Propagation patterns of hydraulic fractures in deep tight sandstone reservoirs based on thermo-fluid-solid-chemical coupling
-
摘要:
塔里木盆地库车坳陷北部斜坡带深层致密砂岩气是中国天然气增储上产的重要领域,储层水力压裂技术是油气增产的关键手段。然而,深部地质条件复杂,导致压裂裂缝扩展样式及影响因素尚不清晰,需量化分析以揭示多场耦合作用下压裂裂缝的扩展规律。针对库车坳陷北部斜坡带深层气藏高温、高压地质环境,考虑“应力、裂缝弱面”等地质力学因素,建立热—流—固—化耦合模型,借助有限元数值模拟,阐明水力压裂裂缝扩展规律。研究表明:(1)水力压裂裂缝的动态扩展过程受热—流—固—化耦合作用影响显著,决定着压裂裂缝扩展样式;(2)水平应力差低值区易形成复杂缝网,水平应力梯度差异诱导压裂裂缝非对称扩展;(3)压裂裂缝扩展过程中优先激活天然裂缝,且天然裂缝产状影响压裂裂缝扩展方向,当天然裂缝与压裂裂缝夹角较大时压裂裂缝扩展偏向于停止和穿过,而当天然裂缝与压裂裂缝夹角较小时压裂裂缝偏向于激活或激活+穿过;(4)射孔倾角与裂缝偏转角呈正相关,注入速率对裂缝面积的影响存在最优上限,流体与地层温度差越大,越易产生张裂缝,起裂压力越小。
Abstract:The deep tight sandstone gas reservoirs in the northern slope belt of the Kuqa Depression, Tarim Basin, are key area for natural gas reserve expansion and production enhancement in China, and hydraulic fracturing technology for these reservoirs is a critical means for hydrocarbon production enhancement. However, the complex geological conditions in deep layers lead to unclear propagation patterns and influencing factors of hydraulic fractures, requiring quantitative analysis to reveal the propagation patterns of hydraulic fractures under the action of multi-field coupling. Focusing on the high-temperature and high-pressure geological environment of deep gas reservoirs in the northern slope belt of the Kuqa Depression, a thermo-fluid-solid-chemical coupling model was established considering geomechanical factors such as "stress and fracture weak planes". Using finite element numerical simulation, the propagation patterns of hydraulic fractures were elucidated. The results showed that: (1) The dynamic propagation process of hydraulic fractures was significantly influenced by thermo-fluid-solid-chemical coupling, which determined the propagation patterns of hydraulic fractures. (2) Complex fracture networks tended to form in zones with low horizontal stress differences, and differences in horizontal stress gradient induced asymmetric propagation of hydraulic fractures. (3) During the propagation of hydraulic fractures, natural fractures were preferentially activated, and the occurrence of natural fractures affected the propagation direction of hydraulic fractures. When the angle between natural fracture and hydraulic fracture was large, the propagation of hydraulic fractures tended to stop and pass through natural fractures. When the angle was small, hydraulic fractures tended to activate natural fractures or both activate and pass through them. (4)The perforation inclination angle was positively correlated with the fracture deflection angle. The effect of injection rate on fracture area had an optimal upper limit. A greater temperature difference between fracturing fluid and formation more easily generated tensile fractures and resulted in a lower fracture initiation pressure.
-
[1] 杜金虎,王招明,胡素云,等.库车前陆冲断带深层大气区形成条件与地质特征[J].石油勘探与开发,2012,39(4):385-393.DU Jinhu,WANG Zhaoming,HU Suyun,et al.Formation and geological characteristics of deep giant gas provinces in the Kuqa foreland thrust belt,Tarim Basin,NW China[J].Petroleum Exploration and Development,2012,39(4):385-393. [2] 王招明,谢会文,李勇,等.库车前陆冲断带深层盐下大气田的勘探和发现[J].中国石油勘探,2013,18(3):1-11.WANG Zhaoming,XIE Huiwen,LI Yong,et al.Exploration and discovery of large and deep subsalt gas fields in Kuqa foreland thrust belt[J].China Petroleum Exploration,2013,18(3):1-11. [3] 鲁雪松,赵孟军,刘可禹,等.库车前陆盆地深层高效致密砂岩气藏形成条件与机理[J].石油学报,2018,39(4):365-378.LU Xuesong,ZHAO Mengjun,LIU Keyu,et al.Forming condition and mechanism of highly effective deep tight sandstone gas reservoir in Kuqa foreland basin[J].Acta Petrolei Sinica,2018,39(4):365-378. [4] 刘卫红,高先志,林畅松,等.库车坳陷阳霞地区下侏罗统阿合组储层特征及储层发育的主控因素[J].地质科学,2017,52(2):390-406.LIU Weihong,GAO Xianzhi,LIN Changsong,et al.Reservoir characteristics and controlling factors of Lower Jurassic Ahe Formation in Yangxia area,Kuqa Depression[J].Chinese Journal of Geology,2017,52(2):390-406. [5] 李国欣,易士威,林世国,等.塔里木盆地库车坳陷东部地区下侏罗统储层特征及其主控因素[J].天然气地球科学,2018,29(10):1506-1517.LI Guoxin,YI Shiwei,LIN Shiguo,et al.Reservoir characteristics and major factors influencing the reservoir quality of Lower Jurassic in eastern Kuqa Depression,Tarim Basin[J].Natural Gas Geoscience,2018,29(10):1506-1517. [6] 王华超,韩登林,欧阳传湘,等.库车坳陷北部阿合组致密砂岩储层特征及主控因素[J].岩性油气藏,2019,31(2):115-123.WANG Huachao,HAN Denglin,OUYANG Chuanxiang,et al.Characteristics and main controlling factors of tight sandstone reservoir of Ahe Formation in northern Kuqa Depression[J].Lithologic Reservoirs,2019,31(2):115-123. [7] 胡彦智,李晓,张召彬,等.页岩储层压裂流固耦合数值模拟及裂缝扩展研究进展[J].工程地质学报,2024,32(4):1381-1396.HU Yanzhi,LI Xiao,ZHANG Zhaobin,et al.A review on hydro-mechanical coupling simulations of hydraulic fracture network in shale reservoirs[J].Journal of Engineering Geology,2024,32(4):1381-1396. [8] CHEN Bin,BARBOZA B R,SUN Yanan,et al.A review of hydraulic fracturing simulation[J].Archives of Computational Methods in Engineering,2022,29(4):1-58. [9] 韦世明,考佳玮,金衍,等.基于COMSOL二次开发的流—固全耦合裂缝扩展数值模拟方法[J/OL].计算力学学报,2025:1-8.[2025-05-11].https://link.cnki.net/urlid/21.1373.O3.20250319.1729.020. WEI Shiming,KAO Jiawei,JIN Yan,et al.Numerical simulation method of fully fluid-solid coupled fracture propagation based on COMSOL secondary development[J/OL].Chinese Journal of Computational Mechanics,2025:1-8.[2025-05-11].https://link.cnki.net/urlid/21.1373.O3.20250319.1729.020. [10] GUO Xuyang,WU Kan,AN Cheng,et al.Numerical investigation of effects of subsequent parent-well injection on interwell fracturing interference using reservoir-geomechanics-fracturing modeling[J].SPE Journal,2019,24(4):1884-1902. [11] XIA Yang,WEI Shiming,DENG Yinghao,et al.A new enriched method for extended finite element modeling of fluid flow in fractured reservoirs[J].Computers and Geotechnics,2022,148:104806. [12] BOURDIN B,CHUKWUDOZIE C,YOSHIOKA K.A variational approach to the numerical simulation of hydraulic fracturing[C]//SPE Annual Technical Conference and Exhibition.San Antonio,USA:SPE,2012. [13] WHEELER M F,WICK T,WOLLNER W.An augmented-Lagrangian method for the phase-field approach for pressurized fractures[J].Computer Methods in Applied Mechanics and Engineering,2014,271:69-85. [14] PAKZAD R,WANG Shanyong,SLOAN S W.3D finite element modelling of fracturing in heterogeneous rock:from pure solid to coupled fluid/solid analysis[C]//ISRM European Rock Mechanics Symposium-EUROCK 2018.St Petersburg:[s.n.],2018. [15] PEZZULLI E,NEJATI M,SALIMZADEH S,et al.Finite element simulations of hydraulic fracturing:a comparison of algorithms for extracting the propagation velocity of the fracture[J].Engineering Fracture Mechanics,2022,274:108783. [16] BELYTSCHKO T,BLACK T.Elastic crack growth in finite elements with minimal remeshing[J].International Journal for Numerical Methods in Engineering,1999,45(5):601-620. [17] BELYTSCHKO T,MOS N,USUI S,et al.Arbitrary discontinuities in finite elements[J].International Journal for Numerical Methods in Engineering,2001,50(4):993-1013. [18] LI Sanbai,FIROOZABADI A,ZHANG Dongxiao.Hydromechanical modeling of nonplanar three-dimensional fracture propagation using an iteratively coupled approach[J].Journal of Geophysical Research:Solid Earth,2020,125(8):e2020JB020115. [19] MCCLURE M W,BABAZADEH M,SHIOZAWA S,et al.Fully coupled hydromechanical simulation of hydraulic fracturing in 3D discrete-fracture networks[J].SPE Journal,2016,21(4):1302-1320. [20] ZOU Yushi,MA Xinfang,ZHOU Tong,et al.Hydraulic fracture growth in a layered formation based on fracturing experiments and discrete element modeling[J].Rock Mechanics and Rock Engineering,2017,50(9):2381-2395. [21] BOURDIN B,FRANCFORT G A,MARIGO J J.The variational approach to fracture[J].Journal of Elasticity,2008,91(1):5-148. [22] VODIKA R.A computational approach for phase-field model of quasi-brittle fracture under dynamic loading[J].International Journal of Fracture,2024,248(1):127-152. [23] 王博,颜廷巍,李欢,等.耦合相场与裂隙流方法的裂缝扩展—渗流一体化模拟[J].石油科学通报,2025,10(2):192-205.WANG Bo,YAN Tingwei,LI Huan,et al.The integrated simulation of fracture propagation and seepage studied by using a coupled phase field and fracture flow method[J].Petroleum Science Bulletin,2025,10(2):192-205. [24] 余海波,漆家福,杨宪彰,等.塔里木盆地库车坳陷中生代原型盆地分析[J].新疆石油地质,2016,37(6):644-653.YU Haibo,QI Jiafu,YANG Xianzhang,et al.Analysis of Mesozoic prototype basin in Kuqa Depression,Tarim Basin[J].Xinjiang Petroleum Geology,2016,37(6):644-653. [25] 王招明,李勇,谢会文,等.库车前陆盆地超深层大油气田形成的地质认识[J].中国石油勘探,2016,21(1):37-43.WANG Zhaoming,LI Yong,XIE Huiwen,et al.Geological understanding on the formation of large-scale ultra-deep oil-gas field in Kuqa foreland basin[J].China Petroleum Exploration,2016,21(1):37-43. [26] 何登发,袁航,李涤,等.吐格尔明背斜核部花岗岩的年代学、地球化学与构造环境及其对塔里木地块北缘古生代伸展聚敛旋回的揭示[J].岩石学报,2011,27(1):133-146.HE Dengfa,YUAN Hang,LI Di,et al.Chronology,geochemistry and tectonic setting of granites at the core of Tugerming anticline,Tarim Basin:indications of Paleozoic extensional and compressional cycle at the northern margin of Tarim continental block[J].Acta Petrologica Sinica,2011,27(1):133-146. [27] 王珂,张荣虎,余朝丰,等.塔里木盆地库车坳陷北部构造带侏罗系阿合组储层特征及控制因素[J].天然气地球科学,2020,31(5):623-635.WANG Ke,ZHANG Ronghu,YU Chaofeng,et al.Characteristics and controlling factors of Jurassic Ahe reservoir of the northern tectonic belt,Kuqa Depression,Tarim Basin[J].Natural Gas Geoscience,2020,31(5):623-635. [28] 李峰,姜振学,李卓,等.库车坳陷迪北地区下侏罗统天然气富集机制[J].地球科学(中国地质大学学报),2015,40(9):1538-1548. LI Feng,JIANG Zhenxue,LI Zhuo,et al.Enriched mechanism of natural gas of Lower Jurassic in Dibei area,Kuqa Depression[J].Earth Science(Journal of China University of Geosciences),2015,40(9):1538-1548. [29] 卢玉红,钱玲,鲁雪松,等.迪北地区致密气藏地质条件及资源潜力[J].大庆石油地质与开发,2015,34(4):8-14.LU Yuhong,QIAN Ling,LU Xuesong,et al.Geological conditions and resource potential of the tight gas reservoirs in Dibei area[J].Petroleum Geology and Oilfield Development in Daqing,2015,34(4):8-14. [30] 琚岩,孙雄伟,刘立炜,等.库车坳陷迪北致密砂岩气藏特征[J].新疆石油地质,2014,35(3):264-267.JU Yan,SUN Xiongwei,LIU Liwei,et al.Characteristics of Jurassic tight sandstone gas reservoir in Dibei area of Kuqa Depression,Tarim Basin[J].Xinjiang Petroleum Geology,2014,35(3):264-267. [31] 王珂,杨海军,李勇,等.塔里木盆地库车坳陷北部构造带地质特征与勘探潜力[J].石油学报,2021,42(7):885-905.WANG Ke,YANG Haijun,LI Yong,et al.Geological characteristics and exploration potential of the northern tectonic belt of Kuqa Depression in Tarim Basin[J].Acta Petrolei Sinica,2021,42(7):885-905. [32] JIRÁSEK M,BAUER M.Numerical aspects of the crack band approach[J].Computers & Structures,2012,110-111:60-78. [33] 陆银龙,王连国,唐芙蓉,等.煤炭地下气化过程中温度—应力耦合作用下燃空区覆岩裂隙演化规律[J].煤炭学报,2012,37(8):1292-1298.LU Yinlong,WANG Lianguo,TANG Furong,et al.Fracture evolution of overlying strata over combustion cavity under thermal-mechanical interaction during underground coal gasification[J].Journal of China Coal Society,2012,37(8):1292-1298. [34] 周志芳.裂隙介质水动力学原理[M].北京:高等教育出版社,2007:392. ZHOU Zhifang.Hydrodynamics principles of fractured media[M].Beijing:Higher Education Press,2007:392. [35] 汪如军,唐永亮,朱松柏,等.超深层裂缝性致密砂岩气藏多尺度耦合流动数值模拟[J].天然气工业,2024,44(3):143-151.WANG Rujun,TANG Yongliang,ZHU Songbai,et al.Numerical simulation of multi-scale coupled flow in ultra-deep fractured tight sandstone gas reservoirs[J].Natural Gas Industry,2024,44(3):143-151. [36] 李美晨.干热岩热储层CO2致裂机理及换热特性研究[D].西安:西安科技大学,2020. LI Meichen.Study on CO2 fracture mechanism and heat transfer characteristics of dry hot rock thermal reservoirs[D].Xi’an:Xi’an University of Science and Technology,2020. [37] 罗明坤,李胜,李宗杰,等.煤岩致裂中的静态破碎剂组分及其性能[J].工程爆破,2017,23(3):5-9.LUO Mingkun,LI Sheng,LI Zongjie,et al.Composition and performance of static cracking agent in coal and rock fracturing[J].Engineering Blasting,2017,23(3):5-9. [38] MICHAEL A,GUPTA I.A comparative study of oriented perforating and fracture initiation in seven shale gas plays[J].Journal of Natural Gas Science and Engineering,2021,88:103801. [39] 张旭,周小夏,黄中伟,等.热流固—损伤多场耦合作用下干热岩水力压裂特征数值模拟[J].中国石油大学学报(自然科学版),2025,49(4):86-94. ZHANG Xu,ZHOU Xiaoxia,HUANG Zhongwei,et al.Numerical simulation of hydraulic fracture characteristics in hot dry rock under thermal-hydraulic-mechanical-damage coupling effects[J].Journal of China University of Petroleum (Edition of Natural Science),2025,49(4):86-94. -
计量
- 文章访问数: 2
- HTML全文浏览量: 0
- PDF下载量: 1
- 被引次数: 0
下载:
苏公网安备32021102000780号