留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

渤海湾盆地惠民凹陷临南洼陷沙河街组现今超压分布特征及成因

霍智颖 何生 王永诗 郭小文 朱钢添 赵文

霍智颖, 何生, 王永诗, 郭小文, 朱钢添, 赵文. 渤海湾盆地惠民凹陷临南洼陷沙河街组现今超压分布特征及成因[J]. 石油实验地质, 2020, 42(6): 938-945. doi: 10.11781/sysydz202006938
引用本文: 霍智颖, 何生, 王永诗, 郭小文, 朱钢添, 赵文. 渤海湾盆地惠民凹陷临南洼陷沙河街组现今超压分布特征及成因[J]. 石油实验地质, 2020, 42(6): 938-945. doi: 10.11781/sysydz202006938
HUO Zhiying, HE Sheng, WANG Yongshi, GUO Xiaowen, ZHU Gangtian, ZHAO Wen. Distribution and causes of present-day overpressure of Shahejie Formation in Linnan Subsag, Huimin Sag, Bohai Bay Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(6): 938-945. doi: 10.11781/sysydz202006938
Citation: HUO Zhiying, HE Sheng, WANG Yongshi, GUO Xiaowen, ZHU Gangtian, ZHAO Wen. Distribution and causes of present-day overpressure of Shahejie Formation in Linnan Subsag, Huimin Sag, Bohai Bay Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(6): 938-945. doi: 10.11781/sysydz202006938

渤海湾盆地惠民凹陷临南洼陷沙河街组现今超压分布特征及成因

doi: 10.11781/sysydz202006938
基金项目: 

国家“十三五”科技重大专项任务 2016ZX05006003-001

国家“十三五”科技重大专项任务 2017ZX05005001-008

详细信息
    作者简介:

    霍智颖(1994-), 女, 硕士研究生, 从事超压与油气成藏研究。E-mail: davidsonite@163.com

    通讯作者:

    何生(1956-), 男, 教授, 博士生导师, 从事油气地质及地球化学研究。E-mail: shenghe@cug.edu.cn

  • 中图分类号: TE122.23

Distribution and causes of present-day overpressure of Shahejie Formation in Linnan Subsag, Huimin Sag, Bohai Bay Basin

  • 摘要: 临南洼陷是渤海湾盆地济阳坳陷惠民凹陷中的主要富烃洼陷,油气田主要分布在洼陷内及其南北两侧的断裂构造带,临南洼陷深部沙河街组超压较发育。利用钻井、钻杆测压(DST)、测井和地震资料,结合Eaton超压预测经验公式,对砂岩实测压力特征、超压测井响应、超压剖面和平面分布特征以及成因进行了研究。临南洼陷沙河街组砂岩DST实测超压深度约为3 005~4 355 m,剩余压力约为7.95~30.45 MPa,压力系数约为1.21~1.78;超压带内的泥岩和砂岩均表现为偏离正常趋势的高声波时差响应特征,并对应泥岩高电阻率异常;层位上沙四上亚段至沙三中、下亚段地层主要发育弱超压,局部出现中—强超压;剖面上深洼区超压带分布的深度范围约在3 000~4 500 m;平面上发育多个小的中—强超压区,超压区主要分布在深洼区和中央断裂带范围,超压顶界面深度约为2 500~3 700 m。临南洼陷古近系砂岩占比高是超压发育比较局限的主要控制因素。该凹陷超压砂岩储层主要为含油层,含烃流体充注为临南洼陷深层沙三、四段砂岩超压的主要原因;优质烃源岩埋深大,超压烃源岩镜质体反射率约为0.5%~1.5%,处于生油阶段且不具有低密度特征,表明生油作用是烃源岩增压的主要因素。

     

  • 图  1  渤海湾盆地惠民凹陷构造纲要和临南洼陷研究区及典型钻井位置

    Figure  1.  Structural units of Huimin Sag and studied area with typical drill sites in Linnan Subsag, Bohai Bay Basin

    图  2  渤海湾盆地临南洼陷沙河街组砂岩钻杆测试(DST)实测地层压力与深度关系

    Figure  2.  Relationship between measured pressure and depth from drill stem test (DST) data of sandstones in Shahejie Formation, Linnan Subsag, Bohai Bay Basin

    图  3  渤海湾盆地临南洼陷夏941井和夏942井泥岩与砂岩超压测井响应及压力预测

    Figure  3.  Response characteristics to overpressure in mudstones and sandstones with predicted pressures in wells Xia 941 and Xia 942, Linnan Subsag, Bohai Bay Basin

    图  4  渤海湾盆地临南洼陷盘22井—曲古2井连井压力系数和超压带发育位置

    剖面位置见图 5

    Figure  4.  Overpressure distribution superimposed on oil reservoirs crossing wells Pan 22 to Qugu 2 in Linnan Subsag, Bohai Bay Basin

    图  5  渤海湾盆地临南洼陷超压顶界面深度平面分布

    Figure  5.  Plane distribution of the upper overpressure interface depth in Linnan Subsag, Bohai Bay Basin

    图  6  渤海湾盆地临南洼陷沙三、四段超压带泥岩、砂岩预测压力最高值压力系数平面分布

    Figure  6.  Plane distribution of maximum predicted pressure coefficients of mudstones and sandstones in the overpressure zone of the third and fourth members of Shahejie Formation in Linnan Subsag, Bohai Bay Basin

    图  7  渤海湾盆地临南洼陷烃源岩镜质体反射率、岩石热解S1含量、砂岩碳酸盐和硅质胶结物含量与深度关系

    Figure  7.  Variation of geochemical parameters of source rock and cement content vs. depth in Linnan Subsag, Bohai Bay Basin

  • [1] 郭小文, 何生, 宋国奇, 等. 东营凹陷生油增压成因证据[J]. 地球科学(中国地质大学学报), 2011, 36(6): 1085-1094. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201106014.htm

    GUO Xiaowen, HE Sheng, SONG Guoqi, et al. Evidences of overpressure caused by oil generation in Dongying Depression[J]. Earth Science(Journal of China University of Geosciences), 2011, 36(6): 1085-1094. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201106014.htm
    [2] 鲍晓欢, 郝芳, 方勇. 东营凹陷牛庄洼陷地层压力演化及其成藏意义[J]. 地球科学(中国地质大学学报), 2007, 32(2): 241-246. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200702012.htm

    BAO Xiaohuan, HAO Fang, FANG Yong. Evolution of geopressure field in Niuzhuang Sag in Dongying Depression and its effect on petroleum accumulation[J]. Earth Science(Journal of China University of Geosciences), 2007, 32(2): 241-246. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200702012.htm
    [3] 赵靖舟, 李军, 徐泽阳. 沉积盆地超压成因研究进展[J]. 石油学报, 2017, 38(9): 973-998. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201709001.htm

    ZHAO Jingzhou, LI Jun, XU Zeyang. Advances in the origin of overpressures in sedimentary basins[J]. Acta Petrolei Sinica, 2017, 38(9): 973-998. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201709001.htm
    [4] 何生, 宋国奇, 王永诗, 等. 东营凹陷现今大规模超压系统整体分布特征及主控因素[J]. 地球科学(中国地质大学学报), 2012, 37(5): 1029-1042. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201205017.htm

    HE Sheng, SONG Guoqi, WANG Yongshi, et al. Distribution and major control factors of the present-day large-scale overpressured system in Dongying Depression[J]. Earth Science(Journal of China University of Geosciences), 2012, 37(5): 1029-1042. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201205017.htm
    [5] BOWERS G L. Detecting high overpressure[J]. The Leading Edge, 2002, 21(2): 174-177. doi: 10.1190/1.1452608
    [6] 于轶星, 庞雄奇, 陈冬霞, 等. 临南洼陷油气藏分布特征与油气富集主控因素分析[J]. 科技导报, 2011, 29(4): 30-33. doi: 10.3981/j.issn.1000-7857.2011.04.003

    YU Yixing, PANG Xiongqi, CHEN Dongxia, et al. Characteristics and main controlling factors about hydrocarbon accumulation and distribution in the Linnan Sag[J]. Science & Technology Review, 2011, 29(4): 30-33. doi: 10.3981/j.issn.1000-7857.2011.04.003
    [7] 王永诗, 邱贻博. 济阳坳陷超压结构差异性及其控制因素[J]. 石油与天然气地质, 2017, 38(3): 430-437. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201703002.htm

    WANG Yongshi, QIU Yibo. Overpressure structure dissimilarity and its controlling factors in the Jiyang Depression[J]. Oil & Gas Geology, 2017, 38(3): 430-437. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201703002.htm
    [8] 王冰, 张立宽, 李超, 等. 惠民凹陷临南洼陷古近系沙河街组超压成因机制及分布预测[J]. 石油与天然气地质, 2018, 39(4): 641-652.

    WANG Bing, ZHANG Likuan, LI Chao, et al. Mechanism and distribution prediction of abnormal high pressure of the Paleocene Shahejie Formation in Linnan Sag, Huimin Depression[J]. Oil & Gas Geology, 2018, 39(4): 641-652.
    [9] 肖焕钦, 刘震, 赵阳, 等. 济阳坳陷地温-地压场特征及其石油地质意义[J]. 石油勘探与开发, 2003, 30(3): 68-70. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200303020.htm

    XIAO Huanqin, LIU Zhen, ZHAO Yang, et al. Characteristics of geotemperature and geopressure fields in the Jiyang Depression and their significance of petroleum geology[J]. Petroleum Exploration and Development, 2003, 30(3): 68-70. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200303020.htm
    [10] 刘元晴, 曾溅辉, 周乐, 等. 惠民凹陷沙河街组地层水化学特征及其成因[J]. 现代地质, 2013, 27(5): 1110-1119. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201305013.htm

    LIU Yuanqing, ZENG Jianhui, ZHOU Le, et al. Geochemical characteristics and origin of Shahejie Formation water in Huimin Sag[J]. Geoscience, 2013, 27(5): 1110-1119. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201305013.htm
    [11] 金秋月, 甘军, 卢梅, 等. 渤海湾盆地车镇凹陷地层超压成因[J]. 东北石油大学学报, 2015, 39(5): 32-40. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY201505005.htm

    JIN Qiuyue, GAN Jun, LU Mei, et al. Analysis of the causes of formation overpressures in the Chezhen Sag of Bohai Bay Basin[J]. Journal of Northeast Petroleum University, 2015, 39(5): 32-40. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY201505005.htm
    [12] VAN RUTH P, HILLIS R, TINGATE P. The origin of overpressure in the Carnarvon Basin, western Australia: implications for pore pressure prediction[J]. Petroleum Geoscience, 2004, 10(3): 247-257.
    [13] 党雪维, 何生, 王永诗, 等. 孤北洼陷砂岩超压带分布特征及主控因素[J]. 油气地质与采收率, 2016, 23(3): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201603008.htm

    DANG Xuewei, HE Sheng, WANG Yongshi, et al. Distribution characteristics and controlling factors of the overpressure zone in sandstone reservoir of Gubei Sag[J]. Petroleum Geology and Recovery Efficiency, 2016, 23(3): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201603008.htm
    [14] BOWERS G L. Pore pressure estimation from velocity data: accounting for overpressure mechanisms besides undercompaction[J]. SPE Drilling & Completion, 1995, 10(2): 89-95.
    [15] 杨姣, 何生, 王冰洁. 东营凹陷牛庄洼陷超压特征及预测模型[J]. 地质科技情报, 2009, 28(4): 34-40. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200904007.htm

    YANG Jiao, HE Sheng, WANG Bingjie. Characteristics and prediction model of the overpressures in the Niuzhuang Sag of Dongying Depression[J]. Geological Science and Technology Information, 2009, 28(4): 34-40. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200904007.htm
    [16] 罗胜元. 沾化凹陷渤南洼陷超压系统与油气成藏研究[D]. 武汉: 中国地质大学(武汉), 2014.

    LUO Shengyuan. Study on the overpressure characteristic and hydrocarbon accumulation in Bonan Depression, Zhanhua Subbasin[D]. Wuhan: China University of Geosciences (Wuhan), 2014.
    [17] 何生, 何治亮, 杨智, 等. 准噶尔盆地腹部侏罗系超压特征和测井响应以及成因[J]. 地球科学(中国地质大学学报), 2009, 34(3): 457-470. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200903010.htm

    HE Sheng, HE Zhiliang, YANG Zhi, et al. Characteristics, well-log responses and mechanisms of overpressures within the Jurassic Formation in the central part of Junggar Basin[J]. Earth Science(Journal of China University of Geosciences), 2009, 34(3): 457-470. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200903010.htm
    [18] EATON B A. Graphical method predicts geopressures worldwide[J]. World Oil, 1976, 183(1): 51-56.
    [19] GUO Xiaowen, HE Sheng, LIU Keyu, et al. Oil generation as the dominant overpressure mechanism in the Cenozoic Dongying Depression, Bohai Bay Basin, China[J]. AAPG Bulletin, 2010, 94(12): 1859-1881.
    [20] TEIGE G M G, HERMANRUD C, WENSAAS L, et al. The lack of relationship between overpressure and porosity in North Sea and Haltenbanken shales[J]. Marine and Petroleum Geology, 1999, 16(4): 321-335.
    [21] 邱贻博, 王永诗, 高永进, 等. 东营、沾化凹陷压力结构差异及其影响因素[J]. 西安石油大学学报(自然科学版), 2017, 32(4): 24-31. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY201704004.htm

    QIU Yibo, WANG Yongshi, GAO Yongjin, et al. Difference in pressure structure of Dongying Sag and Zhanhua Sag and its control factors[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2017, 32(4): 24-31. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY201704004.htm
    [22] 冯月琳, 刘华, 宋国奇, 等. 平面压降梯度计算原则及其应用[J]. 石油实验地质, 2019, 41(4): 598-605. doi: 10.11781/sysydz201904598

    FENG Yuelin, LIU Hua, SONG Guoqi, et al. Calculation and application of plane pressure decrease gradient[J]. Petroleum Geology & Experiment, 2019, 41(4): 598-605. doi: 10.11781/sysydz201904598
    [23] 韩元佳, 何生, 宋国奇, 等. 东营凹陷超压顶封层及其附近砂岩中碳酸盐胶结物的成因[J]. 石油学报, 2012, 33(3): 385-393. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201203006.htm

    HAN Yuanjia, HE Sheng, SONG Guoqi, et al. Origin of carbo-nate cements in the overpressured top seal and adjacent sandstones in Dongying Depression[J]. Acta Petrolei Sinica, 2012, 33(3): 385-393. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201203006.htm
    [24] 朱芒征, 陈建渝. 惠民凹陷临南洼陷下第三系烃源岩生烃门限[J]. 油气地质与采收率, 2002, 9(2): 35-37. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS200202010.htm

    ZHU Mangzheng, CHEN Jianyu. Hydrocarbon-generating threshold of the source rocks in Palaeogene of Linnan Subsag in Huimin Sag[J]. Petroleum Geology and Recovery Efficiency, 2002, 9(2): 35-37. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS200202010.htm
    [25] 刘飞, 朱钢添, 何生, 等. 渤海湾盆地惠民凹陷临南洼陷沙河街组原油地球化学特征及油源对比[J]. 石油实验地质, 2019, 41(6): 855-864. doi: 10.11781/sysydz201906855

    LIU Fei, ZHU Gangtian, HE Sheng, et al. Geochemical characteristics of crude oil and oil-source correlation of Shahejie Formation in Linnan Sub-Sag, Huimin Sag, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2019, 41(6): 855-864. doi: 10.11781/sysydz201906855
  • 加载中
图(7)
计量
  • 文章访问数:  734
  • HTML全文浏览量:  170
  • PDF下载量:  139
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-03
  • 修回日期:  2020-09-09
  • 刊出日期:  2020-11-28

目录

    /

    返回文章
    返回