Insoluble organic matter in source rocks: derived from organic macromolecules in the skeleton, cell wall and shell of organisms
-
摘要: 结合超显微有机岩石学等技术的实验分析数据,从生物细胞分子构成及其稳定性的角度来探讨不同类型生物体骨壁壳有机碎屑与优质烃源岩中不溶有机质的关系。烃源岩中有机骨壁壳及其碎屑包括浮游藻类、疑源类、底栖藻类、真菌类和细菌类的细胞壁壳及其碎屑;浮游动物结缔组织的壳骨皮毛腱韧及其碎屑;水生植物及陆生高等植物的细胞壁和细胞骨架及其碎屑。对生物体起支持或保护作用的有机骨壁壳及其有机碎屑主要是由纤维素、几丁质、果胶、肽聚糖等无效碳水化合物和硬蛋白等非活性蛋白质构成,这些生物高分子化学结构稳定,不溶于有机溶剂和水,在优质烃源岩形成过程中以非脂类的不溶有机质形式保存下来,不具备生油能力,高成熟—过成熟早期可具有一定的生烃气能力,烃气转化率一般低于15%,约与Ⅲ型有机质或镜质组生烃能力相当。Abstract: Ultramicroscopic organic petrology analysis and other techniques were used to examine the relationships between organic detritus (from different types of biological skeleton, cell wall and shell) and insoluble organic matter in excellent source rocks from the point of view of molecular structure and stability of biological cells. Previous studies have shown that the organic skeleton, cell wall, shell and detritus in source rocks could be assigned to three main categories: (a) benthic algae, fungi, bacteria, pelagic algae and acritarchs; (b) shell, skin, hair and tendon as the connective tissue of zooplankton; (c) aquatic and vascular plants. The organic detritus playing the role of supporting or protecting the organisms were composed of inactive carbohydrate (e.g., cellulose, chitin, pectin, peptidoglycan) and inactive protein (e.g., scleroprotein). These biopolymers were chemically stable and insoluble in organic solvents and water. They were preserved in the form of insoluble organic matter (nonlipid) during the formation of excellent source rocks but without the ability to generate oil. They had hydrocarbon gas-generating capacity in the highly to early over-mature stage with a general conversion rate of hydrocarbon lower than 15%, which was equivalent to type Ⅲ kerogen or vitrinite.
-
图 1 浮游藻类和疑源类纤维质细胞壁及其碎屑扫描电镜照片
a.鄂尔多斯盆地延长组,绿藻类,Botryococcus braunii Krutzing[51];b.甲藻类,Spiniferites sp.[52];c.贵州遵义松林, $ \mathrm{{\rlap{-} C }} $1n,硅藻;d.鄂尔多斯盆地延长组,蓝藻类,Sigmopollis verrucoides Ji sp. nov.[51];e.波罗的海盆地,O3w,具瘤面的疑源类(光面球藻);f.华蓥山,O3w,疑源类(似鱼鳞藻片)
Figure 1. SEM photographs of fibrous cell wall and detritus from planktonic algae and acritarchs
图 2 优质烃源岩中底栖藻类、真菌类和细菌类丝壁壳碎屑扫描电镜照片
a.重庆南川,P2l,底栖红藻,见纹孔;b.贵州遵义,$ \mathrm{{\rlap{-} C }} $1n,富钡藻席,示网眼和丝;c.贵州遵义,$ \mathrm{{\rlap{-} C }} $1n,底栖藻孢子和藻席;d.四川广元长江沟磨刀崖剖面,P2d,黑色页岩,真菌菌丝体;e.QJ-6,硫细菌;f.胞外聚合物(EPS)
Figure 2. SEM photographs of biodetritus from benthic algae, fungi and bacteria in excellent source rocks
表 1 高等植物形成的煤岩(镜质组为主体)常规热压模拟实验综合数据
Table 1. Conventional thermocompression simulation experiment data of coal (mainly vitrinite) formed by vascular plants
模拟温度/℃ VRo/% 总油/(kg·tc-1) 烃气/(kg·tc-1) 原样 0.86 17.45 300 0.93 26.81 1.73 350 1.23 22.02 21.15 400 1.98 13.40 72.47 450 2.76 4.09 110.00 500 3.50 3.16 116.58 550 4.42 1.28 121.34 表 2 不同生物骨壁壳有机碎屑地球化学特征
Table 2. Geochemical characteristics of organic detritus from different organisms (mainly skeleton, cell wall and shell)
地区 层位 分离样品及在干酪根中的占比/% IH/(mg·g-1) S1+S2/(mg·g-1) Tmax/℃ VRo/% w(TOC)/% H/C原子比 城口庙坝 S1l 笔石壳屑(为主) 85 75.54 456 1.20 71.34 石柱漆辽 S1l 笔石壳屑(为主) 1 1.11 602 3.20 69.78 山西浑源 C—P 均质镜质体(94.74) 144 99.74 0.49 65.89 0.80 山西浑源 C—P 惰质体(82.95) 78 54.31 0.49 65.99 0.64 -
[1] 蔡进功, 曾翔, 韦海伦, 等. 从水体到沉积物: 探寻有机质的沉积过程及其意义[J]. 古地理学报, 2019, 21(1): 49-66. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201901005.htmCAI Jingong, ZENG Xiang, WEI Hailun, et al. From water body to sediments: exploring the depositional processes of organic matter and their implications[J]. Journal of Palaeogeography, 2019, 21(1): 49-66. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201901005.htm [2] 王红梅, 马相如, 刘邓, 等. 从生物脂类化合物到沉积有机质的变化及其对正演烃源岩有机质形成的启示[J]. 地球科学(中国地质大学学报), 2007, 32(6): 748-754. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200706004.htmWANG Hongmei, MA Xiangru, LIU Deng, et al. Chemical variation from biolipids to sedimentary organic matter in modern oceans and its implication to the geobiological evaluation of hydrocarbon source rocks[J]. Earth Science (Journal of China University of Geosciences), 2007, 32(6): 748-754. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200706004.htm [3] TISSOT B P, WELTE D H. Petroleum formation and occurrence: a new approach to oil and gas exploration[M]. New York: Springer-Verlag, 1978: 1-362. [4] VANDENBROUCKE M, LARGEAU C. Kerogen origin, evolution and structure[J]. Organic Geochemistry, 2007, 38(5): 719-833. doi: 10.1016/j.orggeochem.2007.01.001 [5] 高振华, 邸明伟. 生物质材料及应用[M]. 北京: 化学工业出版社, 2008.GAO Zhenhua, DI Mingwei. Biomass materials and application[M]. Beijing: Chemical Industry Press, 2008. [6] 汪东风. 食品化学[M]. 北京: 化学工业出版社, 2009.WANG Dongfeng. Food chemistry[M]. Beijing: Chemical Industry Press, 2009. [7] BAO Yu, QIAN Hujun, LU Zhongyuan, et al. The unexpected flexibility of natural cellulose at a single-chain level and its implications to the design of nano materials[J]. Nanoscale, 2014, 6(22): 13421-13424. doi: 10.1039/C4NR04862H [8] 闵凡飞, 张明旭. 生物质燃烧模式及燃烧特性的研究[J]. 煤炭学报, 2005, 30(1): 104-108. doi: 10.3321/j.issn:0253-9993.2005.01.023MIN Fanfei, ZHANG Mingxu. Study on combustion model and combustibility of biomass[J]. Journal of China Coal Society, 2005, 30(1): 104-108. doi: 10.3321/j.issn:0253-9993.2005.01.023 [9] CHANG Chunyu, ZHANG Lina. Cellulose-based hydrogels: present status and application prospects[J]. Carbohydrate Polymers, 2011, 84(1): 40-53. doi: 10.1016/j.carbpol.2010.12.023 [10] 宋杰, 侯永发. 微晶纤维素的性质与应用[J]. 纤维素科学与技术, 1995, 3(3): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-XWSK199503000.htmSONG Jie, HOU Yongfa. The properties and utilizations of microcrystalline cellulose[J]. Journal of Cellulose Science and Technology, 1995, 3(3): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-XWSK199503000.htm [11] FELCHT U H. Cellulose ethers-synthesis, application and analytical aspects[M]. New York: Wiley, 1985. [12] HANLEY S J, REVOL J F, GODBOUT L, et al. Atomic force microscopy and transmission electron microscopy of cellulose from Micrasterias denticulata; evidence for a chiral helical microfibril twist[J]. Cellulose, 1997, 4(3): 209-220. doi: 10.1023/A:1018483722417 [13] IMAI T, SUGIYAMA J. Nanodomains of Iα and Iβ cellulose in algal microfibrils[J]. Macromolecules, 1998, 31(18): 6275-6279. doi: 10.1021/ma980664h [14] 张纪忠. 微生物分类学[M]. 上海: 复旦大学出版社, 1990.ZHANG Jizhong. Microbial taxonomy[M]. Shanghai: Fudan University Press, 1990. [15] 孙东平, 徐军, 周伶俐, 等. 醋酸杆菌发酵生产细菌纤维素的研究进展[J]. 生物学杂志, 2004, 21(1): 12-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SWXZ200401005.htmSUN Dongping, XU Jun, ZHOU Lingli, et al. Advances on bacterial cellulose fermented by Acetobacter[J]. Journal of Biology, 2004, 21(1): 12-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SWXZ200401005.htm [16] IWAMOTO S, KAI Weihua, ISOGAI A, et al. Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy[J]. Biomacromolecules, 2009, 10(9): 2571-2576. doi: 10.1021/bm900520n [17] 李健荣. 海鞘纤维素液晶的制备及其性能[D]. 青岛: 青岛科技大学, 2013.LI Jianrong. Preparation and properties of liquid crystals from tunicate[D]. Qingdao: Qingdao University of Science & Techology, 2013. [18] SCHELLER H V, ULVSKOV P. Hemicelluloses[J]. Annual Review of Plant Biology, 2010, 61: 263-289. doi: 10.1146/annurev-arplant-042809-112315 [19] 詹怀宇. 纤维化学与物理[M]. 北京: 科学技术出版社, 2005.ZHAN Huaiyu. Fiber chemistry and physics[M]. Beijing: Science Press, 2005. [20] CARPITA N C, DEFERNEZ M, FINDLAY K, et al. Cell wall architecture of the elongating maize coleoptile[J]. Plant Physiology, 2001, 127(2): 551-565. doi: 10.1104/pp.010146 [21] FRY S C. Cellulases, hemicelluloses and auxin-stimulated growth: a possible relationship[J]. Physiologia Plantarum, 1989, 75(4): 532-536. doi: 10.1111/j.1399-3054.1989.tb05620.x [22] SUN R C, SUN X F, MA X H. Effect of ultrasound on the structural and physiochemical properties of organosolv soluble hemicelluloses from wheat straw[J]. Ultrasonics Sonochemistry, 2002, 9(2): 95-101. doi: 10.1016/S1350-4177(01)00102-X [23] 张晓民. 半纤维素结构的植物分类学特征[J]. 中国野生植物资源, 2012, 31(5): 1-7. doi: 10.3969/j.issn.1006-9690.2012.05.0001ZHANG Xiaomin. Taxonomically restricted features about the structure of hemicelluloses[J]. Chinese Wild Plant Resources, 2012, 31(5): 1-7. doi: 10.3969/j.issn.1006-9690.2012.05.0001 [24] MOLLER I, SØRENSEN I, BERNAL A J, et al. High-throughput mapping of cell-wall polymers within and between plants using novel microarrays[J]. The Plant Journal, 2007, 50(6): 1118-1128. doi: 10.1111/j.1365-313X.2007.03114.x [25] POPPER Z A, FRY S C. Primary cell wall composition of bryophytes and charophytes[J]. Annals of Botany, 2003, 91(1): 1-12. doi: 10.1093/aob/mcg013 [26] POPPER Z A. Evolution and diversity of green plant cell walls[J]. Current Opinion in Plant Biology, 2008, 11(3): 286-292. doi: 10.1016/j.pbi.2008.02.012 [27] HARHOLT J, SØRENSEN I, PETERSEN B L, et al. Cell wall composition and glycosyltransferases involved in the cell wall formation of Selaginella Moellendorffii[C]//Third Conference on Biosynthesis of Plant Cell Walls. 2008. [28] KOHLER A, KAUSS H. Transfer of hydroxycinnamoyl residues to microsomal proteins from parsley[J]. Phytochemistry, 1997, 44(2): 225-228. doi: 10.1016/S0031-9422(96)00438-4 [29] RITTER S K. Biofuel bonanza[J]. Chemical & Engineering News, 2007, 85(26): 15-24. [30] 郑大锋, 邱学青, 楼宏铭. 木质素的结构及其化学改性进展[J]. 精细化工, 2005, 22(4): 249-252. https://www.cnki.com.cn/Article/CJFDTOTAL-JXHG200504002.htmZHENG Dafeng, QIU Xueqing, LOU Hongming. The structure of lignin and its chemical modification[J]. Fine Chemicals, 2005, 22(4): 249-252. https://www.cnki.com.cn/Article/CJFDTOTAL-JXHG200504002.htm [31] 杨军, 吕晓静, 王迪珍. 木质素在塑料中的应用[J]. 高分子通报, 2002(4): 53-60. https://www.cnki.com.cn/Article/CJFDTOTAL-GFZT200204008.htmYANG Jun, LV Xiaojing, WANG Dizhen. Lignin applied in plastics[J]. Polymer Bulletin, 2002(4): 53-60. https://www.cnki.com.cn/Article/CJFDTOTAL-GFZT200204008.htm [32] 胡玉洁, 何春菊, 张瑞军. 天然高分子材料[M]. 北京: 化学工业出版社, 2012.HU Yujie, HE Chunju, ZHANG Ruijun. Natural polymer mate-rials[M]. Beijing: Chemical Industry Press, 2012. [33] GARCÍA-FRAGA B, DA SILVA A F, LÓPEZ-SEIJAS J, et al. A novel family 19 chitinase from the marine-derived Pseudoalteromonas tunicata CCUG 44952T: heterologous expression, characterization and antifungal activity[J]. Biochemical Engineering Journal, 2015, 93: 84-93. doi: 10.1016/j.bej.2014.09.014 [34] LEE Y G, CHUNG K C, WI S G, et al. Purification and properties of a chitinase from Penicillium sp. LYG 0704[J]. Protein Expression and Purification, 2009, 65(2): 244-250. doi: 10.1016/j.pep.2008.12.004 [35] 张悦, 宋晓玲, 黄倢. 双歧杆菌肽聚糖结构及分子量的分析[J]. 微生物学通报, 2007, 34(4): 676-681. https://www.cnki.com.cn/Article/CJFDTOTAL-WSWT200704016.htmZHANG Yue, SONG Xiaoling, HUANG Jie. Structure and molecular weight analysis of bifidobacterium peptidoglycan[J]. Microbiology China, 2007, 34(4): 676-681. https://www.cnki.com.cn/Article/CJFDTOTAL-WSWT200704016.htm [36] 吴洋. 嗜盐菌的嗜盐机制与应用前景[J]. 硅谷, 2013(13): 9-10. https://www.cnki.com.cn/Article/CJFDTOTAL-GGYT201313058.htmWU Yang. Halophilic mechanism and application prospect of halophilic bacteria[J]. Silicon Valley, 2013(13): 9-10. https://www.cnki.com.cn/Article/CJFDTOTAL-GGYT201313058.htm [37] 宋少云, 廖威. 葡聚糖的研究进展[J]. 中山大学学报(自然科学版), 2005, 44(S2): 229-232. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ2005S2052.htmSONG Shaoyun, LIAO Wei. A review on glucan[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2005, 44(S2): 229-232. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ2005S2052.htm [38] 倪丙杰, 徐得浅, 刘绍根. 污泥性质的重要影响物质: 胞外聚合物(EPS)[J]. 环境科学与技术, 2006, 29(3): 108-110. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS200603042.htmNI Bingjie, XU Deqian, LIU Shaogen. Extracellular polymeric substance (EPS) and its influence on properties of activated sludge[J]. Environmental Science & Technology, 2006, 29(3): 108-110. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS200603042.htm [39] DIGNAC M F, URBAIN V, RYBACKI D, et al. Chemical description of extracellular polymers: implication on activated sludge floc structure[J]. Water Science and Technology, 1998, 38(8/9): 45-53. [40] HOUGHTON J I, STEPHENSON T. Effect of influent organic content on digested sludge extracellular polymer content and dewaterability[J]. Water Research, 2002, 36(14): 3620-3628. [41] 薛长湖, 张永勤, 李兆杰, 等. 果胶及果胶酶研究进展[J]. 食品与生物技术学报, 2005, 24(6): 94-99. https://www.cnki.com.cn/Article/CJFDTOTAL-WXQG200506020.htmXUE Changhu, ZHANG Yongqin, LI Zhaojie, et al. Recent development of pectin and pectolytic enzyme[J]. Journal of Food Science and Biotechnology, 2005, 24(6): 94-99. https://www.cnki.com.cn/Article/CJFDTOTAL-WXQG200506020.htm [42] 胡亚芹, 竺美. 卡拉胶及其结构研究进展[J]. 海洋湖沼通报, 2005(1): 94-102. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFB20050100G.htmHU Yaqin, ZHU Mei. Study progress of carrageenans and their structure[J]. Transactions of Oceanology and Limnology, 2005(1): 94-102. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFB20050100G.htm [43] 张锐, 孙美榕. 提取琼胶糖的树脂新方法[J]. 中国海洋药物, 2006, 25(3): 28-32. https://www.cnki.com.cn/Article/CJFDTOTAL-HYYW200603007.htmZHANG Rui, SUN Meirong. A new method for extracting agarose using basic resin[J]. Chinese Journal of Marine Drugs, 2006, 25(3): 28-32. https://www.cnki.com.cn/Article/CJFDTOTAL-HYYW200603007.htm [44] GORIN P A J, SPENCER J F T. Exocellular alginic acid from azotobacter vinelandii[J]. Canadian Journal of Chemistry, 1966, 44(9): 993-998. [45] LINKER A, JONES R S. A new polysaccharide resembling alginic acid isolated from pseudomonads[J]. Journal of Biological Che-mistry, 1966, 241(16): 3845-3851. [46] HOLMGREN S K, BRETSCHER L E, TAYLOR K M, et al. A hyperstable collagen mimic[J]. Chemistry & Biology, 1999, 6(2): 63-70. [47] LULLO G A D, SWEENEY S M, KÖRKKÖ J, et al. Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the Human, Type Ⅰ collagen[J]. Journal of Biological Chemistry, 2002, 277(6): 4223-4231. [48] 蒋挺大, 张春萍. 胶原蛋白[M]. 北京: 化学工业出版社, 2001.JIANG Tingda, ZHANG Chunping. Collagen[M]. Beijing: Che-mical Industry Press, 2001. [49] 何明, 窦瑶, 陈智鹏, 等. 角蛋白膜材料的制备及改性研究进展[J]. 化工进展, 2016, 35(9): 2839-2844. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201609031.htmHE Ming, DOU Yao, CHEN Zhipeng, et al. Research progress in preparation and modification of keratin films[J]. Chemical Industry and Engineering Process, 2016, 35(9): 2839-2844. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201609031.htm [50] LEE R E. 藻类学[M]. 段德麟, 胡自民, 胡征宇, 等译. 北京: 科学出版社, 2012.LEE R E. Phycology[M]. DUAN Delin, HU Zimin, HU Zhengyu, et al, trans. Beijing: Science Press, 2012. [51] 吉利明, 徐金鲤, 宋之光. 鄂尔多斯盆地延长组湖相蓝藻及其油源意义[J]. 微体古生物学报, 2012, 29(3): 270-281. https://www.cnki.com.cn/Article/CJFDTOTAL-WSGT201203007.htmJI Liming, XU Jinli, SONG Zhiguang. Lacustrine cyanobacteria from the Yanchang Formation in Ordos Basin and its implication of oil source[J]. Acta Micropalaeontologica Sinica, 2012, 29(3): 270-281. https://www.cnki.com.cn/Article/CJFDTOTAL-WSGT201203007.htm [52] BERDACH J T. In situ preservation of the transverse flagellum of Peridinium cinctum (dinophyceae) for scanning electron microscopy[J]. Journal of Phycology, 1977, 13(3): 243-251. [53] WICANDER R. 疑源类: 元古代和古生代神秘的有机质壁微体化石[J]. 微体古生物学报, 2004, 21(2): 222-226. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202208023.htmWICANDER R. Acritarchs: Proterozoic and Paleozoic enigmatic organic-walled microfossils[J]. Acta Micropalaeontologica Sinica, 2004, 21(2): 222-226. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202208023.htm [54] HARVEY H R. Sources and cycling of organic matter in the marine water column[M]//Marine organic matter: biomarkers, isotopes and DNA. Berlin, Heidelberg: Springer, 2007. [55] 王飞宇, 何萍, 程顶胜, 等. 镜状体反射率可作为下古生界高过成熟烃源岩成熟度标尺[J]. 天然气工业, 1996, 16(4): 14-18. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG604.003.htmWANG Feiyu, HE Ping, CHENG Dingsheng, et al. Taking vitrinite reflectance asmaturity indicator for Lower Paleozoic[J]. Nature Gas Industry, 1996, 14(4): 14-18. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG604.003.htm [56] 王飞宇, 边立曾, 张水昌, 等. 塔里木盆地奥陶系海相源岩中两类生烃母质[J]. 中国科学(D辑), 2001, 31(2): 96-102. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200102001.htmWANG Feiyu, BIAN Lizeng, ZHANG Shuichang, et al. Two groups of organic matters in the Ordovician marine source rocks, the Tarim Basin[J]. Science in China (Series D), 2001, 31(2): 96-102. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200102001.htm [57] 秦建中, 陶国亮, 腾格尔, 等. 南方海相优质页岩的成烃生物研究[J]. 石油实验地质, 2010, 32(3): 262-269. doi: 10.11781/sysydz201003262QIN Jianzhong, TAO Guoliang, TENGER, et al. Hydrocarbon-forming organisms in excellent marine source rocks in South China[J]. Petroleum Geology & Experiment, 2010, 32(3): 262-269. doi: 10.11781/sysydz201003262 [58] 周德庆. 微生物学教程[M]. 3版. 北京: 高等教育出版社, 2013.ZHOU Deqing. Microbiology course[M]. 3rd ed. Beijing: Higher Education Press, 2013. [59] 李小彦. 神东矿区富惰质组煤的形成条件研究: 惰质组分的真菌交替成因意义[J]. 煤田地质与勘探, 2005, 33(5): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT200505000.htmLI Xiaoyan. Conditions of inertinite-rich coal generation, Shendong mining area: significance of fungal alternating origin of inerts[J]. Coal Geology & Exploration, 2005, 33(5): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT200505000.htm [60] 姜云垒, 冯江. 动物学[M]. 北京: 高等教育出版社, 2006.JIANG Yunlei, FENG Jiang. Zoology[M]. Beijing: Higher Education Press, 2006. [61] 腾格尔, 申宝剑, 俞凌杰, 等. 四川盆地五峰组-龙马溪组页岩气形成与聚集机理[J]. 石油勘探与开发, 2017, 44(1): 69-78. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201701009.htmTENGER, SHEN Baojian, YU Lingjie, et al. Mechanisms of shale gas generation and accumulation in the Ordovician Wufeng-Longmaxi Formation, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44(1): 69-78. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201701009.htm [62] NIE Haikuan, JIN Zhijun, ZHANG Jinchuan. Characteristics of three organic matter pore types in the Wufeng-Longmaxi shale of the Sichuan Basin, Southwest China[J]. Scientific Reports, 2018, 8(1): 7014. [63] TOWE K M, URBANEK A. Collagen-like structures in Ordovician graptolite periderm[J]. Nature, 1972, 237(5356): 443-445. [64] CROWTHER P R. The fine structure of graptolite periderm[J]. Special Papers in Palaeontology, 1981, 26(93): 1-119. [65] 刘大锰, 侯孝强, 蒋金鹏. 笔石组成与结构的微区分析[J]. 矿物学报, 1996, 16(1): 53-57. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB199601008.htmLIU Dameng, HOU Xiaoqiang, JIANG Jinpeng. The composition and structure of graptolite: a micro-area analysis[J]. Acta Mineralogica Sinica, 1996, 16(1): 53-57. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB199601008.htm [66] 宋笛, 胥畅, 姚素平, 等. 笔石碎屑对页岩气生成和储集特性的影响[J]. 石油实验地质, 2019, 41(4): 540-547. doi: 10.11781/sysydz201904540SONG Di, XU Chang, YAO Suping, et al. Influence of graptolite debris on shale gas generation and accumulation[J]. Petroleum Geology & Experiment, 2019, 41(4): 540-547. doi: 10.11781/sysydz201904540 [67] 秦建中, 腾格尔, 申宝剑, 等. 海相优质烃源岩的超显微有机岩石学特征与岩石学组分分类[J]. 石油实验地质, 2015, 37(6): 671-680. doi: 10.11781/sysydz201506671QIN Jianzhong, TENGER, SHEN Baojian, et al. Ultramicroscopic organic petrology characteristics and component classification of excellent marine source rocks[J]. Petroleum Geology & Experiment, 2015, 37(6): 671-680. doi: 10.11781/sysydz201506671 [68] 秦建中, 付小东, 申宝剑, 等. 四川盆地上二叠统海相优质页岩超显微有机岩石学特征研究[J]. 石油实验地质, 2010, 32(2): 164-170. doi: 10.11781/sysydz201002164QIN Jianzhong, FU Xiaodong, SHEN Baojian, et al. Characteristics of ultramicroscopic organic lithology of excellent marine shale in the Upper Permian sequence, Sichuan Basin[J]. Petroleum Geology & Experiment, 2010, 32(2): 164-170. doi: 10.11781/sysydz201002164 [69] 秦建中, 申宝剑, 付小东, 等. 中国南方海相优质烃源岩超显微有机岩石学与生排烃潜力[J]. 石油与天然地质, 2010, 31(6): 826-837. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201006019.htmQIN Jianzhong, SHEN Baojian, FU Xiaodong, et al. Ultramicroscopic organic petrology and potential of hydrocarbon generation and expulsion of quality marine source rocks in South China[J]. Oil & Gas Geology, 2010, 31(6): 826-837. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201006019.htm [70] 秦建中, 申宝剑, 陶国亮, 等. 优质烃源岩成烃生物与生烃能力动态评价[J]. 石油实验地质, 2014, 36(4): 465-472. doi: 10.11781/sysydz201404465QIN Jianzhong, SHEN Baojian, TAO Guoliang, et al. Hydrocarbon-forming organisms and dynamic evaluation of hydrocarbon generation capacity in excellent source rocks[J]. Petroleum Geology & Experiment, 2014, 36(4): 465-472. doi: 10.11781/sysydz201404465 [71] 秦建中, 贾蓉芬, 郭爱明, 等. 华北地区煤系烃源层油气生成·运移·评价[M]. 北京: 科学出版社, 2000.QIN Jianzhong, JIA Rongfen, GUO Aiming, et al. The evaluation on coal-bearing series hydrocarbon generation and migration of Huabei district[M]. Beijing: Science Press, 2000. [72] 秦建中. 中国烃源岩[M]. 北京: 科学出版社, 2005.QIN Jianzhong. Hydrocarbon source rocks in China[M]. Beijing: Science Press, 2005. [73] 王玉华, 侯启军, 孙德君, 等. 柴达木盆地北缘地区中新生代地层油气生成与资源评价[M]. 北京: 科学出版社, 2004.WANG Yuhua, HOU Qijun, SUN Dejun, et al. Mesozoic and Cenozoic petroleum formation and resource assessment in northern Qaidam Basin[M]. Beijing: Science Press, 2004.