5): 1370-1382.

    LIU Xian, XI Binbin, CAO Tingting, et al. Phase transformation mechanisms and controlling factors of the ultra-deep oil and gas: insights from visual thermal simulation of crude oil[J] Geoscience, 2024, 38(5): 1370-1382.
    [17] 段太忠, 张文彪, 何治亮, 等. 塔里木盆地顺北油田超深断溶体深度学习地质建模方法[J]. 石油与天然气地质, 2023, 44(1): 203-212.

    DUAN Taizhong, ZHANG Wenbiao, HE Zhiliang, et al. Deep learning-based geological modeling of ultra-deep fault-karst reservoirs in Shunbei oilfield, Tarim Basin[J]. Oil & Gas Geology, 2023, 44(1): 203-212.
    [18] 王志坚. 深层—超深层异常高压油藏工艺技术对策[J]. 油气地质与采收率, 2020, 27(5): 126-133.

    WANG Zhijian. Technological strategies for deep and ultra-deep reservoirs with abnormally high pressure[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(5): 126-133.
    [19] 赵永强, 宋振响, 王斌, 等. 准噶尔盆地油气资源潜力与中国石化常规—非常规油气一体化勘探策略[J]. 石油实验地质, 2023, 45(5): 872-881. doi: 10.11781/sysydz202305872

    ZHAO Yongqiang, SONG Zhenxiang, WANG Bin, et al. Resource potential in Junggar Basin and SINOPEC's integrated exploration strategy for conventional and unconventional petroleum[J]. Petroleum Geology & Experiment, 2023, 45(5): 872-881. doi: 10.11781/sysydz202305872
    [20] 盖姗姗, 王子振, 刘浩杰, 等. 永进油田致密储集层岩石力学参数剖面构建及应用[J]. 新疆石油地质, 2024, 45(3): 362-370.

    GAI Shanshan, WANG Zizhen, LIU Haojie, et al. Establishment and application of rock mechanical parameter profile to tight reservoirs in Yongjin Oilfield[J]. Xinjiang Petroleum Geology, 2024, 45(3): 362-370.
    [21] 杜金虎, 支东明, 李建忠, 等. 准噶尔盆地南缘高探1井重大发现及下组合勘探前景展望[J]. 石油勘探与开发, 2019, 46(2): 205-215.

    DU Jinhu, ZHI Dongming, LI Jianzhong, et al. Major breakthrough of well Gaotan 1 and exploration prospects of lower assemblage in southern margin of Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2019, 46(2): 205-215.
    [22] 吴宝成, 熊启勇, 熊瑞颖, 等. 南缘高温高压油井堵塞成因及防治[J]. 中国石油大学学报(自然科学版), 2021, 45(6): 112-119.

    WU Baocheng, XIONG Qiyong, XIONG Ruiying, et al. Cause of plugging and prevention technology of high temperature and high pressure oil well in Nanyuan[J]. Journal of China University of Petroleum(Edition of Natural Science), 2021, 45(6): 112-119.
    [23] 田山川, 甘仁忠, 肖琳, 等. 准噶尔盆地南缘异常高压泥岩段地层压力预测方法[J]. 特种油气藏, 2024, 31(5): 20-30.

    TIAN Shanchuan, GAN Renzhong, XIAO Lin, et al. Method for predicting formation pressure in anomalously high-pressure mudstone section at the southern margin of Junggar Basin[J]. Special Oil & Gas Reservoirs, 2024, 31(5): 20-30.
    [24] LEONTARITIS K J, MANSOORI G A. Asphaltene flocculation during oil production and processing: a thermodynamic colloidal model[C]//SPE International Symposium on Oilfield Chemistry. San Antonio: SPE, 1987.
    [25] 高志彬. 注CO2过程中沥青沉淀对储层伤害的定量评价研究[D]. 北京: 中国地质大学(北京), 2014.

    GAO Zhibin. Quantitative evaluation of formation damage due to asphaltene deposition when CO2 flooding[D]. Beijing: China University of Geosciences (Beijing), 2014.
    [26] SULAIMON A A, GOVINDASAMY K. New correlation for predicting asphaltene deposition[C]//SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition. Nusa Dua: SPE, 2015.
    [27] PENG Dingyu, ROBINSON D B. A new two-constant equation of state[J]. Industrial & Engineering Chemistry Fundamentals, 1976, 15(1): 59-64.
    [28] KONTOGEORGIS G M, FOLAS G K. Thermodynamic models for industrial applications: from classical and advanced mixing rules to association theories[M]. New York: John Wiley & Sons, Ltd. 2010.
    [29] LI Zhidong, FIROOZABADI A. Modeling asphaltene precipitation by n-Alkanes from heavy oils and bitumens using cubic-plus-association equation of state[J]. Energy & Fuels, 2010, 24(2): 1106-1113.
    [30] ZHANG Xiaohong, PEDROSA N, MOORWOOD T. Modeling asphaltene phase behavior: comparison of methods for flow assurance studies[J]. Energy & Fuels, 2012, 26(5): 2611-2620.
    [31] YANG Yang, ZHANG Dongxiao, WANG Hao, et al. A new method to simulate and evaluate asphaltene plugging risk in oil wells[J]. SPE Journal, 2025, 30(2): 896-912.
  • 加载中
图(12) / 表(6)
计量
  • 文章访问数:  4
  • HTML全文浏览量:  3
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-17
  • 修回日期:  2025-05-19
  • 刊出日期:  2025-07-28

目录

    /

    返回文章
    返回