Optimization of target layer selection in shale gas horizontal wells
-
摘要: 通过多年的勘探开发实践,我国在四川盆地及其周缘上奥陶统五峰组—下志留统龙马溪组实现了页岩气商业开发,认识到页岩气藏具有自生自储、低孔特低渗特征,属于“人工气藏”,其高产是由地质和工程两类因素共同控制。地质因素决定页岩气是否富集,工程因素则是决定页岩气是否高产的重要条件。准确识别“甜点层”,优选确定水平井穿行层位,是页岩气能否获得高产的关键。对涪陵页岩气田焦石坝区块水平井穿行层位优选实例的剖析表明,精细研究是准确优选水平井穿行层位的基础,地质、工程一体化紧密结合是准确优选水平井穿行层位的关键。根据各个地区具体地质条件,将地质、工程结合,优选水平井穿行层位,是页岩气勘探开发最终获得成功的重要保障。Abstract: Through several years of exploration and development practices, China has realized the commercial development of shale gas from the Upper Ordovician Wufeng and Lower Silurian Longmaxi formations in the Sichuan Basin and its periphery. It has been recognized that shale gas reservoirs are self-generating and self-preserving with low porosity and permeability, which can be identified as the "artificial gas reservoir" and its production is mainly controlled by geological and engineering factors. Geological factors determine the shale gas enrichment, and engineering factors play a major role in shale gas yield. The accurate identification of "sweet spots" and the optimization of target layer selection in horizontal wells are so significant that they decide the final production of each shale gas well. A case study of target layer selection in the Jiaoshiba block of Fuling Gas Field shows that detailed research is the basis for identifying the target window, and the integration of geological and engineering technologies is the key to accurately identify the target layers. According to the specific geological conditions in different regions, applying both geological and engineering knowledge to pinpoint the target layer is an important factor for the ultimate success of shale gas exploration and development.
-
Key words:
- shale gas /
- horizontal well /
- target layer /
- Wufeng-Longmaxi formations /
- Fuling Shale Gas Field /
- Sichuan Basin
-
表 1 四川盆地焦石坝地区页岩气开发试验井穿行小层与单井测试产量
Table 1. Statistics table of target layers and test production of shale gas wells in Jiaoshiba area, Sichuan Basin
井号 一点法无阻流量/(104m3·d-1) 水平段长/m 水平段穿行位置长度/m 水平段穿行位置长度比例/% ① ② ③ ④ ⑤ ⑥~⑨ ① ② ③ ④ ⑤ ⑥~⑨ 井1 155.8 1 500 1 012 78 410 67.5 5.2 27.3 井2 81.9 1 500 314 20 1 166 20.9 1.3 77.7 井3 50.7 1 501 210 25 350 631 285 14.0 1.7 23.3 42.0 19.0 井4 61.9 1 386 76 1 310 5.5 94.5 井5 34.4 1 404 925 479 65.9 34.1 井6 21.2 1 001 198 803 19.8 80.2 井7 82.6 1 662 277 1 385 16.7 83.3 井8 16.7 1 008 220 145 643 21.8 14.4 63.8 井9 15.3 1 500 26 1 474 1.7 98.3 -
[1] 马永生, 冯建辉, 牟泽辉, 等. 中国石化非常规油气资源潜力及勘探进展[J]. 中国工程科学, 2012, 14(6): 22-30. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201206003.htmMA Yongsheng, FENG Jianhui, MU Zehui, et al. The potential and exploring progress of unconventional hydrocarbon resources in SINOPEC[J]. Strategic Study of CAE, 2012, 14(6): 22-30. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201206003.htm [2] 马永生, 蔡勋育, 赵培荣. 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发, 2018, 45(4): 561-574. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201804004.htmMA Yongsheng, CAI Xunyu, ZHAO Peirong. China's shale gas exploration and development: understanding and practice[J]. Petroleum Exploration and Development, 2018, 45(4): 561-574. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201804004.htm [3] 赵培荣, 高波, 郭战峰, 等. 四川盆地上二叠统海陆过渡相和深水陆棚相页岩气的勘探潜力[J]. 石油实验地质, 2020, 42(3): 335-344. doi: 10.11781/sysydz202003335ZHAO Peirong, GAO Bo, GUO Zhanfeng, et al. Exploration potential of marine-continental transitional and deep-water shelf shale gas in Upper Permian, Sichuan Basin[J]. Petroleum Geology & Experiment, 2020, 42(3): 335-344. doi: 10.11781/sysydz202003335 [4] 刘鹏, 吴佩津, 彭钰洁. 礁石坝地区构造特征及页岩气保存模式研究[J]. 特种油气藏, 2018, 25(2): 37-41. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201802007.htmLIU Peng, WU Peijin, PENG Yujie. Structure characterization and shale gas preservation pattern in Jiaoshiba[J]. Special Oil & Gas Reservoirs, 2018, 25(2): 37-41. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201802007.htm [5] 许露露, 张焱林, 陈程, 等. 鄂西地区黄陵背斜周缘五峰组-龙马溪组页岩气储层及含气性特征[J]. 特种油气藏, 2019, 26(5): 26-32. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201905005.htmXU Lulu, ZHANGyanlin, CHENcheng, et al. Shale gas reservoir and gas-bearing properties of Wufeng-Longmaxi formations in the periphery of Huangling anticline of western Hubei province[J]. Special Oil & Gas Reservoirs, 2019, 26(5): 26-32. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201905005.htm [6] 周志, 翟刚毅, 石砥石, 等. 鄂西-渝东北地区五峰组-龙马溪组页岩气成藏地质条件分析[J]. 石油实验地质, 2019, 41(1): 1-9. doi: 10.11781/sysydz201901001ZHOU Zhi, ZHAI Gangyi, SHI Dishi, et al. Shale gas reservoir geology of the Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation in western Hubei and northeastern Chongqing[J]. Petro-leum Geology & Experiment, 2019, 41(1): 1-9. doi: 10.11781/sysydz201901001 [7] 洪克岩, 朱亮亮, 程晓艳, 等. 湘鄂西构造复杂区页岩气井含气性及可压性评价: 以湖北鹤峰区块HY1井为例[J]. 断块油气田, 2018, 25(6): 721-725. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201806008.htmHONG Keyan, ZHU Liangliang, CHENG Xiaoyan, et al. Compressive evaluation and gas-containing of shale gas well in tectonic complex area of western Hunan and Hubei: taking well HY1 of Hefeng Block as an example[J]. Fault-Block Oil and Gas Field, 2018, 25(6): 721-725. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201806008.htm [8] 董清源, 田建华, 王锦喜, 等. 黔江区块龙马溪组页岩气保存条件研究[J]. 特种油气藏, 2018, 25(2): 25-30. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201802005.htmDONG Qingyuan, TIAN Jianhua, WANG Jinxi, et al. Shale gas preservation condition of Longmaxi Formation in Qianjiang[J]. Special Oil & Gas Reservoirs, 2018, 25(2): 25-30. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201802005.htm [9] 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(二)[J]. 石油勘探与开发, 2016, 43(2): 166-178. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201602003.htmZOU Caineng, DONG Dazhong, WANG Yuman, et al. Shale gas in China: characteristics, challenges and prospects (Ⅱ)[J]. Petroleum Exploration and Development, 2016, 43(2): 166-178. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201602003.htm [10] CURTIS J B. Fractured shale-gas system[J]. AAPG Bulletin, 2002, 86(11): 1921-1938. [11] JAVADPOUR F. Nanopores and apparent permeability of gas flow in mudrocks (shales and siltstone)[J]. Journal of Canadian Petroleum Technology, 2009, 48(8): 16-21. [12] 孙赞东, 贾承造, 李相方, 等. 非常规油气勘探与开发[M]. 北京: 石油工业出版社, 2011.SUN Zandong, JIA Chengzao, LI Xiangfang, et al. Unconventional oil & gas exploration and development[M]. Beijing: Petroleum Industry Press, 2011. [13] 赵静. 陆相页岩气成藏条件分析: 以松辽盆地南部S洼槽为例[J]. 断块油气田, 2019, 26(3): 290-293. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201903005.htmZHAO Jing. Accumulation conditions of shale gas in continental facies: taking S Depression of Songliao Basin as an example[J]. Fault-Block Oil and Gas Field, 2019, 26(3): 290-293. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201903005.htm [14] 方志雄. 中国南方常压页岩气勘探开发面临的挑战及对策[J]. 油气藏评价与开发, 2019, 9(5): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ201905001.htmFANG Zhixiong. Challenges and countermeasures for exploration and development of normal pressure shale gas in southern China[J]. Reservoir Evaluation and Development, 2019, 9(5): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ201905001.htm [15] 郭彤楼. 页岩气勘探开发中的几个地质问题[J]. 油气藏评价与开发, 2019, 9(5): 14-19. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ201905002.htmGUO Tonglou. A few geological issues in shale gas exploration and development[J]. Reservoir Evaluation and Development, 2019, 9(5): 14-19. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ201905002.htm [16] 陈新安. 条带曲率裂缝发育区页岩气井裂缝扩展规律: 以涪陵页岩气田焦石坝西南区块为例[J]. 断块油气田, 2018, 25(6): 742-746. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201806012.htmCHEN Xinan. Fracture propagation law for shale gas well in strip-curvature-crack development area: a case study of Southwest Jiaoshiba Block in Fuling shale gas field[J]. Fault-Block Oil and Gas Field, 2018, 25(6): 742-746. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201806012.htm [17] 胡志明, 端祥刚, 常进, 等. 页岩气与煤层气开发特征模拟实验研究[J]. 特种油气藏, 2019, 26(4): 125-130. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201904022.htmHU Zhiming, DUAN Xianggang, CHANG Jin, et al. Physical simulation of shale gas and coalbed gas development[J]. Special Oil & Gas Reservoirs, 2019, 26(4): 125-130. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201904022.htm [18] 乔磊, 田中兰, 曾波, 等. 页岩气水平井多因素耦合套变分析[J]. 断块油气田, 2019, 26(1): 107-110. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201901026.htmQIAO Lei, TIAN Zhonglan, ZENG Bo, et al. Mult-factor coupling casing deformation for shale horizontal wells[J]. Fault-Block Oil and Gas Field, 2019, 26(1): 107-110. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201901026.htm [19] 夏宏泉, 史亚红, 王瀚玮, 等. 页岩水平井井眼轨迹方位与层理面产状的关系[J]. 断块油气田, 2018, 25(3): 371-375. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201803021.htmXIA Hongquan, SHI Yahong, WANG Hanwei, et al. Relationship between shale horizontal well track orientation and bedding plane occurrence[J]. Fault-Block Oil and Gas Field, 2018, 25(3): 371-375. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201803021.htm [20] 郭旭升. 南方海相页岩气"二元富集"规律: 四川盆地及周缘龙马溪组页岩气勘探实践认识[J]. 地质学报, 2014, 88(7): 1209-1218. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201407001.htmGUO Xusheng. Rules of two-factor enrichment for marine shale gas in Southern China: understanding from the Longmaxi Formation shale gas in Sichuan Basin and its surrounding area[J]. Acta Geologica Sinica, 2014, 88(7): 1209-1218. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201407001.htm [21] 马文礼, 李治平, 孙玉平, 等. 基于机器学习的页岩气产能非确定性预测方法研究[J]. 特种油气藏, 2019, 26(2): 101-105. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201902018.htmMA Wenli, LI Zhiping, SUN Yuping, et al. Non-deterministic shale gas productivity forecast based on machine learning[J]. Special Oil & Gas Reservoirs, 2019, 26(2): 101-105. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201902018.htm [22] 赖富强, 罗涵, 覃栋优, 等. 基于层次分析法的页岩气储层可压裂性评价研究[J]. 特种油气藏, 2018, 25(3): 154-159. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201803030.htmLAI Fuqiang, LUO Han, QIN Dongyou, et al. Crushability evaluation of shale gas reservoir based on analytic hierarchy process[J]. Special Oil & Gas Reservoirs, 2018, 25(3): 154-159. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201803030.htm [23] 张柏桥, 孟志勇, 刘莉, 等. 四川盆地涪陵地区五峰组观音桥段成因分析及其对页岩气开发的意义[J]. 石油实验地质, 2018, 40(1): 30-37. doi: 10.11781/sysydz201801030ZHANG Boqiao, MENG Zhiyong, LIU Li, et al. Significance of shale gas genesis to the development of Guanyinqiao Member, Wufeng Formation, Fuling area, Sichuan Basin[J]. Petroleum Geology & Experiment, 2018, 40(1): 30-37. doi: 10.11781/sysydz201801030 [24] 李佳欣. 观音桥段地质特征及其对页岩气产量的影响: 以南川地区为例[J]. 油气藏评价与开发, 2018, 8(4): 68-72. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ201804014.htmLi Jiaxin. Geological features of Guanyinqiao member and its influence on the shale gas production: a case study of Nanchuan district[J]. Reservoir Evaluation and Development, 2018, 8(4): 68-72. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ201804014.htm [25] 舒志恒, 方栋梁, 郑爱维, 等. 四川盆地焦石坝地区龙马溪组一段上部页岩气层地质特征及开发潜力[J]. 天然气地球科学, 2020, 31(3): 393-401. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202003010.htmSHU Zhiheng, FANG Dongliang, ZHENG Aiwei, et al. Geological characteristics and development potential of upper shale gas reservoirs of the 1st member of Longmaxi Formation in Jiaoshiba area, Sichuan Basin[J]. Natural Gas Geoscience, 2020, 31(3): 393-401. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202003010.htm