留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

寒武纪早期古隆起周缘古海洋环境驱动:来自南华盆地东南缘火山活动与水体盐度的指示意义

焦鹏 张进富 方晗棋 谢毓 崔海骕 马中良 谭静强 文志刚 王张虎

焦鹏, 张进富, 方晗棋, 谢毓, 崔海骕, 马中良, 谭静强, 文志刚, 王张虎. 寒武纪早期古隆起周缘古海洋环境驱动:来自南华盆地东南缘火山活动与水体盐度的指示意义[J]. 石油实验地质, 2025, 47(6): 1395-1407. doi: 10.11781/sysydz2025061395
引用本文: 焦鹏, 张进富, 方晗棋, 谢毓, 崔海骕, 马中良, 谭静强, 文志刚, 王张虎. 寒武纪早期古隆起周缘古海洋环境驱动:来自南华盆地东南缘火山活动与水体盐度的指示意义[J]. 石油实验地质, 2025, 47(6): 1395-1407. doi: 10.11781/sysydz2025061395
JIAO Peng, ZHANG Jinfu, FANG Hanqi, XIE Yu, CUI Haisu, MA Zhongliang, TAN Jingqiang, WEN Zhigang, WANG Zhanghu. Driving force of ancient marine environment around Early Cambrian paleo-uplift: implications from volcanic activity and water salinity in southeastern Nanhua Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(6): 1395-1407. doi: 10.11781/sysydz2025061395
Citation: JIAO Peng, ZHANG Jinfu, FANG Hanqi, XIE Yu, CUI Haisu, MA Zhongliang, TAN Jingqiang, WEN Zhigang, WANG Zhanghu. Driving force of ancient marine environment around Early Cambrian paleo-uplift: implications from volcanic activity and water salinity in southeastern Nanhua Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(6): 1395-1407. doi: 10.11781/sysydz2025061395

寒武纪早期古隆起周缘古海洋环境驱动:来自南华盆地东南缘火山活动与水体盐度的指示意义

doi: 10.11781/sysydz2025061395
基金项目: 

国家自然科学基金项目(42302159)、湖北省自然科学基金项目(2022CFB642)和湖南省自然科学基金资助项目(2024JJ8322,2024JJ8357)共同资助。

详细信息
    作者简介:

    焦鹏(1985—),男,博士,从事勘探地质研究。E-mail:jiaozhijian1314@126.com。

    通讯作者:

    王张虎(1991—),男,博士,副教授,从事非常规油气地质与地球化学研究。E-mail:zhanghu0617@126.com。

  • 中图分类号: TE121.31

Driving force of ancient marine environment around Early Cambrian paleo-uplift: implications from volcanic activity and water salinity in southeastern Nanhua Basin

  • 摘要:

    埃迪卡拉纪—寒武纪过渡期是地质历史中海洋环境波动与生物演化的关键阶段,但南华盆地东南缘浅水区域火山/热液活动、海水盐度变化与“寒武纪生命大爆发”之间的相互联系仍不清晰。以湘中地区古隆起周缘的下寒武统钻井样品为研究对象,综合扫描电镜、无机地球化学和硅同位素等手段,厘清了该区沉积岩中汞的富集载体与成因、海水盐度的时空分布及硅质来源。古隆起周缘寒武系底部页岩可见显著的汞异常,汞主要富集在有机质中,可作为火山/热液流体输入的有效指标。火山/热液活动在寒武纪第2阶至第3阶过渡期(约526~521 Ma)相对活跃,并于第3阶晚期(约518 Ma)逐步衰退。古隆起周缘水体盐度总体较高,而湘中深水区呈淡水—半咸水特征,这一差异可能与外海的连通性和水体滞留程度有关。寒武纪早期研究区古隆起周缘为咸水环境,随着水体滞留程度增强,水体盐度逐渐降低,转变为半咸水/淡水环境。此外,古隆起周缘牛蹄塘组页岩中硅质来源丰富,下部页岩中的硅质主要为生物成因,夹有少量的陆源和火山成因;上部硅质页岩主要为富硅海水和热液活动的混合作用。南华盆地东南缘浅水区域寒武纪早期火山/热液幕式活动与古地理格局共同驱动了盐度分层与多源硅质供给,揭示了浅水与深水盆地的差异演化,为理解南华盆地的海洋环境波动提供了关键地球化学约束。

     

  • [1] MORRIS S C.Burgess shale faunas and the Cambrian explosion[J].Science,1989,246(4928):339-346.
    [2] STEINER M,LI Guoxiang,QIAN Yi,et al.Neoproterozoic to Early Cambrian small shelly fossil assemblages and a revised biostratigraphic correlation of the Yangtze Platform (China)[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2007,254(1/2):67-99.
    [3] MOCZYDŁOWSKA M.The Ediacaran microbiota and the survival of Snowball Earth conditions[J].Precambrian Research,2008,167(1/2):1-15.
    [4] DARROCH S A F,BOAG T H,RACICOT R A,et al.A mixed Ediacaran-metazoan assemblage from the Zaris Sub-basin,Namibia[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2016,459:198-208.
    [5] CHENG Meng,LI Chao,ZHOU Lian,et al.Marine Mo biogeochemistry in the context of dynamically euxinic mid-depth waters:a case study of the Lower Cambrian Niutitang shales,South China[J].Geochimica et Cosmochimica Acta,2016,183:79-93.
    [6] 汪瑾,吝祎勃,杨涛.三峡地区早寒武世海水氧化还原环境的变化:来自罗家村剖面碳同位素解耦的证据[J].石油实验地质,2023,45(1):157-167.

    WANG Jin,LIN Yibo,YANG Tao.Evolution of environmental oxidation and reduction of sea water in Three Gorges area in Early Cambrian:evidence from decoupled carbon isotopes in Luojiacun section[J].Petroleum Geology & Experiment,2023,45(1):157-167.
    [7] GAO Ping,HE Zhiliang,LI Shuangjian,et al.Volcanic and hydrothermal activities recorded in phosphate nodules from the Lower Cambrian Niutitang Formation black shales in South China[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2018,505:381-397.
    [8] 许露露,温雅茹,周向辉,等.鄂西黄陵背斜南缘下寒武统牛蹄塘组一段古沉积环境演化特征:以秭地1井为例[J].石油实验地质,2022,44(3):456-465.

    XU Lulu,WEN Yaru,ZHOU Xianghui,et al.Paleo-environment of the first member of Niutitang Formation on the southern margin of Huangling Anticline,western Hubei Province:a case study of well ZD-1[J].Petroleum Geology & Experiment,2022,44(3):456-465.
    [9] WANG Zhanghu,TAN Jingqiang,BOYLE R,et al.Mercury anomalies within the Lower Cambrian (stage 2-3) in South China:links between volcanic events and paleoecology[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2020,558:109956.
    [10] ZHU Guangyou,WANG Pengju,LI Tingting,et al.Nitrogen geochemistry and abnormal mercury enrichment of shales from the lowermost Cambrian Niutitang Formation in South China:implications for the marine redox conditions and hydrothermal activity[J].Global and Planetary Change,2021,199:103449.
    [11] WEI Wei,ALGEO T J.Elemental proxies for paleosalinity analysis of ancient shales and mudrocks[J].Geochimica et Cosmochimica Acta,2020,287:341-366.
    [12] 程猛,张子虎,金承胜,等.寒武纪早期南华盆地盐度及水文动力学过程重建[J].中国科学(地球科学),2023,53(6):1273-1284. CHENG Meng,ZHANG Zihu,JIN Chengsheng,et al.Salinity variation and hydrographic dynamics in the Early Cambrian Nanhua Basin (South China)[J].Science China Earth Sciences,2023,66(6):1268-1278.
    [13] WANG Jianguo,CHEN Daizhao,YAN Detian,et al.Evolution from an anoxic to oxic deep ocean during the Ediacaran-Cambrian transition and implications for bioradiation[J].Chemical Geology,2012,306-307:129-138.
    [14] HAN Tao,FAN Haifeng,ZHU Xiaoqing,et al.Submarine hydrothermal contribution for the extreme element accumulation during the Early Cambrian,South China[J].Ore Geology Reviews,2017,86:297-308.
    [15] FAN Haifeng,ZHANG Hongjie,XIAO Chaoyi,et al.Large Zn isotope variations in the Ni-Mo polymetallic sulfide layer in the Lower Cambrian,South China[J].Gondwana Research,2020,85:224-236.
    [16] XU Lingang,LEHMANN B,MAO Jingwen,et al.Re-Os age of polymetallic Ni-Mo-PGE-Au mineralization in Early Cambrian black shales of South China—a reassessment[J].Economic Geology,2011,106(3):511-522.
    [17] YANG Chuan,LI Xianhua,ZHU Maoyan,et al.Geochronological constraint on the Cambrian Chengjiang biota,South China[J].Journal of the Geological Society,2018,175(4):659-666.
    [18] JIANG Ganqing,WANG Xinqiang,SHI Xiaoying,et al.The origin of decoupled carbonate and organic carbon isotope signatures in the Early Cambrian (ca.542-520 Ma) Yangtze platform[J].Earth and Planetary Science Letters,2012,317-318:96-110.
    [19] GOLDBERG T,STRAUSS H,GUO Qingjun,et al.Reconstructing marine redox conditions for the Early Cambrian Yangtze Platform:evidence from biogenic sulphur and organic carbon isotopes[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2007,254(1/2):175-193.
    [20] 王必金,包汉勇,郭战峰,等.湘鄂西区寒武系层序划分及其对油气勘探的意义[J].石油实验地质,2013,35(4):372-377.

    WANG Bijin,BAO Hanyong,GUO Zhanfeng,et al.Sequence stratigraphic division of Cambrian in western Hunan-Hubei and applications for petroleum exploration[J].Petroleum Geology & Experiment,2013,35(4):372-377.
    [21] PI Daohui,LIU Congqiang,SHIELDS-ZHOU G A,et al.Trace and rare earth element geochemistry of black shale and kerogen in the Early Cambrian Niutitang Formation in Guizhou province,South China:constraints for redox environments and origin of metal enrichments[J].Precambrian Research,2013,225:218-229.
    [22] JIANG Shaoyong,PI Daohui,HEUBECK C,et al.Early Cambrian ocean anoxia in South China[J].Nature,2009,459(7248):E5-E6.
    [23] OKADA Y,SAWAKI Y,KOMIYA T,et al.New chronological constraints for Cryogenian to Cambrian rocks in the Three Gorges,Weng’an and Chengjiang areas,South China[J].Gondwana Research,2014,25(3):1027-1044.
    [24] 张庆玉,梁彬,陈宏峰,等.雪峰山西侧海相碳酸盐岩沉积间断古岩溶发育规律研究[J].石油实验地质,2011,33(3):285-288.

    ZHANG Qingyu,LIANG Bin,CHEN Hongfeng,et al.Generation principle of ancient karst in marine carbonate rock hiatus,west of Xuefeng Mountain[J].Petroleum Geology & Experiment,2011,33(3):285-288.
    [25] 龚清,凌明星,郑旺.汞稳定同位素示踪地质记录中火山活动的应用[J].中国科学(地球科学),2024,54(5):1459-1483. GONG Qing,LING Mingxing,ZHENG Wang.Applications of mercury stable isotopes for tracing volcanism in the geologic record[J].Science China Earth Sciences,2024,67(5):1436-1458.
    [26] YIN Runsheng,FENG Xinbin,LI Xiangdong,et al.Trends and advances in mercury stable isotopes as a geochemical tracer[J].Trends in Environmental Analytical Chemistry,2014,2:1-10.
    [27] SCHUSTER P F,KRABBENHOFT D P,NAFTZ D L,et al.Atmospheric mercury deposition during the last 270 years:a glacial ice core record of natural and anthropogenic sources[J].Environmental Science & Technology,2002,36(11):2303-2310.
    [28] SHEN Jun,ALGEO T J,CHEN Jiubin,et al.Mercury in marine Ordovician/Silurian boundary sections of South China is sulfide-hosted and non-volcanic in origin[J].Earth and Planetary Science Letters,2019,511:130-140.
    [29] SHEN Jun,YU Jianxin,CHEN Jiubin,et al.Mercury evidence of intense volcanic effects on land during the Permian-Triassic transition[J].Geology,2019,47(12):1117-1121.
    [30] GRASBY S E,THEM II T R,CHEN Zhuoheng,et al.Mercury as a proxy for volcanic emissions in the geologic record[J].Earth-Science Reviews,2019,196:102880.
    [31] PRUSS S B,JONES D S,FIKE D A,et al.Marine anoxia and sedimentary mercury enrichments during the Late Cambrian SPICE event in northern Scotland[J].Geology,2019,47(5):475-478.
    [32] THIBODEAU A M,RITTERBUSH K,YAGER J A,et al.Mercury anomalies and the timing of biotic recovery following the end-Triassic mass extinction[J].Nature Communications,2016,7(1):11147.
    [33] COMPSTON W,ZHANG Zichao,COOPER J A,et al.Further SHRIMP geochronology on the Early Cambrian of South China[J].American Journal of Science,2008,308(4):399-420.
    [34] ZHOU Mingzhong,LUO Taiyi,LI Zhengxiang,et al.SHRIMP U-Pb zircon age of tuff at the bottom of the Lower Cambrian Niutitang Formation,Zunyi,South China[J].Chinese Science Bulletin,2008,53(4):576-583.
    [35] CHEN Daizhao,WANG Jianguo,QING Hairuo,et al.Hydrothermal venting activities in the Early Cambrian,South China:petrological,geochronological and stable isotopic constraints[J].Chemical Geology,2009,258(3/4):168-181.
    [36] BOLHAR R,VAN KRANENDONK M J,KAMBER B S.A trace element study of siderite-jasper banded iron formation in the 3.45 Ga Warrawoona Group,Pilbara Craton: formation from hydrothermal fluids and shallow seawater[J].Precambrian Research,2005,137(1/2):93-114.
    [37] THORNALLEY D J R,ELDERFIELD H,MCCAVE I N.Holocene oscillations in temperature and salinity of the surface subpolar North Atlantic[J].Nature,2009,457(7230):711-714.
    [38] WEI Wei,ALGEO T J,LU Yangbo,et al.Identifying marine incursions into the Paleogene Bohai Bay Basin lake system in northeastern China[J].International Journal of Coal Geology,2018,200:1-17.
    [39] CAO Guangyao,LIU Yu,LI Chao,et al.Salinity variations of the inner Yangtze Sea during the Ordovician-Silurian transition and its influences on marginal marine euxinia[J].Global and Planetary Change,2023,225:104129.
    [40] REMÍREZ M N,ALGEO T J.Paleosalinity determination in ancient epicontinental seas:a case study of the T-OAE in the Cleveland Basin (UK)[J].Earth-Science Reviews,2020,201:103072.
    [41] LEE K,KIM T W,BYRNE R H,et al.The universal ratio of boron to chlorinity for the North Pacific and North Atlantic oceans[J].Geochimica et Cosmochimica Acta,2010,74(6):1801-1811.
    [42] MCALISTER J A,ORIANS K J.Dissolved gallium in the Beaufort Sea of the Western Arctic Ocean:a GEOTRACES cruise in the International Polar Year[J].Marine Chemistry,2015,177:101-109.
    [43] KEREN R,MEZUMAN U.Boron adsorption by clay minerals using a phenomenological equation[J].Clays and Clay Minerals,1981,29(3):198-204.
    [44] WEI Guangyi,WEI Wei,WANG Dan,et al.Enhanced chemical weathering triggered an expansion of euxinic seawater in the aftermath of the Sturtian glaciation[J].Earth and Planetary Science Letters,2020,539:116244.
    [45] WANG Zhanghu,TAN Jingqiang,BOYLE R,et al.Evaluating episodic hydrothermal activity in South China during the Early Cambrian:implications for biotic evolution[J].Marine and Petroleum Geology,2020,117:104355.
    [46] HAQ B U,SCHUTTER S R.A chronology of Paleozoic sea-level changes[J].Science,2008,322(5898):64-68.
    [47] WANG Zhanghu,XIE Xiaomin,WEN Zhigang.Formation conditions of Ediacaran-Cambrian cherts in South China:implications for marine redox conditions and paleoecology[J].Precambrian Research,2022,383:106867.
    [48] WEN Hanjie,FAN Haifeng,TIAN Shihong,et al.The formation conditions of the early Ediacaran cherts,South China[J].Chemical Geology,2016,430:45-69.
    [49] VAN DEN BOORN S H J M,VAN BERGEN M J,NIJMAN W,et al.Dual role of seawater and hydrothermal fluids in Early Archean chert formation:evidence from silicon isotopes[J].Geology,2007,35(10):939-942.
    [50] GEORG R B,REYNOLDS B C,WEST A J,et al.Silicon isotope variations accompanying basalt weathering in Iceland[J].Earth and Planetary Science Letters,2007,261(3/4):476-490.
    [51] FAN Haifeng,WEN Hanjie,ZHU Xiangkun,et al.Hydrothermal activity during Ediacaran-Cambrian transition:silicon isotopic evidence[J].Precambrian Research,2013,224:23-35.
    [52] BRENGMAN L A,FEDO C M.Development of a mixed seawater-hydrothermal fluid geochemical signature during alteration of volcanic rocks in the Archean (~2.7 Ga) Abitibi Greenstone Belt,Canada[J].Geochimica et Cosmochimica Acta,2018,227:227-245.
    [53] WEDEPOHL K H.Environmental influences on the chemical composition of shales and clays[J].Physics and Chemistry of the Earth,1971,8:307-333.
    [54] ZHANG Hongjie,FAN Haifeng,WEN Hanjie,et al.Oceanic chemistry recorded by cherts during the Early Cambrian Explosion,South China[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2020,558:109961.
    [55] VAN DEN BOORN S H J M,VAN BERGEN M J,VROON P Z,et al.Silicon isotope and trace element constraints on the origin of ~3.5 Ga cherts:implications for Early Archaean marine environments[J].Geochimica et Cosmochimica Acta,2010,74(3):1077-1103.
  • 加载中
计量
  • 文章访问数:  5
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-09
  • 修回日期:  2025-10-29
  • 网络出版日期:  2025-11-26

目录

    /

    返回文章
    返回