Formation mechanisms and development models of dolomite reservoirs in Ordovician Yingshan Formation in Shunnan area, Tarim Basin
-
摘要: 为深化对塔里木盆地顺南地区白云岩储层的认识,明确奥陶系鹰山组白云岩的成因和发育模式,指导油气勘探,在岩心观察和薄片鉴定的基础上,运用扫描电镜观察、阴极发光分析、碳氧同位素测试和稀土元素分析等手段,研究了顺南地区奥陶系鹰山组白云岩储层的岩相学特征和地球化学特征,分析了白云岩的形成机制,构建了不同成因类型的白云岩发育模式。岩相学分析表明,鹰山组主要发育粉—细晶白云岩(石)、细—中晶白云岩(石)和缝洞充填中—粗晶白云石等3种白云岩(石);地球化学特征揭示,粉—细晶白云石形成于盐度较高的水体中,是近地表环境蒸发泵白云石化的产物;细—中晶白云石形成于埋藏环境;中—粗晶白云石形成于相对封闭的成岩环境,是构造—热液白云石化的产物。中—深埋藏白云石化可形成孔隙较发育的规模化细—中晶白云岩,是最有利于储层发育的白云石化作用。Abstract: The dolomite reservoirs of the Ordovician Yingshan Formation in Shunnan area of the Tarim Basin have a great oil and gas potential. However, the genesis of different types of dolomite reservoirs is still subject to debate. In order to further deepen the understanding of the dolomite reservoirs in Shunnan area and clarify the genesis and development models of the dolomites in the Ordovician Yingshan Formation, the petrography and geochemistry of the dolomites were studied in detail, and some dolomitization models were established based on observation of core samples and thin section identification, using SEM, cathodoluminescence, carbon and oxygen isotope data and rare earth element pattern analysis. The petrographic analysis shows that the Yingshan Formation mainly develops three types of dolomite: powder-fine crystalline dolomite, fine-medium crystalline dolomite and fractured vug filling medium-coarse crystalline dolomite. Geochemical characteristics reveal that powder-fine crystalline dolomite is formed in water with higher salinity, which is the product of near-surface environment evaporation pump dolomitization. Fine-medium crystalline dolomite is formed in a buried environment. Medium-coarse crystalline dolomite is formed in relatively closed diagenetic environment, which is the product of tectonic-hydrothermal dolomitization.Medium-deep buried dolomitization can form large-scale fine-medium crystal dolomite with well-developed pores, which is the most favorable dolomitization for reservoir development.
-
Key words:
- dolomitization /
- geochemical features /
- carbonate rock /
- Yingshan Formation /
- Ordovician /
- Tarim Basin
-
图 2 塔里木盆地顺南地区鹰山组白云岩(石)显微岩石学特征
a.纹层状粉晶白云岩,顺南5井,7 178.15 m,薄片扫描图像;b.斑块状分布的粉晶白云石,顺南5井,7 070.29 m,单偏光;c.粉晶白云岩,显雾心亮边,顺南5井,7 071.50 m,单偏光;d.图c对应的阴极发光(CL)图像,白云石发很暗的红色光;e.细晶白云岩,溶孔中充填中晶白云石,古隆1井,6 531.78 m,单偏光;f.图e对应的CL图像,粉晶白云石发很暗的红色光,中晶白云石具环带发光;g.中晶白云岩,白云石自形—半自形,具明显的雾心亮边,古隆1井,6 533.90 m;h.图g对应的CL图像,白云石具环带发光特征;i.粉晶白云岩,溶蚀孔洞内充填中—粗晶白云石,晶体自形程度好;顺南5井,7 073.20 m;j.图i对应的CL图像,基质粉晶白云石发暗红色光,充填的粗晶白云石发橙红色光;k.亮晶砂屑灰岩中沿缝合线分布的细—中晶白云石,白云石表面较脏,顺南5井,7 177.70 m,单偏光;l.粉晶白云岩中的粒状黄铁矿,顺南5井,7 070.50 m,SEM图像
Figure 2. Micro petrological characteristics of Yingshan Formation dolomites in Shunnan area, Tarim Basin
图 5 塔里木盆地顺南地区鹰山组碳酸盐岩中不同成因白云石化模式
据参考文献[47],有修改。
Figure 5. Dolomitization models of different genesis in carbonate rocks of Yingshan Formation in Shunnan area, Tarim Basin
表 1 塔里木盆地顺南地区鹰山组不同类型白云石阴极发光特征
Table 1. Cathodoluminescence characteristics of different types of dolomites from Yingshan Formation in Shunnan area, Tarim Basin
井位 岩性 赋存位置 发光特征 发光强度 顺南5 纹层状粉晶白云岩 基质 紫红 较弱 顺南5 粉晶白云岩 基质 紫红 较弱 古隆1 细晶白云岩 基质 红 较弱 古隆1 细晶白云岩 基质 红 较弱 古隆1 含灰粉—细晶云岩 基质 红 较弱 顺南2 含硅灰质白云岩 缝合线 橘红 较亮 顺南2 含硅灰质白云岩 白云石团块 橘红 单环亮边 顺南3 亮晶砂屑—微晶灰岩 斑状白云石 橘红 雾心亮边 顺南2 亮晶砂屑灰岩 缝合线 橘红 较亮 顺南5 粉晶白云岩 溶蚀缝 红 可见2期 古隆1 细晶白云岩 裂缝 红 环带状亮边 古隆1 含灰粉—细晶云岩 溶蚀孔洞 红 较亮 表 2 塔里木盆地顺南地区鹰山组不同类型白云石微量元素电子探针分析
Table 2. Trace element analysis of different types of dolomites from Yingshan Formation in Shunnan area, Tarim Basin
岩石类型 样品数/件 Mn/10-6(平均值) Sr/10-6(平均值) Mn/Sr(平均值) 灰岩 18 113.39 179.42 0.63 粉—细晶白云石 15 122.68 261.82 0.47 沿缝合线分布的 29 96.83 282.97 0.34 细—中晶白云石溶蚀孔洞和裂缝内充填的中—粗晶白云石 19 109.52 434.53 0.25 表 3 塔里木盆地顺南地区鹰山组碳酸盐岩样品碳、氧同位素组成
Table 3. Carbon and oxygen isotope compositions of different types of dolomites from Yingshan Formation in Shunnan area, Tarim Basin
井号 井深/m 样品类型 δ13CVPDB/‰ δ18OVPDB/‰ 古隆1井 6 455.50 粉—细晶白云石 0.24 -7.41 古隆1井 6 461.67 -0.15 -9.11 顺南5井 7 073.20 -0.10 -9.99 顺南5井 7 069.50 -0.25 -6.44 顺南5井 7 071.50 0.19 -13.47 古隆1井 6 533.90 细—中晶白云石 -2.00 -12.35 古隆1井 6 536.53 -2.27 -13.47 古隆3井 6 235.30 -2.59 -12.58 古隆1井 6 532.29 鞍形白云石 -3.04 -14.30 古隆1井 6 532.29 -1.60 -6.99 顺南1井 6 672.81 微晶灰岩中方解石 -2.96 -14.00 顺南2井 6 548.52 -1.73 -11.49 顺南2井 6 454.66 砂屑灰岩裂缝内充填的方解石脉 -2.01 -11.13 顺南2井 6 869.77 -2.05 -4.68 顺南2井 6 873.78 -1.84 -5.54 古隆2井 5 790.59 -2.23 -4.73 顺南2井 6 550.81 溶蚀孔洞中充填的亮晶方解石 -0.57 -4.27 顺南1井 6 669.13 -2.45 -5.91 顺南4井 6 668.80 硅化岩中的方解石脉 -1.72 -5.81 顺南4井 6 669.25 -1.70 -7.25 顺南4井 6 672.50 -1.67 -4.31 表 4 塔里木盆地顺南地区鹰山组不同白云岩的稀土元素特征
Table 4. REE characteristics of different types of dolostones in Yingshan Formation in Shunnan area, Tarim Basin
样品号 样品类型 ΣREE/10-6 δCe δEu ∑LREE/∑HREE GL1-2T 细晶白云岩 23.40 0.89 0.75 7.05 GL1-4T 纹层状细晶白云岩 11.40 0.81 0.90 5.66 GL1-6T 中晶白云岩 7.85 0.80 0.87 5.09 GL1-8T 细晶白云岩 10.32 0.80 1.01 6.41 SN5-14T 细晶白云岩 6.84 0.79 1.14 4.77 GL3-24T 纹层状粉晶白云岩 7.84 0.61 1.21 5.76 SN5-24T 粉晶白云岩 11.18 0.83 0.88 5.89 SN5-17T 纹层状粉晶白云岩 15.09 0.86 0.84 6.36 GL3-11T 亮晶砂屑灰岩 8.17 0.70 1.33 5.76 SN2-16T 微晶灰岩 6.62 0.72 0.94 4.71 -
[1] BURNS S J, MCKENZIE J A, VASCONCELOS C. Dolomite formation and biogeochemical cycles in the Phanerozoic[J]. Sedimento-logy, 2000, 47(S1): 49-61. [2] WARREN J. Dolomite: occurrence, evolution and economically important associations[J]. Earth-Science Reviews, 2000, 52(1/3): 1-81. [3] MACHEL H G. Concepts and models of dolomitization: a critical reappraisal[J]. Geological Society London Special Publications, 2004, 235(1): 7-63. doi: 10.1144/GSL.SP.2004.235.01.02 [4] 何治亮, 马永生, 张军涛, 等. 中国的白云岩与白云岩储层: 分布、成因与控制因素[J]. 石油与天然气地质, 2020, 41(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202001002.htmHE Zhiliang, MA Yongsheng, ZHANG Juntao, et al. Distribution, genetic mechanism and control factors of dolomite and dolomite reservoirs in China[J]. Oil & Gas Geology, 2020, 41(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202001002.htm [5] 王琼仙, 宋晓波, 陈洪德, 等. 川西龙门山前雷口坡组四段白云岩储层胶结物对早期孔隙的影响[J]. 石油实验地质, 2018, 40(6): 757-763. doi: 10.11781/sysydz201806757WANG Qiongxian, SONG Xiaobo, CHEN Hongde, et al. Cement characteristics and effects on dolomite reservoir pores in the fourth member of Leikoupo Formation, Longmen Mountain front, western Sichuan Basin[J]. Petroleum Geology & Experiment, 2018, 40(6): 757-763. doi: 10.11781/sysydz201806757 [6] 陈昱林, 曾焱, 段永明, 等. 川西龙门山前雷口坡组四段白云岩储层孔隙结构特征及储层分类[J]. 石油实验地质, 2018, 40(5): 621-631. doi: 10.11781/sysydz201805621CHEN Yulin, ZENG Yan, DUAN Yongming, et al. Pore structure characteristics and reservoir classification of dolomite reservoirs in fourth member of Leikoupo Formation, Longmen Mountain front, western Sichuan Basin[J]. Petroleum Geology & Experiment, 2018, 40(5): 621-631. doi: 10.11781/sysydz201805621 [7] 薛辉. 廊固凹陷马家沟组潜山白云岩储层特征及成因[J]. 断块油气田, 2018, 25(5): 573-578. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201805007.htmXUE Hui. Characteristics and genesis of buried-hill dolomite reservoir in Majiagou Formation, Langgu Depression[J]. Fault-Block Oil and Gas Field, 2018, 25(5): 573-578. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201805007.htm [8] 李宗杰, 王鹏, 陈绪云, 等. 塔里木盆地顺南地区超深白云岩储层地震、地质综合预测[J]. 石油与天然气地质, 2020, 41(1): 59-67. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202001007.htmLI Zongjie, WANG Peng, CHEN Xuyun, et al. Integrated seismic and geological prediction of ultra-deep dolomite reservoir in Shunnan area, Tarim Basin[J]. Oil & Gas Geology, 2020, 41(1): 59-67. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202001007.htm [9] 余浩元, 蔡春芳, 郑剑锋, 等. 微生物结构对微生物白云岩孔隙特征的影响: 以塔里木盆地柯坪地区肖尔布拉克组为例[J]. 石油实验地质, 2018, 40(2): 233-243. doi: 10.11781/sysydz201802233YU Haoyuan, CAI Chunfang, ZHENG Jianfeng, et al. Influence of microbial textures on pore characteristics of microbial dolomites: a case study of Lower Cambrian Xiaoerbulake Formation in Keping area, Tarim Basin[J]. Petroleum Geology & Experiment, 2018, 40(2): 233-243. doi: 10.11781/sysydz201802233 [10] 马新海, 王年梅, 田小彬. 塔东地区震旦系白云岩成因及储层发育模式[J]. 断块油气田, 2019, 26(5): 566-570. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201905006.htmMA Xinhai, WANG Nianmei, TIAN Xiaobin. Genesis mechanism and reservoir model of Sinian dolomite in eastern Tarim area[J]. Fault-Block Oil and Gas Field, 2019, 26(5): 566-570. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201905006.htm [11] 何治亮, 金晓辉, 沃玉进, 等. 中国海相超深层碳酸盐岩油气成藏特点及勘探领域[J]. 中国石油勘探, 2016, 21(1): 3-14. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201601003.htmHE Zhiliang, JIN Xiaohui, WO Yujin, et al. Hydrocarbon accumulation characteristics and exploration domains of ultra-deep marine carbonates in China[J]. China Petroleum Exploration, 2016, 21(1): 3-14. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201601003.htm [12] 谢增业, 魏国齐, 李剑, 等. 中国海相碳酸盐岩大气田成藏特征与模式[J]. 石油学报, 2013, 34(S1): 29-40. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2013S1003.htmXIE Zengye, WEI Guoqi, LI Jian, et al. Reservoir characteristics and accumulation modes of large carbonate gas fields in China[J]. Acta Petrolei Sinica, 2013, 34(S1): 29-40. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2013S1003.htm [13] 王金琪. 塔里木奥陶系岩溶储集的油气前景[J]. 石油与天然气地质, 1999, 20(4): 305-310. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT199904007.htmWANG Jinqi. Oil and gas prospects of Ordovician karst reservoiring in Tarim Basin[J]. Oil & Gas Geology, 1999, 20(4): 305-310. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT199904007.htm [14] 尤东华, 曹自成, 徐明军, 等. 塔里木盆地奥陶系鹰山组多类型白云岩储层成因机制[J]. 石油与天然气地质, 2020, 41(1): 92-101. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202001010.htmYOU Donghua, CAO Zicheng, XU Mingjun, et al. Genetic mechanism of multi-type dolomite reservoirs in Ordovician Yingshan Formation, Tarim Basin[J]. Oil & Gas Geology, 2020, 41(1): 92-101. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202001010.htm [15] 云露, 曹自成. 塔里木盆地顺南地区奥陶系油气富集与勘探潜力[J]. 石油与天然气地质, 2014, 35(6): 788-797. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201406008.htmYUN Lu, CAO Zicheng. Hydrocarbon enrichment pattern and exploration potential of the Ordovician in Shunnan area, Tarim Basin[J]. Oil & Gas Geology, 2014, 35(6): 788-797. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201406008.htm [16] 尤东华, 韩俊, 胡文瑄, 等. 塔里木盆地顺南501井鹰山组白云岩储层特征与成因[J]. 沉积学报, 2018, 36(6): 1206-1217. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201806014.htmYOU Donghua, HAN Jun, HU Wenxuan, et al. Characteristics and genesis of dolomite reservoirs in the Yingshan Formation of well SN501 in the Tarim Basin[J]. Acta Sedimentologica Sinica, 2018, 36(6): 1206-1217. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201806014.htm [17] 吴仕强, 钱一雄, 李慧莉, 等. 塔里木盆地卡塔克隆起中下奥陶统鹰山组白云岩储集层特征及主控因素[J]. 古地理学报, 2012, 14(2): 209-218. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201202008.htmWU Shiqiang, QIAN Yixiong, LI Huili, et al. Characteristics and main controlling factors of dolostone reservoir of the Middle-Lower Ordovician Yingshan Formation in Katak Uplift of Tarim Basin[J]. Journal of Palaeogeography, 2012, 14(2): 209-218. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201202008.htm [18] 陈红汉, 鲁子野, 曹自成, 等. 塔里木盆地塔中地区北坡奥陶系热液蚀变作用[J]. 石油学报, 2016, 37(1): 43-63. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201601005.htmCHEN Honghan, LU Ziye, CAO Zicheng, et al. Hydrothermal alteration of Ordovician reservoir in northeastern slope of Tazhong uplift, Tarim Basin[J]. Acta Petrolei Sinica, 2016, 37(1): 43-63. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201601005.htm [19] 杨海军, 李开开, 潘文庆, 等. 塔中地区奥陶系埋藏热液溶蚀流体活动及其对深部储层的改造作用[J]. 岩石学报, 2012, 28(3): 783-792. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201203008.htmYANG Haijun, LI Kaikai, PAN Wenqing, et al. Burial hydrothermal dissolution fluid activity and its transforming effect on the reservoirs in Ordovician in central Tarim[J]. Acta Petrologica Sinica, 2012, 28(3): 783-792. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201203008.htm [20] 王坤, 胡素云, 胡再元, 等. 塔里木盆地古城地区寒武系热液作用及其对储层发育的影响[J]. 石油学报, 2016, 37(4): 439-453. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201604003.htmWANG Kun, HU Suyun, HU Zaiyuan, et al. Cambrian hydrothermal action in Gucheng area, Tarim Basin and its influences on reservoir development[J]. Acta Petrolei Sinica, 2016, 37(4): 439-453. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201604003.htm [21] 邵红梅, 冯子辉, 王成, 等. 塔里木盆地古城地区下古生界白云岩储层类型及成因[J]. 大庆石油地质与开发, 2014, 33(5): 111-116. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK201405020.htmSHAO Hongmei, FENG Zihui, WANG Cheng, et al. Types and geneses of the dolomite reservoirs in Lower Paleozoic of Gucheng area of Tarim Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2014, 33(5): 111-116. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK201405020.htm [22] 赵文智, 沈安江, 胡素云, 等. 塔里木盆地寒武-奥陶系白云岩储层类型与分布特征[J]. 岩石学报, 2012, 28(3): 758-768. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201203006.htmZHAO Wenzhi, SHEN Anjiang, HU Suyun, et al. Types and distributional features of Cambrian-Ordovician dolostone reservoirs in Tarim Basin, northwestern China[J]. Acta Petrologica Sinica, 2012, 28(3): 758-768. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201203006.htm [23] 唐照星, 曹自成, 汪新文, 等. 塔里木盆地古城墟隆起鹰山组内幕储层特征及影响因素[J]. 岩性油气藏, 2013, 25(4): 44-49. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201304011.htmTANG Zhaoxing, CAO Zicheng, WANG Xinwen, et al. Reservoir characteristics and influencing factors in the inner Yingshan Formation in Guchengxu uplift, Tarim Basin[J]. Lithologic Reservoirs, 2013, 25(4): 44-49. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201304011.htm [24] 刘嘉庆, 李忠, 颜梦珂, 等. 塔里木盆地塔中地区下奥陶统白云岩的成岩流体演化: 来自团簇同位素的证据[J]. 石油与天然气地质, 2020, 41(1): 68-82. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202001008.htmLIU Jiaqing, LI Zhong, YAN Mengke, et al. Diagenetic fluid evolution of dolomite from the Lower Ordovician in Tazhong area, Tarim Basin: clumped isotopic evidence[J]. Oil & Gas Geology, 2020, 41(1): 68-82. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202001008.htm [25] 刘忠宝, 李慧莉, 钱一雄, 等. 塔中古城墟隆起下古生界碳酸盐岩沉积与储层特征[J]. 地质科学, 2012, 47(3): 640-652. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201203008.htmLIU Zhongbao, LI Huili, QIAN Yixiong, et al. Characteristics of Lower Paleozoic carbonate sediment and reservoir of Guchengxu uplift in Tazhong area[J]. Chinese Journal of Geology, 2012, 47(3): 640-652. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201203008.htm [26] 傅恒, 韩建辉, 孟万斌, 等. 塔里木盆地塔中北坡奥陶系碳酸盐岩岩溶储层的形成机理[J]. 天然气工业, 2017, 37(3): 25-36. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201703009.htmFU Heng, HAN Jianhui, MENG Wanbin, et al. Forming mechanism of the Ordovician karst carbonate reservoirs on the northern slope of central Tarim Basin[J]. Natural Gas Industry, 2017, 37(3): 25-36. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201703009.htm [27] 孟万斌, 肖春晖, 冯明石, 等. 碳酸盐岩成岩作用及其对储层的影响以塔中顺南地区一间房组为例[J]. 岩性油气藏, 2016, 28(5): 26-33. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201605003.htmMENG Wanbin, XIAO Chunhui, FENG Mingshi, et al. Carbonate diagenesis and its influence on reservoir: a case study from Yijianfang Formation in Shunnan area, central Tarim Basin[J]. Lithologic Reservoirs, 2016, 28(5): 26-33. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201605003.htm [28] 何松林, 张小兵. 塔里木盆地塔北地区T74不整合面古构造演变过程[J]. 断块油气田, 2019, 26(4): 409-414. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201904002.htmHE Songlin, ZHANG Xiaobing. Paleostucture evolution process of T74 unconformity in Tabei area, Tarim Basin[J]. Fault-Block Oil and Gas Field, 2019, 26(4): 409-414. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201904002.htm [29] 杨圣彬, 刘军, 李慧莉, 等. 塔中北围斜区北东向走滑断裂特征及其控油作用[J]. 石油与天然气地质, 2013, 34(6): 797-802. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201306013.htmYANG Shengbin, LIU Jun, LI Huili, et al. Characteristics of the NE-trending strikeslip fault system and its control on oil accumulation in north pericline area of the Tazhong paleouplift[J]. Oil & Gas Geology, 2013, 34(6): 797-802. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201306013.htm [30] 赵锐, 赵腾, 李慧莉, 等. 塔里木盆地顺北油气田断控缝洞型储层特征与主控因素[J]. 特种油气藏, 2019, 26(5): 8-13. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201905002.htmZHAO Rui, ZHAO Teng, LI Huili, et al. Fault-controlled fracture-cavity reservoir characterization and main-controlling factors in the Shunbei hydrocarbon field of Tarim Basin[J]. Special oil & Gas Reservoirs, 2019, 26(5): 8-13. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201905002.htm [31] 李兵, 邓尚, 李王鹏, 等. 塔里木盆地塔河地区走滑断裂体系活动特征与油气地质意义[J]. 特种油气藏, 2019, 26(4): 45-51. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201904008.htmLI Bing, DENG Shang, LI Wangpeng, et al. Strike-slip fault system activity and hydrocarbon geology understanding in Tahe of Tarim Basin[J]. Special Oil & Gas Reservoirs, 2019, 26(4): 45-51. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201904008.htm [32] 宁飞, 金之钧, 张仲培, 等. 塔中北坡走滑断裂成因机理与油气成藏[J]. 石油与天然气地质, 2018, 39(1): 98-106. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201801011.htmNING Fei, JIN Zhijun, ZHANG Zhongpei, et al. Mechanism of strike-slip faulting and hydrocarbon accumulation in northern slope of Tazhong area[J]. Oil & Gas Geology, 2018, 39(1): 98-106. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201801011.htm [33] 罗枭, 刘俊锋, 张磊, 等. 塔里木盆地轮古西地区奥陶系断裂特征及其对油气富集的控制作用[J]. 特种油气藏, 2018, 25(2): 19-24. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201802004.htmLUO Xiao, LIU Junfeng, ZHANG Lei, et al. Ordovician fault properties and its effect on hydrocarbon enrichment in western Lungu of Tarim Basin[J]. Special Oil & Gas Reservoirs, 2018, 25(2): 19-24. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201802004.htm [34] BOYNTON W V. Cosmochemistry of the rare earth elements: meteorite studies[J]. Developments in Geochemistry, 1984, 2: 63-114. [35] 黄思静. 碳酸盐岩的成岩作用[M]. 北京: 地质出版社, 2010: 58-71.HUANG Sijing. Carbonate diagenesis[M]. Beijing: Geological Publishing House, 2010: 58-71. [36] 刘丽红, 黄思静, 王春连, 等. 碳酸盐岩中方解石胶结物的阴极发光环带与微量元素构成的关系以塔河油田奥陶系碳酸盐岩为例[J]. 海相油气地质, 2010, 15(1): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ201001012.htmLIU Lihong, HUANG Sijing, WANG Chunlian, et al. Cathodoluminescence zonal texture of calcite cement in carbonate rock and its relationship with trace element composition: a case of Ordovician carbonate rock of Tahe oilfield, Tarim Basin[J]. Marine Origin Petroleum Geology, 2010, 15(1): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ201001012.htm [37] 田艳红, 刘树根, 赵异华, 等. 四川盆地中部龙王庙组储层成岩作用[J]. 成都理工大学学报(自然科学版), 2014, 41(6): 671-683. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201406002.htmTIAN Yanhong, LIU Shugen, ZHAO Yihua, et al. Diagenesis of Lower Cambrian Longwangmiao Formation reservoirs in central area of Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2014, 41(6): 671-6. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201406002.htm [38] 李北康, 胡作维, 李云, 等. 川中下寒武统龙王庙组白云岩阴极发光特征与成岩流体[J]. 石油地质与工程, 2016, 30(2): 28-31. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN201602008.htmLI Beikang, HU Zuowei, LI Yun, et al. Cathodoluminescence characteristics and diagenetic fluids of dolomites in Lower Cambrian Longwangmiao Formation of central Sichuan Basin[J]. Petroleum Geology and Engineering, 2016, 30(2): 28-31. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN201602008.htm [39] 胡作维, 黄思静, 黄可可, 等. 四川东部华蓥山三叠系海相碳酸盐岩对海水信息的保存性评估[J]. 中国地质, 2010, 37(5): 1374-1382. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201005015.htmHU Zuowei, HUANG Sijing, HUANG Keke, et al. Preservative evaluation of coeval seawater information for the Triassic marine carbonate rocks in the Huaying Mountain, eastern Sichuan[J]. Chinese Geo-logy, 2010, 37(5): 1374-1382. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201005015.htm [40] 张秀莲. 碳酸盐岩中氧、碳稳定同位素与古盐度、古水温的关系[J]. 沉积学报, 1985, 3(4): 17-30. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB198504001.htmZHANG Xiulian. Relationship between carbon and oxygen stable isotope in carbonate rocks and paleosalinity and paleotemperature of seawater[J]. Acta Sedimentologica Sinica, 1985, 3(4): 17-30. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB198504001.htm [41] 肖春晖, 孟万斌, 冯明石, 等. 塔中北坡奥陶系碳酸盐岩碳氧同位素特征[J]. 地质学报, 2015, 89(S1): 112-113. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE2015S1049.htmXIAO Chunhui, MENG Wanbin, FENG Mingshi, et al. Carbon and oxygen isotopic characteristics of Ordovician carbonate rocks in northern slope of Tazhong area[J]. Acta Geologica Sinica, 2015, 89(S1): 112-113 https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE2015S1049.htm [42] VEIZER J, ALA D, AZMY K, et al. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater[J]. Chemical Geology, 1999, 161(1/3): 59-88. [43] LOTTEMOSER B G. Rare earth elements and hydrothermal ore formation processes[J]. Ore Geology Reviews, 1992, 7(1): 25-41. [44] 郑剑锋, 黄理力, 袁文芳, 等. 塔里木盆地柯坪地区下寒武统肖尔布拉克组地球化学特征及其沉积和成岩环境意义[J]. 天然气地球科学, 2020, 31(5): 698-709. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202005011.htmZHENG Jianfeng, HUANG Lili, YUAN Wenfang, et al. Geochemical features and its significance of sedimentary and diagenetic environment in the Lower Cambrian Xiaoerblak Formation of Keping area, Tarim Basin[J]. Natural Gas Geoscience, 2020, 31(5): 698-709. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202005011.htm [45] 刘策, 张义杰, 李洪辉, 等. 塔里木盆地古城地区中下奥陶统白云化流体性质厘定来自稀土元素的证据[J]. 矿物岩石地球化学通报, 2017, 36(4): 602-610. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201704017.htmLIU Ce, ZHANG Yijie, LI Honghui, et al. Nature of dolomitizing fluids of middle-low Ordovician dolomites in the Gucheng area, Tarim Basin: evidence from rare earth elements geochemistry[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(4): 602-610. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201704017.htm [46] 曹自成, 尤东华, 漆立新, 等. 塔里木盆地塔深1井超深层白云岩储层成因新认识: 来自原位碳氧同位素分析的证据[J]. 天然气地球科学, 2020, 31(7): 915-922. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202007003.htmCAO Zicheng, YOU Donghua, QI Lixin, et al. New insights of the genesis of ultra-deep dolomite reservoirs in well TS1, Tarim Basin: evidence from in situ carbon and oxygen isotope analysis[J]. Natural Gas Geoscience, 2020, 31(7): 915-922. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202007003.htm [47] 肖春晖. 塔中北坡奥陶系鹰山组碳酸盐岩成岩作用[D]. 成都: 成都理工大学, 2016.XIAO Chunhui. Diagenesis of carbonate rocks of Yingshan Formation, Ordovician in north slope of middle Tarim[D]. Chengdu: Chengdu University of Technology, 2016.