留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用不同质谱技术分析鉴定金刚烷类化合物

黄凌 翁娜 魏彩云 苏劲 张斌 张文龙 胡国艺

黄凌, 翁娜, 魏彩云, 苏劲, 张斌, 张文龙, 胡国艺. 利用不同质谱技术分析鉴定金刚烷类化合物[J]. 石油实验地质, 2020, 42(6): 1024-1030. doi: 10.11781/sysydz2020061024
引用本文: 黄凌, 翁娜, 魏彩云, 苏劲, 张斌, 张文龙, 胡国艺. 利用不同质谱技术分析鉴定金刚烷类化合物[J]. 石油实验地质, 2020, 42(6): 1024-1030. doi: 10.11781/sysydz2020061024
HUANG Ling, WENG Na, WEI Caiyun, SU Jin, ZHANG Bin, ZHANG Wenlong, HU Guoyi. Analysis and identification of diamondoids by different mass spectrometry techniques[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(6): 1024-1030. doi: 10.11781/sysydz2020061024
Citation: HUANG Ling, WENG Na, WEI Caiyun, SU Jin, ZHANG Bin, ZHANG Wenlong, HU Guoyi. Analysis and identification of diamondoids by different mass spectrometry techniques[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(6): 1024-1030. doi: 10.11781/sysydz2020061024

利用不同质谱技术分析鉴定金刚烷类化合物

doi: 10.11781/sysydz2020061024
基金项目: 

国家自然科学基金项目 41473020

国家自然科学基金项目 40903026

中国石油天然气股份有限公司重点项目 2016A-0205

详细信息
    作者简介:

    黄凌(1979-), 男, 博士, 高级工程师, 从事油气地球化学研究。E-mail: linghuang@petrochina.com.cn

  • 中图分类号: TE135

Analysis and identification of diamondoids by different mass spectrometry techniques

  • 摘要: 金刚烷类化合物因在油气勘探领域具有重要的应用价值受到研究人员的广泛关注。由于具有复杂的分子结构和数量众多的同分异构体,目前对于某些金刚烷类化合物的定性结果还存在争议。通过气相色谱—质谱联用法、气相色谱—三重四极杆质谱联用法和全二维气相色谱—飞行时间质谱联用法,开展了烷基取代单金刚烷衍生物的定性研究,对3-甲基-1-乙基单金刚烷和3,5,7-三甲基-1-乙基单金刚烷在不同类型质谱色谱图中的出峰位置进行了确认。此外,利用MASS FRONTIER软件推断了3,5,7-三甲基-1-乙基单金刚烷在电子轰击离子源作用下的碎裂机理以及产生的特征离子。

     

  • 图  1  塔里木盆地中深-1C井原油饱和烃样品的单金刚烷类化合物GC-MS色谱图

    各峰峰号所代表的化合物见表 1

    Figure  1.  GC-MS chromatogram of adamantane derivatives in saturated hydrocarbon of crude oil samples from well Zhongshen-1C in Tarim Basin

    图  2  塔里木盆地中深-1C井原油饱和烃样品的部分单金刚烷类化合物GC-MS色谱图

    各峰峰号所代表的化合物见表 1

    Figure  2.  GC-MS chromatogram of partial adamantane derivatives in saturated hydrocarbon of crude oil samples from well Zhongshen-1C in Tarim Basin

    图  3  3-甲基-1-乙基单金刚烷的标准质谱图(来源于NIST库)

    Figure  3.  Standard mass spectrum of 1-ethyl-3-methyladamantane (from NIST library)

    图  4  GC-MS全扫描模式下峰号分别为11a和11b色谱峰的质谱图

    Figure  4.  Mass spectra of peaks with the peak numbers of 11a and 11b in full scan mode of GC-MS

    图  5  塔里木盆地中深-1C井原油饱和烃样品的单金刚烷类化合物GC-MS-MS色谱图

    各峰峰号所代表的化合物见表 1

    Figure  5.  GC-MS-MS chromatogram of adamantane derivatives in saturated hydrocarbon of crude oil samples from well Zhongshen-1C in Tarim Basin

    图  6  塔里木盆地中深-1C井原油饱和烃样品的单金刚烷类化合物GC×GC-TOFMS色谱图

    各峰峰号所代表的化合物见表 1

    Figure  6.  GC×GC-TOFMS chromatogram of adamantane derivatives in saturated hydrocarbon of crude oil samples from well Zhongshen-1C in Tarim Basin

    图  7  峰号为22a的色谱峰GC×GC-TOFMS质谱图

    Figure  7.  GC×GC-TOFMS mass spectra of peak 22a

    图  8  3,5,7-三甲基-1-乙基单金刚烷的质谱碎裂机理

    Figure  8.  Fragmentation mechanism of 1-ethyl-3,5,7-trimethyladamantane in a mass spectrometer

    表  1  单金刚烷类化合物分子信息

    Table  1.   Molecular information of adamantane derivatives

    峰号 化合物名称 简写 分子式 基峰(m/z) 分子离子峰(m/z)
    1 1-甲基单金刚烷 1-MA C11H18 135 150
    2 2-甲基单金刚烷 2-MA C11H18 135 150
    3 1-乙基单金刚烷 1-EA C12H20 135 164
    4 2-乙基单金刚烷 2-EA C12H20 135 164
    5 单金刚烷 A C10H16 136 136
    6 1,3-二甲基单金刚烷 1,3-DMA C12H20 149 164
    7 1,4-二甲基单金刚烷(顺式) 1,4-DMA (cis) C12H20 149 164
    8 1,4-二甲基单金刚烷(反式) 1,4-DMA (trans) C12H20 149 164
    9 1,2-二甲基单金刚烷 1,2-DMA C12H20 149 164
    10 2,6-+2,4-二甲基单金刚烷 2,6-+2,4-DMA C12H20 149 164
    11a, b 3-甲基-1-乙基单金刚烷 1-E-3-MA C13H22 149 178
    12 1,3,5-三甲基单金刚烷 1,3,5-TMA C13H22 163 178
    13 1,3,6-三甲基单金刚烷 1,3,6-TMA C13H22 163 178
    14 1,3,4-三甲基单金刚烷(顺式) 1,3,4-TMA (cis) C13H22 163 178
    15 1,3,4-三甲基单金刚烷(反式) 1,3,4-TMA (trans) C13H22 163 178
    16 1,2,3-三甲基单金刚烷 1,2,3-TMA C13H22 163 178
    17 3,5-二甲基-1-乙基单金刚烷 1-E-3,5-DMA C14H24 163 192
    18 1,3,5,7-四甲基单金刚烷 1,3,5,7-TeMA C14H24 177 192
    19 1,2,5,7-四甲基单金刚烷 1,2,5,7-TeMA C14H24 177 192
    20 1,3,5,6-四甲基单金刚烷 1,3,5,6-TeMA C14H24 177 192
    21 1,2,3,5-四甲基单金刚烷 1,2,3,5-TeMA C14H24 177 192
    22 3,5,7-三甲基-1-乙基单金刚烷 1-E-3,5,7-TMA C15H26 177 206
    注:11a, b表示11号峰在文献中存在11a和11b两个峰位的争议。
    下载: 导出CSV
  • [1] DAHL J E, LIU S G, CARLSON R M K. Isolation and structure of higher diamondoids, nanometer-sized diamond molecules[J]. Science, 2003, 299(5603): 96-99. doi: 10.1126/science.1078239
    [2] LIN Rui, WILK Z A. Natural occurrence of tetramantane (C22H28), pentamantane (C26H32) and hexamantane (C30H36) in a deep petroleum reservoir[J]. Fuel, 1995, 74(10): 1512-1521. doi: 10.1016/0016-2361(95)00116-M
    [3] DAHL J E, MOLDOWAN J M, PETERS K E, et al. Diamondoid hydrocarbons as indicators of natural oil cracking[J]. Nature, 1999, 399(6731): 54-57. doi: 10.1038/19953
    [4] WEI Zhibin, MOLDOWAN J M, PAYTAN A. Diamondoids and molecular biomarkers generated from modern sediments in the absence and presence of minerals during hydrous pyrolysis[J]. Organic Geochemistry, 2006, 37(8): 891-911. doi: 10.1016/j.orggeochem.2006.04.008
    [5] WEI Zhibin, MOLDOWAN J M, DAHL J, et al. The catalytic effects of minerals on the formation of diamondoids from kerogen macromolecules[J]. Organic Geochemistry, 2006, 37(11): 1421-1436. doi: 10.1016/j.orggeochem.2006.07.006
    [6] WEI Zhibin, MOLDOWAN J M, FAGO F, et al. Origins of thiadiamondoids and diamondoidthiols in petroleum[J]. Energy & Fuels, 2007, 21(6): 3431-3436.
    [7] HÁLA S, EYEM J, BURKHARD J, et al. Retention indices of adamantanes[J]. Journal of Chromatographic Science, 1970, 8(4): 203-209. doi: 10.1093/chromsci/8.4.203
    [8] MITRA G D, MOHAN G, SINHA A. Gas chromatographic analysis of complex hydrocarbon mixtures[J]. Journal of Chromatography A, 1974, 91: 633-648. doi: 10.1016/S0021-9673(01)97944-0
    [9] WINGERT W S.G.C. -M.S. analysis of diamondoid hydrocarbons in Smackover petroleums[J]. Fuel, 1992, 71(1): 37-43. doi: 10.1016/0016-2361(92)90190-Y
    [10] LIANG Qianyong, XIONG Yongqiang, FANG Chenchen, et al. Quantitative analysis of diamondoids in crude oils using Gas Chromatography-Triple Quadrupole Mmass Spectrometry[J]. Organic Geochemistry, 2012, 43: 83-91. doi: 10.1016/j.orggeochem.2011.10.008
    [11] FANG Chenchen, XIONG Yongqiang, LI Yun, et al. The origin and evolution of adamantanes and diamantanes in petroleum[J]. Geochimica et Cosmochimica Acta, 2013, 120: 109-120. doi: 10.1016/j.gca.2013.06.027
    [12] 梁前勇, 熊永强, 房忱琛, 等. 两种测定原油中金刚烷类化合物方法的对比研究[J]. 地球化学, 2012, 41(5): 433-441. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201205005.htm

    LIANG Qianyong, XIONG Yongqiang, FANG Chenchen, et al. Comparison of two methods for the determination of diamondoids in crude oils[J]. Geochimica, 2012, 41(5): 433-441. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201205005.htm
    [13] 闫燕. 原油中金刚烷系列化合物定量分析及应用研究[D]. 大庆: 东北石油大学, 2010.

    YAN Yan. Quantitative analysis and application study of adamantane series compounds in crude oil[D]. Daqing: Northeast Petroleum University, 2010.
    [14] 李二庭, 向宝力, 马万云, 等. 前处理方法对原油中金刚烷化合物定量的影响[J]. 石油实验地质, 2019, 41(6): 916-922. doi: 10.11781/sysydz201906916

    LI Erting, XIANG Baoli, MA Wanyun, et al. Effect of pretreatment methods on determination of diamondoids in crude oils[J]. Petro-leum Geology & Experiment, 2019, 41(6): 916-922. doi: 10.11781/sysydz201906916
    [15] LI Shuifu, HU Shouzhi, CAO Jian, et al. Diamondoid characte-rization in condensate by comprehensive two-dimensional Gas Chromatography with Time-of-Flight Mass Spectrometry: the Junggar Basin of Northwest China[J]. International Journal of Molecular Sciences, 2012, 13(9): 11399-11410. doi: 10.3390/ijms130911399
    [16] ZHU Guangyou, WANG Huitong, WENG Na, et al. Use of comprehensive two-dimensional Gas Chromatography for the characterization of ultra-deep condensate from the Bohai Bay Basin, China[J]. Organic Geochemistry, 2013, 63: 8-17. doi: 10.1016/j.orggeochem.2013.08.002
    [17] 王汇彤, 翁娜, 张水昌, 等. 石油样品中金刚烷类化合物的定量分析新方法[J]. 石油实验地质, 2019, 41(3): 443-450. doi: 10.11781/sysydz201903443

    WANG Huitong, WENG Na, ZHANG Shuichang, et al. A novel method for quantitative analysis of diamondoids in petroleum samples[J]. Petroleum Geology & Experiment, 2019, 41(3): 443-450. doi: 10.11781/sysydz201903443
    [18] 李二庭, 陈俊, 迪丽达尔·肉孜, 等. 准噶尔盆地腹部地区原油金刚烷化合物特征及应用[J]. 石油实验地质, 2019, 41(4): 569-576. doi: 10.11781/sysydz201904569

    LI Erting, CHEN Jun, ROUZI Dilidaer, et al. Characteristics of diamondoids in crude oil and its application in hinterland of Junggar Basin[J]. Petroleum Geology & Experiment, 2019, 41(4): 569-576. doi: 10.11781/sysydz201904569
    [19] 张魁英, 杨佰娟, 郑立, 等. 基于原油中金刚烷指纹半定量分析进行原油鉴别[J]. 分析化学, 2011, 39(4): 496-500. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201104014.htm

    ZHANG Kuiying, YANG Baijuan, ZHENG Li, et al. Crude oil identification based on diamondoid fingerprinting concentrations by semiquantitative method[J]. Chinese Journal of Analytical Chemistry, 2011, 39(4): 496-500. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201104014.htm
    [20] WEI Zhibin, MOLDOWAN J M, JARVIE D M, et al. The fate of diamondoids in coals and sedimentary rocks[J]. Geology, 2006, 34(12): 1013-1016. doi: 10.1130/G22840A.1
    [21] WEI Zhibin, MOLDOWAN J M, ZHANG Shuichang, et al. Diamondoid hydrocarbons as a molecular proxy for thermal maturity and oil cracking: geochemical models from hydrous pyrolysis[J]. Organic Geochemistry, 2007, 38(2): 227-249.
    [22] CHEN Junhong, FU Jiamo, SHENG Guoying, et al. Diamondoid hydrocarbon ratios: novel maturity indices for highly mature crude oils[J]. Organic Geochemistry, 1996, 25(3/4): 179-190.
    [23] ZHANG Shuichang, HUANG Haiping, XIAO Zhongyao, et al. Geochemistry of Palaeozoic marine petroleum from the Tarim Basin, NW China. Part 2: maturity assessment[J]. Organic Geochemistry, 2005, 36(8): 1215-1225.
    [24] AZEVEDO D A, TAMANQUEIRA J B, DIAS J C M, et al. Multivariate statistical analysis of diamondoid and biomarker data from Brazilian Basin oil samples[J]. Fuel, 2008, 87(10/11): 2122-2130.
    [25] SPRINGER M V, GARCIA D F, GONÇALVES F T T, et al. Diamondoid and biomarker characterization of oils from the Llanos Orientales Basin, Colombia[J]. Organic Geochemistry, 2010, 41(9): 1013-1018.
    [26] GRICE K, ALEXANDER R, KAGI R I. Diamondoid hydrocarbon ratios as indicators of biodegradation in Australian crude oils[J]. Organic Geochemistry, 2000, 31(1): 67-73.
    [27] WEI Zhibin, MOLDOWAN J M, PETERS K E, et al. The abundance and distribution of diamondoids in biodegraded oils from the San Joaquin Valley: implications for biodegradation of diamondoids in petroleum reservoirs[J]. Organic Geochemistry, 2007, 38(11): 1910-1926.
    [28] SCHULZ L K, WILHELMS A, REIN E, et al. Application of diamondoids to distinguish source rock facies[J]. Organic Geochemistry, 2001, 32(3): 365-375.
    [29] HANIN S, ADAM P, KOWALEWSKI I, et al. Bridgehead alkylated 2-thiaadamantanes: novel markers for sulfurisation proce-sses occurring under high thermal stress in deep petroleum reservoirs[J]. Chemical Communications, 2002(16): 1750-1751.
    [30] STOUT S A, DOUGLAS G S. Diamondoid hydrocarbons: application in the chemical fingerprinting of natural gas condensate and gasoline[J]. Environmental Forensics, 2004, 5(4): 225-235.
    [31] WANG Zhendi, YANG Chun, HOLLEBONE B, et al. Forensic fingerprinting of diamondoids for correlation and differentiation of spilled oil and petroleum products[J]. Environmental Science & Technology, 2006, 40(18): 5636-5646.
    [32] YANG Chun, WANG Z D, HOLLEBONE B P, et al. GC/MS quantitation of diamondoid compounds in crude oils and petro-leum products[J]. Environmental Forensics, 2006, 7(4): 377-390.
    [33] MOLDOWAN J M, DAHL J, ZINNIKER D, et al. Underutilized advanced geochemical technologies for oil and gas exploration and production-1. The diamondoids[J]. Journal of Petroleum Science and Engineering, 2015, 126: 87-96.
    [34] 马安来, 金之钧, 朱翠山, 等. 塔河油田原油中金刚烷化合物绝对定量分析[J]. 石油学报, 2009, 30(2): 214-218. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200902010.htm

    MA Anlai, JIN Zhijun, ZHU Cuishan, et al. Quantitative analysis on absolute concentration of diamondoids in oils from Tahe Oilfield[J]. Acta Petrolei Sinica, 2009, 30(2): 214-218. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200902010.htm
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  693
  • HTML全文浏览量:  180
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-10
  • 修回日期:  2020-10-19
  • 刊出日期:  2020-11-28

目录

    /

    返回文章
    返回