Analysis and identification of diamondoids by different mass spectrometry techniques
-
摘要: 金刚烷类化合物因在油气勘探领域具有重要的应用价值受到研究人员的广泛关注。由于具有复杂的分子结构和数量众多的同分异构体,目前对于某些金刚烷类化合物的定性结果还存在争议。通过气相色谱—质谱联用法、气相色谱—三重四极杆质谱联用法和全二维气相色谱—飞行时间质谱联用法,开展了烷基取代单金刚烷衍生物的定性研究,对3-甲基-1-乙基单金刚烷和3,5,7-三甲基-1-乙基单金刚烷在不同类型质谱色谱图中的出峰位置进行了确认。此外,利用MASS FRONTIER软件推断了3,5,7-三甲基-1-乙基单金刚烷在电子轰击离子源作用下的碎裂机理以及产生的特征离子。Abstract: Diamondoids have attracted extensive attention from researchers because of their important application value in oil and gas exploration. Since diamondoids have complex molecular structures and a large number of isomers, the identification of certain diamondoids is still controversial. In this paper, a qualitative study of adamantane derivatives, such as 1-ethyl-3-methyladamantane and 1-ethyl-3,5,7-trimethyladamantane, was carried out using gas chromatography-mass spectrometry, gas chromatography-triple quadrupole mass spectrometry and two dimensional gas chromatography-time-of-flight mass spectrometry. The chromatography peak position of these compounds in different mass spectrograms was confirmed. In addition, with the help of MASS FRONTIER software, the fragmentation mechanism and the characteristic ions formed during electron ionization was interpreted for 1-ethyl-3,5,7-trimethyladamantane in the ion source.
-
Key words:
- diamondoids /
- mass spectrometer /
- qualitative analysis /
- fragmentation mechanism
-
图 1 塔里木盆地中深-1C井原油饱和烃样品的单金刚烷类化合物GC-MS色谱图
各峰峰号所代表的化合物见表 1。
Figure 1. GC-MS chromatogram of adamantane derivatives in saturated hydrocarbon of crude oil samples from well Zhongshen-1C in Tarim Basin
图 2 塔里木盆地中深-1C井原油饱和烃样品的部分单金刚烷类化合物GC-MS色谱图
各峰峰号所代表的化合物见表 1。
Figure 2. GC-MS chromatogram of partial adamantane derivatives in saturated hydrocarbon of crude oil samples from well Zhongshen-1C in Tarim Basin
图 5 塔里木盆地中深-1C井原油饱和烃样品的单金刚烷类化合物GC-MS-MS色谱图
各峰峰号所代表的化合物见表 1。
Figure 5. GC-MS-MS chromatogram of adamantane derivatives in saturated hydrocarbon of crude oil samples from well Zhongshen-1C in Tarim Basin
图 6 塔里木盆地中深-1C井原油饱和烃样品的单金刚烷类化合物GC×GC-TOFMS色谱图
各峰峰号所代表的化合物见表 1。
Figure 6. GC×GC-TOFMS chromatogram of adamantane derivatives in saturated hydrocarbon of crude oil samples from well Zhongshen-1C in Tarim Basin
表 1 单金刚烷类化合物分子信息
Table 1. Molecular information of adamantane derivatives
峰号 化合物名称 简写 分子式 基峰(m/z) 分子离子峰(m/z) 1 1-甲基单金刚烷 1-MA C11H18 135 150 2 2-甲基单金刚烷 2-MA C11H18 135 150 3 1-乙基单金刚烷 1-EA C12H20 135 164 4 2-乙基单金刚烷 2-EA C12H20 135 164 5 单金刚烷 A C10H16 136 136 6 1,3-二甲基单金刚烷 1,3-DMA C12H20 149 164 7 1,4-二甲基单金刚烷(顺式) 1,4-DMA (cis) C12H20 149 164 8 1,4-二甲基单金刚烷(反式) 1,4-DMA (trans) C12H20 149 164 9 1,2-二甲基单金刚烷 1,2-DMA C12H20 149 164 10 2,6-+2,4-二甲基单金刚烷 2,6-+2,4-DMA C12H20 149 164 11a, b 3-甲基-1-乙基单金刚烷 1-E-3-MA C13H22 149 178 12 1,3,5-三甲基单金刚烷 1,3,5-TMA C13H22 163 178 13 1,3,6-三甲基单金刚烷 1,3,6-TMA C13H22 163 178 14 1,3,4-三甲基单金刚烷(顺式) 1,3,4-TMA (cis) C13H22 163 178 15 1,3,4-三甲基单金刚烷(反式) 1,3,4-TMA (trans) C13H22 163 178 16 1,2,3-三甲基单金刚烷 1,2,3-TMA C13H22 163 178 17 3,5-二甲基-1-乙基单金刚烷 1-E-3,5-DMA C14H24 163 192 18 1,3,5,7-四甲基单金刚烷 1,3,5,7-TeMA C14H24 177 192 19 1,2,5,7-四甲基单金刚烷 1,2,5,7-TeMA C14H24 177 192 20 1,3,5,6-四甲基单金刚烷 1,3,5,6-TeMA C14H24 177 192 21 1,2,3,5-四甲基单金刚烷 1,2,3,5-TeMA C14H24 177 192 22 3,5,7-三甲基-1-乙基单金刚烷 1-E-3,5,7-TMA C15H26 177 206 注:11a, b表示11号峰在文献中存在11a和11b两个峰位的争议。 -
[1] DAHL J E, LIU S G, CARLSON R M K. Isolation and structure of higher diamondoids, nanometer-sized diamond molecules[J]. Science, 2003, 299(5603): 96-99. doi: 10.1126/science.1078239 [2] LIN Rui, WILK Z A. Natural occurrence of tetramantane (C22H28), pentamantane (C26H32) and hexamantane (C30H36) in a deep petroleum reservoir[J]. Fuel, 1995, 74(10): 1512-1521. doi: 10.1016/0016-2361(95)00116-M [3] DAHL J E, MOLDOWAN J M, PETERS K E, et al. Diamondoid hydrocarbons as indicators of natural oil cracking[J]. Nature, 1999, 399(6731): 54-57. doi: 10.1038/19953 [4] WEI Zhibin, MOLDOWAN J M, PAYTAN A. Diamondoids and molecular biomarkers generated from modern sediments in the absence and presence of minerals during hydrous pyrolysis[J]. Organic Geochemistry, 2006, 37(8): 891-911. doi: 10.1016/j.orggeochem.2006.04.008 [5] WEI Zhibin, MOLDOWAN J M, DAHL J, et al. The catalytic effects of minerals on the formation of diamondoids from kerogen macromolecules[J]. Organic Geochemistry, 2006, 37(11): 1421-1436. doi: 10.1016/j.orggeochem.2006.07.006 [6] WEI Zhibin, MOLDOWAN J M, FAGO F, et al. Origins of thiadiamondoids and diamondoidthiols in petroleum[J]. Energy & Fuels, 2007, 21(6): 3431-3436. [7] HÁLA S, EYEM J, BURKHARD J, et al. Retention indices of adamantanes[J]. Journal of Chromatographic Science, 1970, 8(4): 203-209. doi: 10.1093/chromsci/8.4.203 [8] MITRA G D, MOHAN G, SINHA A. Gas chromatographic analysis of complex hydrocarbon mixtures[J]. Journal of Chromatography A, 1974, 91: 633-648. doi: 10.1016/S0021-9673(01)97944-0 [9] WINGERT W S.G.C. -M.S. analysis of diamondoid hydrocarbons in Smackover petroleums[J]. Fuel, 1992, 71(1): 37-43. doi: 10.1016/0016-2361(92)90190-Y [10] LIANG Qianyong, XIONG Yongqiang, FANG Chenchen, et al. Quantitative analysis of diamondoids in crude oils using Gas Chromatography-Triple Quadrupole Mmass Spectrometry[J]. Organic Geochemistry, 2012, 43: 83-91. doi: 10.1016/j.orggeochem.2011.10.008 [11] FANG Chenchen, XIONG Yongqiang, LI Yun, et al. The origin and evolution of adamantanes and diamantanes in petroleum[J]. Geochimica et Cosmochimica Acta, 2013, 120: 109-120. doi: 10.1016/j.gca.2013.06.027 [12] 梁前勇, 熊永强, 房忱琛, 等. 两种测定原油中金刚烷类化合物方法的对比研究[J]. 地球化学, 2012, 41(5): 433-441. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201205005.htmLIANG Qianyong, XIONG Yongqiang, FANG Chenchen, et al. Comparison of two methods for the determination of diamondoids in crude oils[J]. Geochimica, 2012, 41(5): 433-441. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201205005.htm [13] 闫燕. 原油中金刚烷系列化合物定量分析及应用研究[D]. 大庆: 东北石油大学, 2010.YAN Yan. Quantitative analysis and application study of adamantane series compounds in crude oil[D]. Daqing: Northeast Petroleum University, 2010. [14] 李二庭, 向宝力, 马万云, 等. 前处理方法对原油中金刚烷化合物定量的影响[J]. 石油实验地质, 2019, 41(6): 916-922. doi: 10.11781/sysydz201906916LI Erting, XIANG Baoli, MA Wanyun, et al. Effect of pretreatment methods on determination of diamondoids in crude oils[J]. Petro-leum Geology & Experiment, 2019, 41(6): 916-922. doi: 10.11781/sysydz201906916 [15] LI Shuifu, HU Shouzhi, CAO Jian, et al. Diamondoid characte-rization in condensate by comprehensive two-dimensional Gas Chromatography with Time-of-Flight Mass Spectrometry: the Junggar Basin of Northwest China[J]. International Journal of Molecular Sciences, 2012, 13(9): 11399-11410. doi: 10.3390/ijms130911399 [16] ZHU Guangyou, WANG Huitong, WENG Na, et al. Use of comprehensive two-dimensional Gas Chromatography for the characterization of ultra-deep condensate from the Bohai Bay Basin, China[J]. Organic Geochemistry, 2013, 63: 8-17. doi: 10.1016/j.orggeochem.2013.08.002 [17] 王汇彤, 翁娜, 张水昌, 等. 石油样品中金刚烷类化合物的定量分析新方法[J]. 石油实验地质, 2019, 41(3): 443-450. doi: 10.11781/sysydz201903443WANG Huitong, WENG Na, ZHANG Shuichang, et al. A novel method for quantitative analysis of diamondoids in petroleum samples[J]. Petroleum Geology & Experiment, 2019, 41(3): 443-450. doi: 10.11781/sysydz201903443 [18] 李二庭, 陈俊, 迪丽达尔·肉孜, 等. 准噶尔盆地腹部地区原油金刚烷化合物特征及应用[J]. 石油实验地质, 2019, 41(4): 569-576. doi: 10.11781/sysydz201904569LI Erting, CHEN Jun, ROUZI Dilidaer, et al. Characteristics of diamondoids in crude oil and its application in hinterland of Junggar Basin[J]. Petroleum Geology & Experiment, 2019, 41(4): 569-576. doi: 10.11781/sysydz201904569 [19] 张魁英, 杨佰娟, 郑立, 等. 基于原油中金刚烷指纹半定量分析进行原油鉴别[J]. 分析化学, 2011, 39(4): 496-500. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201104014.htmZHANG Kuiying, YANG Baijuan, ZHENG Li, et al. Crude oil identification based on diamondoid fingerprinting concentrations by semiquantitative method[J]. Chinese Journal of Analytical Chemistry, 2011, 39(4): 496-500. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201104014.htm [20] WEI Zhibin, MOLDOWAN J M, JARVIE D M, et al. The fate of diamondoids in coals and sedimentary rocks[J]. Geology, 2006, 34(12): 1013-1016. doi: 10.1130/G22840A.1 [21] WEI Zhibin, MOLDOWAN J M, ZHANG Shuichang, et al. Diamondoid hydrocarbons as a molecular proxy for thermal maturity and oil cracking: geochemical models from hydrous pyrolysis[J]. Organic Geochemistry, 2007, 38(2): 227-249. [22] CHEN Junhong, FU Jiamo, SHENG Guoying, et al. Diamondoid hydrocarbon ratios: novel maturity indices for highly mature crude oils[J]. Organic Geochemistry, 1996, 25(3/4): 179-190. [23] ZHANG Shuichang, HUANG Haiping, XIAO Zhongyao, et al. Geochemistry of Palaeozoic marine petroleum from the Tarim Basin, NW China. Part 2: maturity assessment[J]. Organic Geochemistry, 2005, 36(8): 1215-1225. [24] AZEVEDO D A, TAMANQUEIRA J B, DIAS J C M, et al. Multivariate statistical analysis of diamondoid and biomarker data from Brazilian Basin oil samples[J]. Fuel, 2008, 87(10/11): 2122-2130. [25] SPRINGER M V, GARCIA D F, GONÇALVES F T T, et al. Diamondoid and biomarker characterization of oils from the Llanos Orientales Basin, Colombia[J]. Organic Geochemistry, 2010, 41(9): 1013-1018. [26] GRICE K, ALEXANDER R, KAGI R I. Diamondoid hydrocarbon ratios as indicators of biodegradation in Australian crude oils[J]. Organic Geochemistry, 2000, 31(1): 67-73. [27] WEI Zhibin, MOLDOWAN J M, PETERS K E, et al. The abundance and distribution of diamondoids in biodegraded oils from the San Joaquin Valley: implications for biodegradation of diamondoids in petroleum reservoirs[J]. Organic Geochemistry, 2007, 38(11): 1910-1926. [28] SCHULZ L K, WILHELMS A, REIN E, et al. Application of diamondoids to distinguish source rock facies[J]. Organic Geochemistry, 2001, 32(3): 365-375. [29] HANIN S, ADAM P, KOWALEWSKI I, et al. Bridgehead alkylated 2-thiaadamantanes: novel markers for sulfurisation proce-sses occurring under high thermal stress in deep petroleum reservoirs[J]. Chemical Communications, 2002(16): 1750-1751. [30] STOUT S A, DOUGLAS G S. Diamondoid hydrocarbons: application in the chemical fingerprinting of natural gas condensate and gasoline[J]. Environmental Forensics, 2004, 5(4): 225-235. [31] WANG Zhendi, YANG Chun, HOLLEBONE B, et al. Forensic fingerprinting of diamondoids for correlation and differentiation of spilled oil and petroleum products[J]. Environmental Science & Technology, 2006, 40(18): 5636-5646. [32] YANG Chun, WANG Z D, HOLLEBONE B P, et al. GC/MS quantitation of diamondoid compounds in crude oils and petro-leum products[J]. Environmental Forensics, 2006, 7(4): 377-390. [33] MOLDOWAN J M, DAHL J, ZINNIKER D, et al. Underutilized advanced geochemical technologies for oil and gas exploration and production-1. The diamondoids[J]. Journal of Petroleum Science and Engineering, 2015, 126: 87-96. [34] 马安来, 金之钧, 朱翠山, 等. 塔河油田原油中金刚烷化合物绝对定量分析[J]. 石油学报, 2009, 30(2): 214-218. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200902010.htmMA Anlai, JIN Zhijun, ZHU Cuishan, et al. Quantitative analysis on absolute concentration of diamondoids in oils from Tahe Oilfield[J]. Acta Petrolei Sinica, 2009, 30(2): 214-218. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200902010.htm