OIL CHARGING ORIENTION AND ACCUMULATION CHARACTERISTICS OF OIL RESERVOIRS IN THE FUSHAN SAG, BEIBUWAN BASIN
-
摘要: 利用油藏地球化学方法研究了北部湾盆地福山凹陷花场油气田流沙港组(E2l)油气运移和充注方向,分析了流沙港组三段上部与下部油气成藏特征的差异。结果表明花场油气田流沙港组三段上部(E2l31)原油主要来自花场次凸北东方向的白莲次凹,油气沿流二段和流三段之间的不整合面、流三段扇三角洲前缘砂体和断层构成的输导体系运移至花场次凸有利圈闭中聚集成藏。造成流沙港组三段中下部(E2l32—E2l33)相对上部油气藏原油密度略高、成熟度稍低、CO2气含量高、油气产量低的原因在于:受下部反向正断层的控制,流三段中下部原油可能主要来自花场次凸原地流三段烃源岩的贡献。该烃源岩成熟度和生烃潜力明显低于白莲次凹,输导条件也如上部油气藏优越,断穿流三段并切到基岩的深大断裂可能作为火山—幔源成因CO2充注的通道。油藏地球化学为判识油气运移充注方向和成藏特征研究提供了直接有力的证据。Abstract: By using reservoir geochemical approach,this paper mainly studies on the hydrocarbon migration and charging orientation of Eocene Liushagang Formation(E2l) oil reservoirs in the Fushan Sag,Beibuwan Basin.Combined with the petroleum geological background,the reason that caused the difference between oil pools in upper(E2l31) and mid-lower parts(E2l32—E2l33)of Liushagang Formation has also been discussed.It shows that the oils in E2l31 horizon in Huachang oil and gas field are mainly sourced from the Bailian sub-Sag.The unconformity between E2l2 and E2l3,the sandstone of fan delta front and the faults are good carrier beds for these oils.Comparison with the E2l31,the oils in E2l32-E2l33 horizons have relatively higher density,lower maturity,high content of CO2 and lower oil and gas yields.All these characteristics are determined by the special fault systems and specific geological background.The oils in E2l32-E2l33 horizons are mainly derived from the source rock of the third member of the Liushagang Formation in Huachang area,which have relatively lower thermal maturity and limited hydrocarbon generation potential.Controlled by the giant faults that cut through the E2l3 stratum and terminated in the basement,the volcanic-mantle derived CO2 can migrate through these faults and charge in E2l32-E2l33 traps.The geochemical research provides direct evidence for hydrocarbon charging orientation and pathways.
-
[1] 邱中建,龚再升.中国油气勘探(第四卷)近海油气区[M].北京:地质出版社,石油工业出版社,1999.91O~1234 [2] 李思田,林畅松,张启明等.南海北部大陆边缘盆地幕式裂陷的动力过程及10Ma以来的构造事件[J].科学通报,1998,43(8):797~810 [3] 丁卫星,王文军,马英俊.北部湾盆地福山凹陷流沙港组合油气系统特征[J].海洋石油,2003,23(2):1~6 [4] England W,Mackenzie A S,Mann D M,et al.The movement and entrapment of petroleum fluids in the subsurface[J].Journal of Geological Society,1987,144:327~347 [5] Larter S R,Aplin A C.Geochemistry of reservoirs:an introduction[A].In:Cubitt J M,England W A,eds.The Geochemistry of Reservoirs[M].London:the Geological Society Publishing House,1995,5~32 [6] Li M,Larter S R,Stoddart D,et al.Fractionation of pyrrolic nitrogen compounds in petroleum during migration—related geochemical parameters[A].In:Cubitt J M,England W A,eds.The Geochemistry of Reservoirs[M].London:the Geological Society Publishing House,1995.103~123 [7] Li M,You H,Fowler M G,et al.GeochemicaI constraints on models for secondary petroleum migration along the Upper Devonian Rimbey-Meadowbrook reef trend in central Alberta.Canada[J].Organic Geochemistry,1998,29:163~182 [8] Wang T G,Li S M,Zhang S C.Oil migration in the Lunnan region,Tarim Basin,China based on the pyrrolic nitrogen compound distribution[J].Journal of Petroleum Science & Engineering,2004,41(1):123~134 [9] Hughes W B.Use of thiophenie organosulfur compounds in characterizing crude oils derived from carbonate versus siliclastic sources[A].In:Palacas J B,ed.Petroleum Geochemistry and Source Rock Potential of Carbonate Rocks.AAPG Studies in Geology 18[M].Oklahoma:AAPG Press,1984.181~196 [10] Chakhmakhchev A,Suzuki M,Waseda A,et al.Distribution of alkylated dibenzothiophenes in petroleum as a tool for maturity assessments[J].Organic Geochemistry,1997,26(7-8):483~490 [11] Wang Tieguan,He Faqi,Li Meijun,et al.AIkyl-dibenzothiophenes:molecular tracers for filling pathway in oil reservoirs[J].Chinese Science Bulletin,2004,49(22):2399~2404 [12] Peters K E,Waiters C C,Moldowan,J M.The biomarker guide[M].2nd ed.New York:Cambridge University Press,2004 [13] Radke M,Garrigues P,Willsch H.Methylated dicyclic and tricyclic aromatic hydrocarboas in crude oils from the HandiI field,Indonesia[J].Organic Geochemistry,1990,15:17~34 [14] Radke M,Rullkotter J,Vriend S P.Distrihution of naphthalenes in crude oils from the Java Sea:source and maturation effects[J].Geochimica et Cosmoehimiea Acta,1994,52:1 255~1 264 [15] Alexander R,Kagi R I,Rowland S J,et al.The effects of therreal maturity on distribution of dimethylnaphthalenes and trimethylnaphthalenes in some Ancient sediments and petroleums[J].Geochimica et Cosmoehimiea Acta,1985,49:385~395 [16] van Aarason B G K,Bastow T P,Alexander R,et al.Distributions of methylated naphthalenes in crude oils:indicators of maturity,biodegradation and mixing[J].Organic Geochemistry,1999,30:1213~1227 [17] 李美俊,王铁冠.原油中烷基萘的形成机理及其成熟度参数应用[J].石油实验地质,2005,27(6):606~611 [18] 李美俊,卢鸿,王铁冠等.北部湾盆地福山凹陷岩浆活动与CO2成藏关系[J].天然气地球科学,2006,17(1):55~59
计量
- 文章访问数: 880
- HTML全文浏览量: 92
- PDF下载量: 596
- 被引次数: 0