Research progress on marine oil and gas accumulation in Tarim Basin
-
摘要: 近年来塔里木盆地超深层海相油气勘探取得了丰硕成果,顺北奥陶系、塔中寒武系、塔河深层等油气新发现,为塔里木盆地海相油气成藏研究提供了丰富的基础资料。塔里木盆地海相油气主要分布于台盆区,油气藏类型多样,原油物性变化大,显示出成藏的复杂性。通过对大量的实际样品分析和模拟实验及大量的地质、地球化学综合分析,结合构造演化、层序地层学、沉积相与沉积环境等研究成果,在烃源岩分布及其演化、油气地球化学特征、海相油气藏分布特征等方面取得了显著进展。一是明确了塔里木台盆区海相油气主要来源于强还原环境下形成的下寒武统—中下奥陶统烃源岩,特别是台盆区下寒武统玉尔吐斯组,并明确了超深层海相油藏后生改造主要有TSR、热裂解2种类型,提出了相应的判识指标;二是在建立玉尔吐斯组缓坡型优质烃源岩沉积发育模式的基础上,通过井震标定、正演模拟和区域测线地震相解释、三维区属性分析与地震反演,预测了玉尔吐斯组烃源岩的展布,并明确其演化特征:燕山期以来长期低地温背景下的“高压生烃演化抑制模式”延缓了顺托果勒低隆寒武系烃源岩热演化,顺托果勒地区仍具晚期高成熟液态烃形成条件;三是通过台盆区油气成藏特征对比,明确了奥陶系油气分布特征,进一步明确在台盆区寻找以下寒武统玉尔吐斯组原地烃源岩与燕山期以来晚期活动走滑断裂相匹配的、以晚期供烃为主的轻质油藏—天然气藏,是塔里木台盆区超深层碳酸盐岩领域油气勘探的重要方向。Abstract: In recent years, great achievements have been made in the exploration of ultra-deep marine oil and gas in the Tarim Basin. New oil and gas discoveries have been achieved in the Shunbei Ordovician, Tazhong Cambrian and Tahe deep strata, which provide abundant basic data for studying the marine oil and gas accumulation in the Tarim Basin. The marine oil and gas in the Tarim Basin are mainly distributed in the platform-basin area. There are various types of reservoirs, and the physical properties of crude oil vary greatly, showing the complexity of hydrocarbon accumulation. Through the analysis of a large number of samples, simulation experiments and extensive geology and geochemistry analysis, combined with the research results of tectonic evolution, sequence stratigraphy, sedimentary facies and sedimentary environments, some significant progress has been achieved such as the distribution and evolution of source rocks, oil and gas geochemistry characteristics, and the distribution characteristics of marine oil and gas reservoirs. The following achievements have been made: 1) clarification that the marine oil and gas in the Tarim platform-basin area mainly come from the Lower Cambrian-Middle/Lower Ordovician source rocks formed under strongly reducing environments, especially the Lower Cambrian Yuertusi Formation in the platform-basin. Two alterations types of ultra-deep marine reservoirs, namely, TSR and thermal cracking are defined, and the corresponding identification indicators are proposed. 2) by establishing the sedimentary development mode of the gentle slope-type high-quality Yuertusi source rocks, through well-seismic calibration, forward modeling, regional survey line interpretation of seismic facies, 3D area attribute analysis and seismic inversion, the distribution of source rocks in the Yuertusi Formation may be predicted, and their evolution characteristics clarified: the "high-pressure hydrocarbon generation evolution inhibition mode" under the long-term low geothermal background since the Yanshan period has delayed the thermal evolution of Shuntuoguole low uplift Cambrian source rocks, and the Shuntuoguole area still has the formation conditions of late high-maturity liquid hydrocarbon. 3) by comparing the hydrocarbon accumulation characteristics of the platform-basin area, the Ordovician oil and gas distribution characteristics have been clarified, further delineating the Cambrian Yuertusi in situ source rocks there, and identification of the light oil-gas reservoirs matching with the active strike-slip faults in the late Yanshan period and charged by the late hydrocarbon supply, which provide an key direction for oil and gas exploration in the ultra-deep carbonate rocks of the Tarim platform-basin area.
-
图 4 塔里木盆地台盆区奥陶系原油和顺2井O3烃源岩热模拟产物萜烷参数对比
塔中样品据参考文献[10]。
Figure 4. Comparison on terpene parameters of Ordovician crude oil and thermal simulation products of O3 source rock in well Shun 2, Tarim platform-basin area
表 1 塔里木盆地台盆区海相原油成因分类
Table 1. Genetic classification of marine crude oil in Tarim platform-basin area
参数 塔河—顺北、中深1井原油 顺西原油 轻烃MCH < 35% >35% Pr/Ph < 1 1± 饱和烃碳同位素 < -31‰ >-30‰ 芳烃碳同位素 < -29‰ -28‰± 正构烷烃单体碳同位素 -34‰~-36‰ -32‰± C19/C21TT < 1.5 >1.5 C24Te/C29TT < 1.5 >1.5 特殊化合物 芳基类异戊二烯烃 - 来源与分布 寒武系—中下奥陶统缓坡相烃源岩,全区分布,为主要贡献者 台地相偏腐殖型烃源岩,分布于卡塔克隆起局部 表 2 塔里木盆地台盆区奥陶系油气成藏特征对比
Table 2. Comparison on Ordovician hydrocarbon accumulation characteristics in Tarim platform-basin area
成藏特征 塔河油田 顺北油气田 顺南气田 构造位置 加里东—海西期持续古隆起 夹持于塔北、塔中2大古隆起之间的低隆带 塔中隆起1号断裂东围斜带 地质作用 多个不整合面、奥陶系多期岩溶。油藏受强烈氧化降解改造 多类型溶蚀,溶蚀作用弱。油气藏微弱改造。 断裂带控制下的热液改造,油藏高温裂解 烃源岩 中东部寒武系—中下奥陶统,西部下寒武统玉尔吐斯组 下寒武统玉尔吐斯组 寒武系—中下奥陶统 储层 一间房组碳酸盐岩岩溶缝洞体储层,鹰山组内幕碳酸盐岩储层 一间房组断溶体储层,鹰山组内幕碳酸盐岩储层? 一间房组断控缝洞型储层,鹰山组内幕碳酸盐岩储层,礁滩相储层 油气藏平均埋深 6 529 m 7 512 m 6 576 m 温压特征 100~130 ℃
常压,压力系数1.05~1.1150~160 ℃
常压,压力系数1.12~1.17160~180 ℃
局部超压,压力系数1.2~1.47储盖组合 C1b/O、O3s/O2yj O3s/O2yj O3qr/O2yj 油气性质 西部中质油—重质油、超重质油,中东部轻质油;伴生气 轻质—挥发油;伴生气 干气为主,局部凝析气,部分原油裂解气 油气成熟度 高成熟为主 高成熟 高—过成熟 输导条件 断裂垂向+不整合面、岩溶缝洞体横向输导 断裂垂向输导 断裂垂向、不整合面侧向输导 成藏期次 海西晚期为主,加里东晚期、燕山期为辅 海西晚期、燕山期 海西晚期和喜马拉雅期,以喜马拉雅期为主 油气藏类型 多期成藏、残留—改造古油藏 原生油气藏 多期成藏,古油藏裂解 -
[1] 何登发, 贾承造, 李德生, 等. 塔里木多旋回叠合盆地的形成与演化[J]. 石油与天然气地质, 2005, 26(1): 64-77. doi: 10.3321/j.issn:0253-9985.2005.01.010HE Dengfa, JIA Chengzao, LI Desheng, et al. Formation and evolution of polycyclic superimposed Tarim Basin[J]. Oil & Gas Geology, 2005, 26(1): 64-77. doi: 10.3321/j.issn:0253-9985.2005.01.010 [2] 彼得斯K E, 沃尔特斯C C, 莫尔多万J M. 生物标志化合物指南(下册): 生物标志化合物和同位素在石油勘探与地史研究中的应用[M]. 2版. 张水昌, 李振西, 译. 北京: 石油工业出版社, 2011.PETERS K E, WALTERS C C, MOLODOWAN J M. The biomarker guide[M]. 2nd ed. ZHANG Shuichang, LI Zhenxi, trans. Beijing: Ptroleum Inductry Press, 2011. [3] 王招明, 谢会文, 陈永权, 等. 塔里木盆地中深1井寒武系盐下白云岩原生油气藏的发现与勘探意义[J]. 中国石油勘探, 2014, 19(2): 1-13. doi: 10.3969/j.issn.1672-7703.2014.02.001WANG Zhaoming, Xie Huiwen, CHEN Yongquan, et al. Disco-very and exploration of Cambrian subsalt dolomite original hydrocarbon reservoir at Zhongshen-1 Well in Tarim Basin[J]. China Petroleum Exploration, 2014, 19(2): 1-13. doi: 10.3969/j.issn.1672-7703.2014.02.001 [4] 包建平, 孔婕, 朱翠山, 等. 塔里木盆地一类新海相原油的地球化学特征[J]. 沉积学报, 2012, 30(3): 580-587. doi: 10.14027/j.cnki.cjxb.2012.03.009BAO Jianping, KONG Jie, ZHU Cuishan, et al. Geochemical characteristics of a novel kind of marine oils from Tarim Basin[J]. Acta Sedimentologica Sinica, 2012, 30(3): 580-587. doi: 10.14027/j.cnki.cjxb.2012.03.009 [5] 孙永革, 肖中尧, 徐世平, 等. 塔里木盆地原油中芳基类异戊二烯烃的检出及其地质意义[J]. 新疆石油地质, 2004, 25(2): 215-218. doi: 10.3969/j.issn.1001-3873.2004.02.032SUN Yongge, XIAO Zhongyao, XU Shiping, et al. Aryl-isoprenoids in crude oil and its implication in geological exploration[J]. Xinjiang Petroleum Geology, 2004, 25(2): 215-218. doi: 10.3969/j.issn.1001-3873.2004.02.032 [6] 张水昌, 王飞宇, 张保民, 等. 塔里木盆地中上奥陶统油源层地球化学研究[J]. 石油学报, 2000, 21(6): 23-28. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200006005.htmZHANG Shuichang, WANG Feiyu, ZHANG Baomin, et al. Middle-upper Ordovician source rock geochemistry of the Tarim Basin[J]. Acta Petrolei Sinica, 2000, 21(6): 23-28. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200006005.htm [7] 黄继文, 顾忆, 丁勇, 等. 塔里木盆地北部地区上奥陶统烃源条件[J]. 石油与天然气地质, 2012, 33(6): 853-858. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201206005.htmHUANG Jiwen, GU Yi, DING Yong, et al. Upper Ordovician source rocks in northern Tarim Basin[J]. Oil & Gas Geology, 2012, 33(6): 853-858. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201206005.htm [8] 马安来, 金之钧, 张水昌, 等. 塔里木盆地寒武—奥陶系烃源岩的分子地球化学特征[J]. 地球化学, 2006, 35(6): 593-601. doi: 10.3321/j.issn:0379-1726.2006.06.003MA Anlai, JIN Zhijun, ZHANG Shichang, et al. Molecular geoche-mical characteristics of Cambrian-Ordovician source rocks in Tarim Basin, NW China[J]. Geochimica, 2006, 35(6): 593-601. doi: 10.3321/j.issn:0379-1726.2006.06.003 [9] 赵孟军, 张宝民, 边立曾, 等. 奥陶系类Ⅲ型烃源岩及其生成天然气的特征[J]. 科学通报, 1999, 44(21): 2333-2335. doi: 10.3321/j.issn:0023-074X.1999.21.020ZHAO Mengjun, ZHANG Baomin, BIAN Lizeng, et al. The Ordovician class Ⅲ type hydrocarbon source rock and the characteristics of the generaded gas[J]. Chinese Science Bulletin, 1999, 44(21): 2333-2335. doi: 10.3321/j.issn:0023-074X.1999.21.020 [10] HUANG Haiping, ZHANG Shuichang, SU Jin. Geochemistry of tri- and tetracyclic terpanes in the palaeozoic oils from the Tarim Basin, Northwest China[J]. Energy & Fuels, 2015, 29(11): 7014-7025. [11] 曾凡刚, 李赞豪, 程克明, 等. 中国重质原油的分布和地球化学特征[M]. 北京: 石油工业出版社, 1999.ZENG Fangang, LI Zanhao, CHENG Keming, et al. Distribution and geochemical charateristics of heavy oil in China[M]. Bejing: Petroleum Industry Press, 1999. [12] 马安来, 张水昌, 张大江, 等. 生物降解原油地球化学研究新进展[J]. 地球科学进展, 2005, 20(4): 449-454. doi: 10.3321/j.issn:1001-8166.2005.04.010MA Anlai, ZHANG Shichang, ZHANG Dajiang, et al. The advances in the geochemistry of the biodegraded oil[J]. Advances in Earth Science, 2005, 20(4): 449-454. doi: 10.3321/j.issn:1001-8166.2005.04.010 [13] 顾忆. 塔里木盆地北部塔河油田油气藏成藏机制[J]. 石油实验地质, 2000, 22(4): 307-312. doi: 10.3969/j.issn.1001-6112.2000.04.004GU Yi. Source rock characteristics and oil/gas sources of the Bachu uplift in the Tarim Basin[J]. Experimental Petroleum Geology, 2000, 22(4): 307-312. doi: 10.3969/j.issn.1001-6112.2000.04.004 [14] 翟晓先. 塔河大油田新领域的勘探实践[J]. 石油与天然气地质, 2006, 27(6): 751-761. doi: 10.3321/j.issn:0253-9985.2006.06.005ZHAI Xiaoxian. Exploration practices in frontiers of Tahe oilfield[J]. Oil & Gas Geology, 2006, 27(6): 751-761. doi: 10.3321/j.issn:0253-9985.2006.06.005 [15] 顾忆, 黄继文, 马红强. 塔河油区油气分布特点及其控制因素[J]. 中国西部油气地质, 2006, 2(1): 19-25.GU Yi, HUANG Jiwen, MA Hongqiang. Petroleum distribution and controlling factors in the Tahe Oilfield[J]. West China Petroleum Geosciences, 2006, 2(1): 19-25. [16] 朱光有, 张水昌, 梁英波, 等. 四川盆地高含H2S天然气的分布与TSR成因证据[J]. 地质学报, 2006, 80(8): 1208-1218. doi: 10.3321/j.issn:0001-5717.2006.08.015ZHU Guangyou, ZHANG Shuichang, LIANG Yingbo, et al. Distribution of high H2S-bearing natural gas and evidence of TSR origin in the Sichuan Basin[J]. Acta Geologica Sinica, 2006, 80(8): 1208-1218. doi: 10.3321/j.issn:0001-5717.2006.08.015 [17] 朱光有, 张水昌, 梁英波, 等. TSR对深部碳酸盐岩储层的溶蚀改造: 四川盆地深部碳酸盐岩优质储层形成的重要方式[J]. 岩石学报, 2006, 22(8): 2182-2194. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200608007.htmZHU Guangyou, ZHANG Shuichang, LIANG Yingbo, et al. Dissolution and alteration of the deep carbonate reservoirs by TSR: an important type of deep-buried high-quality carbonate reservoirs in Sichuan basin[J]. Acta Petrologica Sinica, 2006, 22(8): 2182-2194. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200608007.htm [18] 张纪智, 王招明, 杨海军, 等. 塔里木盆地中深地区寒武系盐下白云岩油气来源及差异聚集[J]. 石油勘探与开发, 2017, 44(1): 40-47. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201701006.htmZHANG Jizhi, WANG Zhaoming, YANG Haijun, et al. Origin and differential accumulation of hydrocarbons in Cambrian sub-salt dolomite reservoirs in Zhongshen Area, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2017, 44(1): 40-47. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201701006.htm [19] ZHU Guangyou, HUANG Haiping, WANG Huitong. Geochemical significance of discovery in Cambrian reservoirs at well ZS1 of the Tarim Basin, Northwest China[J]. Energy & Fuels, 2015, 29(3): 1332-1344. [20] ZHU Guangyou, WANG Huitong, WENG Na. TSR-altered oil with high-abundance thiaadamantanes of a deep-buried Cambrian gas condensate reservoir in Tarim Basin[J]. Marine and Petroleum Geology, 2016, 69: 1-12. doi: 10.1016/j.marpetgeo.2015.10.007 [21] 马安来, 朱翠山, 顾忆, 等. 塔中地区中深1C井寒武系原油低聚硫代金刚烷含量分析[J]. 天然气地球科学, 2018, 29(7): 1009-1019. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201807011.htmMA Anlai, ZHU Cuishan, GU Yi, et al. Concentrations analysis of lower thiadiamondoids of Cambrian oil from Well Zhongshen 1C of Tazhong Uplift, Tarim Basin, NW China[J]. Natural Gas Geoscience, 2018, 29(7): 1009-1019. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201807011.htm [22] LI Sumei, AMRANI A, PANG Xiongqi, et al. Origin and quantitative source assessment of deep oils in the Tazhong Uplift, Tarim Basin[J]. Organic Geochemistry, 2015, 78(1): 1-22. [23] CAI Chunfang, ZHANG Chunming, WORDEN R H, et al. Application of sulfur and carbon isotopes to oil-source rock correlation: a case study from the Tazhong area, Tarim Basin, China[J]. Organic Geochemistry, 2015, 83-84: 140-152. [24] 张水昌, 王招明, 王飞宇, 等. 塔里木盆地塔东2油藏形成历史: 原油稳定性与裂解作用实例研究[J]. 石油勘探与开发, 2004, 31(6): 25-31. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200406006.htmZHANG Shuichang, WANG Zhaoming, WANG Feiyu, et al. Oil accumulation history in Tadong 2 oil reservoir in Tarim Basin, NW China: a case study of oil stability and cracking[J]. Petroleum Exploration and Development, 2004, 31(6): 25-31. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200406006.htm [25] 顾忆, 赵永强, 贾存善, 等. 塔里木盆地阿瓦提坳陷油气资源潜力分析[J]. 石油实验地质, 2012, 34(3): 257-266. doi: 10.11781/sysydz201203257GU Yi, ZHAO Yongqiang, JIA Cunshan, et al. Analysis of hydrocarbon resource potential in Awati Depression of Tarim Basin[J]. Petroleum Geology & Experiment, 2012, 34(3): 257-266. doi: 10.11781/sysydz201203257 [26] 朱光有, 陈斐然, 陈志勇, 等. 塔里木盆地寒武系玉尔吐斯组优质烃源岩的发现及其基本特征[J]. 天然气地球科学, 2016, 27(1): 8-21. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201601003.htmZHU Guangyou, CHEN Feiran, CHEN Zhiyong, et al. Discovery and basic characteristics of the high-quality source rocks of the Cambrian Yuertusi Formation in Tarim Basin[J]. Natural Gas Geoscience, 2016, 27(1): 8-21. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201601003.htm [27] 杨鑫, 徐旭辉, 陈强路, 等. 塔里木盆地前寒武纪古构造格局及其对下寒武统烃源岩发育的控制作用[J]. 天然气地球科学, 2014, 25(8): 1164-1171. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201408006.htmYANG Xin, XU Xuhui, CHEN Qianglu, et al. Palaeotectonics pattern in Pre-Cambrian and its control on the deposition of the lower Cambrian source rocks in Tarim Basin, NW China[J]. Natural Gas Geoscience, 2014, 25(8): 1164-1171. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201408006.htm [28] 杨鑫, 李慧莉, 岳勇, 等. 塔里木盆地震旦纪末地层—地貌格架与寒武纪初期烃源岩发育模式[J]. 天然气地球科学, 2017, 28(2): 189-198. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201702002.htmYANG Xin, LI Huili, YUE Yong, et al. The strata and palaeo-geomorphology framework at the end of Neoproterozoic and development mode of source rocks at the beginning of Cambrian[J]. Natural Gas Geoscience, 2017, 28(2): 189-198. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201702002.htm [29] 庞雄奇, 陈君青, 李素梅, 等. 塔里木盆地特大型海相油田原油来源: 来自深部低TOC烃源岩的证据与相对贡献评价[J]. 石油学报, 2018, 39(1): 23-41. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201801003.htmPANG Xiongqi, CHEN Junqing, LI Sumei, et al. Crude oil sources of giant marine oilfield in Tarim Basin: evidences and relative contribution evaluation of deep present-day low-TOC source rocks[J]. Acta Petrolei Sinica, 2018, 39(1): 23-41. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201801003.htm [30] 尹长河, 王廷栋, 王顺玉, 等. 威远震旦系天然气与油气生运聚[J]. 地质地球化学, 2000, 28(1): 78-82. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200001013.htmYIN Changhe, WANG Tingdong, WANG Shunyu, et al. Natural gas and petroleum generation, migration and accumulation in Sinian reservoirs of Weiyuan area, Sichuan[J]. Geology-Geochemistry, 2000, 28(1): 78-82. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200001013.htm [31] 杨宗玉, 罗平, 刘波, 等. 塔里木盆地阿克苏地区下寒武统玉尔吐斯组两套黑色岩系的差异及成因[J]. 岩石学报, 2017, 33(6): 1893-1918. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201706017.htmYANG Zongyu, LUO Ping, LIU Bo, et al. The difference and sedimentation of two black rock series from Yurtus Formation during the earliest Cambrian in the Aksu area of Tarim Basin, Northwest China[J]. Acta Petrologica Sinica, 2017, 33(6): 1893-1918. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201706017.htm [32] 沈锡昌, 郭步英. 海洋地质学[M]. 北京: 中国地质大学出版社, 1993: 172-175.SHEN Xichang, GUO Buying. Marine geology[M]. Beijing: China University of Geosciences Press, 1993: 172-175. [33] 邱楠生, 李慧莉, 金之钧. 沉积盆地下古生界碳酸盐岩地区热历史恢复方法探索[J]. 地学前缘, 2005, 12(4): 561-567. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200504035.htmQIU Nansheng, LI Huili, JIN Zhijun. Study of the thermal history reconstruction for Lower Paleozoic carbonate succession[J]. Earth Science Frontiers, 2005, 12(4): 561-567. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200504035.htm [34] QIU Nansheng, CHANG Jian, ZUO Yinhui, et al. Thermal evolution and maturation of lower Paleozoic source rocks in the Tarim Basin, northwest China[J]. AAPG Bulletin, 2012, 96(5): 789-821. [35] 李成, 王良书, 郭随平, 等. 塔里木盆地热演化[J]. 石油学报, 2000, 21(3): 13-17. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200003002.htmLI Cheng, WANG Liangshu, GUO Suiping, et al. Thermal evolution in Tarim Basin[J]. Acta Petrolei Sinica, 2000, 21(3): 13-17. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200003002.htm [36] 漆立新. 塔里木盆地顺托果勒隆起奥陶系碳酸盐岩超深层油气突破及其意义[J]. 中国石油勘探, 2016, 21(3): 38-51. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201603004.htmQI Lixin. Oil and gas breakthrough in ultra-deep Ordovician carbonate formations in Shuntuoguole uplift, Tarim Basin[J]. China Petroleum Exploration, 2016, 21(3): 38-51. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201603004.htm [37] 付小东, 秦建中, 姚根顺, 等. 两种温压体系下烃源岩生烃演化特征对比及其深层油气地质意义[J]. 地球化学, 2017, 46(3): 262-275. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201703006.htmFU Xiaodong, QIN Jianzhong, YAO Genshun, et al. The comparison of hydrocarbon generation and evolution characteristics between two temperature-pressure simulation systems and its geological significance for deep reservoir exploration[J]. Geochimica, 2017, 46(3): 262-275. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201703006.htm [38] 郑伦举, 秦建中, 何生, 等. 地层孔隙热压生排烃模拟实验初步研究[J]. 石油实验地质, 2009, 31(3): 296-302. doi: 10.11781/sysydz200903296ZHENG Lunju, QIN Jianzhong, HE Sheng, et al. Preliminary study of formation porosity thermocompression simulation experiment of hydrocarbon generation and expulsion[J]. Petroleum Geology & Experiment, 2009, 31(3): 296-302. doi: 10.11781/sysydz200903296 [39] 吴远东, 张中宁, 吉利明, 等. 流体压力对半开放体系有机质模拟生烃产率和镜质体反射率的影响[J]. 天然气地球科学, 2016, 27(5): 883-891. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201605015.htmWU Yuandong, ZHANG Zhongning, JI Liming, et al. The changes of hydrocarbon yields and Ro for source rock in the semi-open simulation with increasing of fluids pressure[J]. Natural Gas Geoscience, 2016, 27(5): 883-891. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201605015.htm [40] 顾忆, 万旸璐, 黄继文, 等. "大埋深、高压力"条件下塔里木盆地超深层油气勘探前景[J]. 石油实验地质, 2019, 41(2): 157-164. doi: 10.11781/sysydz201902157GU Yi, WAN Yanglu, HUANG Jiwen, et al. Prospects for ultra-deep oil and gas in the "deep burial and high pressure" Tarim Basin[J]. Petroleum Geology & Experiment, 2019, 41(2): 157-164. doi: 10.11781/sysydz201902157