留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温高压油藏井壁沉淀物成因研究——以准噶尔盆地高探1井为例

李二庭 蒋宜勤 林莉莉 迪丽达尔·肉孜 谢礼科 周妮 安科

李二庭, 蒋宜勤, 林莉莉, 迪丽达尔·肉孜, 谢礼科, 周妮, 安科. 高温高压油藏井壁沉淀物成因研究——以准噶尔盆地高探1井为例[J]. 石油实验地质, 2020, 42(6): 965-971. doi: 10.11781/sysydz202006965
引用本文: 李二庭, 蒋宜勤, 林莉莉, 迪丽达尔·肉孜, 谢礼科, 周妮, 安科. 高温高压油藏井壁沉淀物成因研究——以准噶尔盆地高探1井为例[J]. 石油实验地质, 2020, 42(6): 965-971. doi: 10.11781/sysydz202006965
LI Erting, JIANG Yiqin, LIN Lili, DILIDAER Rouzi, XIE Like, ZHOU Ni, AN Ke. Origin and significance of wellbore sediment in reservoir development: a case study of well Gaotan 1 in Junggar Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(6): 965-971. doi: 10.11781/sysydz202006965
Citation: LI Erting, JIANG Yiqin, LIN Lili, DILIDAER Rouzi, XIE Like, ZHOU Ni, AN Ke. Origin and significance of wellbore sediment in reservoir development: a case study of well Gaotan 1 in Junggar Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(6): 965-971. doi: 10.11781/sysydz202006965

高温高压油藏井壁沉淀物成因研究——以准噶尔盆地高探1井为例

doi: 10.11781/sysydz202006965
基金项目: 

新疆维吾尔自治区重点实验室开放课题 2017D04023

详细信息
    作者简介:

    李二庭(1988-), 男, 博士, 高级工程师, 主要从事油气地球化学研究工作。E-mail: lierting@petrochina.com.cn

  • 中图分类号: TE358

Origin and significance of wellbore sediment in reservoir development: a case study of well Gaotan 1 in Junggar Basin

  • 摘要: 油气藏开采过程中出现的井壁沉淀物会产生一系列地质和工程问题。以中国陆上油气勘探最近取得重大突破的准噶尔盆地南缘高探1井为例,针对高温高压条件下原油开采过程中井壁出现的大量黑色固体不溶沉淀物,通过对该沉淀物进行系统的岩石学和地球化学分析,包括族组分、气相色谱、液相色谱、含蜡量及热解实验等,明确了沉淀物的组成,进而探讨了其成因与意义。结果表明,高探1井井壁沉淀物由可溶有机质和泥粉砂质组成,其中可溶有机质主要由沥青质组成,泥粉砂质以细粉砂为主。高探1井原油开采过程中,从地层到井筒,温度和压力迅速下降,其轻质组分优先分逸流出,原油动态稳定体系被破坏,造成溶解于原油中的沥青质析出、絮凝,并吸附在井壁上,在此过程中,井底的泥沙随流体流动混入沥青析出物中,一起长大堆积。这可能是高温高压条件下油气开采过程的普遍现象,需筛选强极性沥青分散剂来增加原油体系稳定性,对已结垢的井筒采用强极性试剂进行化学清洗,增加井底滤网,减少砂泥固体颗粒。

     

  • 图  1  准噶尔盆地高探1井井壁沉淀物热解实验

    Figure  1.  Pyrolysis experiment of wellbore sediment in well Gaotan 1, Junggar Basin

    图  2  准噶尔盆地高探1井井壁沉淀物与岩屑显微镜下特征对比

    Figure  2.  Microscopic characteristics comparison of wellbore sediments and debris in well Gaotan 1, Junggar Basin

    图  3  准噶尔盆地高探1井井壁沉淀物熔解实验

    Figure  3.  Melting experiment of wellbore sediments in well Gaotan 1, Junggar Basin

    图  4  准噶尔盆地高探1井井壁沉淀物不同溶剂溶解液气相色谱(a,b)和水相液相色谱(c,d)

    Figure  4.  Gas chromatograms(a, b) and aqueous liquid chromatograms(c, d) of different solvent dissolved wellbore sediments in well Gaotan 1, Junggar Basin

    表  1  准噶尔盆地南缘高探1井地面原油物性及族组分特征

    Table  1.   Physical properties and family composition characteristics of oil from well Gaotan 1 on the southern margin of Junggar Basin

    取样日期 饱和烃/% 芳烃/% 胶质/% 沥青质/% 含水/% 密度/(g·cm-3) 含蜡/% 析蜡点/℃ 黏度/mPa·s
    20 ℃ 30 ℃ 50 ℃
    1月4日 70.28 14.15 8.02 7.55 0.373 0.814 4 7.42 19.20 4.2 3.4 2.4
    1月14日 65.01 20.00 10.83 4.17 0.161 0.807 8 6.77 18.30 5.6 3.4 2.3
    1月22日 80.00 13.75 5.00 1.24 0.012 0.819 9 7.12 3.6 3.0 2.2
    1月30日 68.88 16.60 6.22 8.30 0.083 0.813 4 6.54 3.6 2.8 2.1
    2月7日 75.28 16.35 5.32 3.04 0.012 0.818 4 7.29 3.5 2.8 2.0
    3月7日 76.68 16.60 4.74 1.97 0.104 0.817 0 7.34 4.0 3.2 2.2
    3月10日 78.77 15.47 3.95 1.80 0.125 0.822 8 6.26 4.7 3.6 2.2
    7月1日 73.61 18.06 6.48 1.85 0.012 0.828 5 8.01 18.60 4.6 3.6 2.5
    7月2日 71.91 20.00 6.38 1.71 0.012 0.827 7 7.50 18.05 4.7 3.7 2.6
    7月3日 68.91 19.17 7.25 4.67 0.012 0.828 4 7.84 17.80 4.7 3.8 2.6
    7月4日 73.61 17.47 5.95 2.97 0.012 0.828 6 7.46 16.75 4.6 3.7 2.6
    注:取样年份为2019年(表 4同),密度为20 ℃时测定值。
    下载: 导出CSV

    表  2  准噶尔盆地高探1井井壁沉淀物中有机质在不同极性有机溶剂中的溶解情况

    Table  2.   Dissolving ability of different polar organic solvents for organic matter in wellbore sediments in well Gaotan 1, Junggar Basin

    溶剂 溶剂油 石油醚 正己烷 二甲苯 二氯甲烷 三氯甲烷
    溶剂极性 0.01 0.06 2.5 3.4 4.4
    溶解率/% 48.36 50 54.94 100 100 100
    下载: 导出CSV

    表  3  准噶尔盆地高探1井井壁沉淀物中有机质在不同温度下熔解实验

    Table  3.   Melting experiments of organic matter in wellbore sediments in well Gaotan 1, Junggar Basin

    温度/℃ 状态描述
    25 固体,块状,质地黏软
    40 轻微沾壁
    45 稍熔,沾壁
    50 部分样品开始软化
    55 全部软化,呈软坨状
    60 有少量流动油液
    70 流动油液增多
    80 全部熔解,呈拉丝状
    90 全部熔解,可流动,有光泽感
    降至室温后 重新凝固,黑色光亮细腻状
    下载: 导出CSV

    表  4  准噶尔盆地高探1井井壁沉淀物中有机质族组分特征

    Table  4.   Composition of organic matter in wellbore sediments in well Gaotan 1, Junggar Basin %

    取样日期 取样点 序号 饱和烃 芳烃 胶质 沥青质
    1月17日 井口处 第一组 38.08 12.21 5.52 44.20
    第二组 39.41 11.73 6.19 42.67
    3月30日 1 400 m 第一组 12.88 9.09 4.17 73.86
    第二组 11.76 8.46 3.67 76.10
    4月1日 2 800 m 第一组 20.48 5.11 2.36 72.05
    第二组 20.08 4.18 2.93 72.81
    下载: 导出CSV
  • [1] 吴燕, 唐斌, 晏楠, 等. 迪那2气田井筒堵塞物来源分析及解堵方法[J]. 江汉大学学报(自然科学版), 2019, 47(2): 146-151. doi: 10.16389/j.cnki.cn42-1737/n.2019.02.007

    WU Yan, TANG Bin, YAN Nan, et al. Gas well blockage source analysis and unplugging treatment of Dina-2 gas field[J]. Journal of Jianghan University (Natural Science Edition), 2019, 47(2): 146-151. doi: 10.16389/j.cnki.cn42-1737/n.2019.02.007
    [2] 范华波, 薛小佳, 安杰, 等. 致密油水平井中低温可降解暂堵剂研发与性能评价[J]. 断块油气田, 2019, 26(1): 127-130. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201901031.htm

    FAN Huabo, XUE Xiaojia, AN Jie, et al. Development and perfor-mance evaluation of medium-low temperature degradabletemporary plugging agent in tight oil horizontal wells[J]. Fault-Block Oil and Gas Field, 2019, 26(1): 127-130. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201901031.htm
    [3] 石静, 曹绪龙, 王红艳, 等. 胜利油田高温高盐稠油油藏复合驱技术[J]. 特种油气藏, 2018, 25(4): 129-133. doi: 10.3969/j.issn.1006-6535.2018.04.026

    SHI Jing, CAO Xulong, WANG Hongyan, et al. Combination flooding technology used in high-temperature, high-salinity heavy oil reservoirs of Shengli Oilfield[J]. Special Oil & Gas Reservoirs, 2018, 25(4): 129-133. doi: 10.3969/j.issn.1006-6535.2018.04.026
    [4] 马靖翔, 杨松林, 姬华勇, 等. 适用于稠油油藏的新型化学复合解堵技术[J]. 断块油气田, 2019, 26(5): 800-804. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201906028.htm

    MA Jingxiang, YANG Songlin, JI Huayong, et al. New chemical compound plugging removal technology for heavy oil reservoirs[J]. Fault-Block Oil & Gas Field, 2019, 26(5): 800-804. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201906028.htm
    [5] 李小刚, 谢信捷, 杨兆中, 等. 特低渗凝析气藏复合解堵技术应用[J]. 油气藏评价与开发, 2017, 7(3): 44-49. doi: 10.3969/j.issn.2095-1426.2017.03.009

    LI Xiaogang, XIE Xinjie, YANG Zhaozhong, et al. Composite plug removal technology for ultra-low permeability condensate gas reservoir[J]. Reservoir Evaluation and Development, 2017, 7(3): 44-49. doi: 10.3969/j.issn.2095-1426.2017.03.009
    [6] 肖国华, 付小坡, 王金生, 等. 水平井预置速凝堵剂管外封窜技术[J]. 特种油气藏, 2018, 25(6): 136-139. doi: 10.3969/j.issn.1006-6535.2018.06.025

    Xiao Guohua, Fu Xiaopo, Wang Jinsheng, et al. External plugging with preset quick-setting plugging agentin horizontal well[J]. Special Oil & Gas Reservoirs, 2018, 25(6): 136-139. doi: 10.3969/j.issn.1006-6535.2018.06.025
    [7] 陈德飞, 孟祥娟, 白晓飞, 等. 油井堵塞物成分及析出位置: 以哈6区块为例[J]. 承德石油高等专科学校学报, 2018, 20(5): 6-10. doi: 10.3969/j.issn.1008-9446.2018.05.003

    CHEN Defei, MENG Xiangjuan, BAI Xiaofei, et al. Composition and precipitation site of plugging substances in oil wells: HA 6 block[J]. Journal of Chengde Petroleum College, 2018, 20(5): 6-10. doi: 10.3969/j.issn.1008-9446.2018.05.003
    [8] 杨文明, 康凡, 罗慎超, 等. 哈拉哈塘油田高含蜡原油降凝剂合成及性能研究[J]. 应用化工, 2017, 46(4): 641-645. https://www.cnki.com.cn/Article/CJFDTOTAL-SXHG201704009.htm

    YANG Wenming, KANG Fan, LUO Shenchao, et al. High waxy crude oil pour point depressant synthesis and performance research on Halahatang oilfield[J]. Applied Chemical Industry, 2017, 46(4): 641-645. https://www.cnki.com.cn/Article/CJFDTOTAL-SXHG201704009.htm
    [9] 安永生, 周大可, 欧阳铁兵, 等. 基于热力学模型的油井井筒析蜡规律[J]. 断块油气田, 2019, 26(5): 649-652. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201905023.htm

    AN Yongsheng, ZHOU Dake, OUYANG Tiebing, et al. Research on patterns of wax precipitation in wellbore based on thermodynamic model[J]. Fault-Block Oil and Gas Field, 2019, 26(5): 649-652. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201905023.htm
    [10] 杨祖国, 安娜, 欧阳冬, 等. 塔河原油井筒沥青堵塞与防治技术研究[J]. 应用化工, 2014, 43(S2): 3-8. https://www.cnki.com.cn/Article/CJFDTOTAL-SXHG2014S2002.htm

    YANG Zuguo, AN Na, OUYANG Dong, et al. Dispersion and removal technology research of Tahe asphaltic well[J]. Applied Chemical Industry, 2014, 43(S2): 3-8. https://www.cnki.com.cn/Article/CJFDTOTAL-SXHG2014S2002.htm
    [11] 郭元. 伊拉克格拉芙油田井筒堵塞机理研究[J]. 新疆石油天然气, 2017, 13(3): 62-64. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSY201703015.htm

    GUO Yuan. Mechanism study of wellbore asphaltenes plugging in Garraf oilfield[J]. Xinjiang Oil & Gas, 2017, 13(3): 62-64. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSY201703015.htm
    [12] 张润合, 斯春松, 黄羚, 等. 黔北坳陷小草坝古油藏储层沥青成因及演化[J]. 石油实验地质, 2017, 39(1): 99-105. doi: 10.11781/sysydz201701099

    ZHANG Runhe, SI Chunsong, HUANG Ling, et al. Genesis and evolution of reservoir bitumen in Xiaocaoba paleo-oil reservoir, Qianbei Depression[J]. Petroleum Geology & Experiment, 2017, 39(1): 99-105. doi: 10.11781/sysydz201701099
    [13] 王强, 宁传祥, 马中良, 等. 不同性质原油保存能力评价实验及应用[J]. 石油实验地质, 2019, 41(5): 739-745. doi: 10.11781/sysydz201905739

    WANG Qiang, NING Chuanxiang, MA Zhongliang, et al. Preservation of crude oil with different properties and implication for deep oil exploration[J]. Petroleum Geology & Experiment, 2019, 41(5): 739-745. doi: 10.11781/sysydz201905739
    [14] 廖碧朝, 宋永芳, 梁顺武, 等. 含硫化氢气井井筒堵塞解堵对策研究[J]. 油气井测试, 2015, 24(6): 62-64. https://www.cnki.com.cn/Article/CJFDTOTAL-YQJC201506019.htm

    LIAO Bichao, SONG Yongfang, LIANG Shunwu, et al. Plug removal countermeasures to well bore plugging of gas well bearing hydrogen sulfide[J]. Well Testing, 2015, 24(6): 62-64. https://www.cnki.com.cn/Article/CJFDTOTAL-YQJC201506019.htm
    [15] 彭松, 姜贻伟, 宿亚仙, 等. 普光气田高含H2S天然气中硫含量及临界析出压力测定[J]. 石油实验地质, 2018, 40(4): 573-576. doi: 10.11781/sysydz201804573

    PENG Song, JIANG Yiwei, SU Yaxian, et al. Content determination and critical precipitation pressure of elemental sulfur in sour gas rich in H2S in Puguang Gas Field[J]. Petroleum Geology & Experiment, 2018, 40(4): 573-576. doi: 10.11781/sysydz201804573
    [16] 聂延波, 王洪峰, 王胜军, 等. 克深气田异常高压气井井筒异常堵塞治理[J]. 新疆石油地质, 2019, 40(1): 84-90. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201901014.htm

    NIE Yanbo, WANG Hongfeng, WANG Shengjun, et al. Management of abnormal wellbore plugging in abnormal-high pressure gas wells, Keshen[J]. Xinjiang Petroleum Geology, 2019, 40(1): 84-90. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201901014.htm
    [17] 葛嵩, 卢祥国, 刘进祥, 等. 无机地质聚合物凝胶封堵效果和储层适应性研究[J]. 油气藏评价与开发, 2018, 8(3): 51-54. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ201803011.htm

    GE Song, LU Xiangguo, LIU Jinxiang, et al. Study on plugging effect and reservoir adaptability of inorganic geopolymer gel[J]. Reservoir Evaluation and Development, 2018, 8(3): 51-54. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ201803011.htm
    [18] 蒋永平. CO2复合驱油分子动力学模拟及微观机理研究[J]. 石油实验地质, 2019, 41(2): 274-279. doi: 10.11781/sysydz201902274

    JIANG Yongping. Molecular dynamics simulation and microscopic mechanism of CO2 composite flooding[J]. Petroleum Geology & Experiment, 2019, 41(2): 274-279. doi: 10.11781/sysydz201902274
    [19] 况军. 准噶尔盆地西南部构造特征及油气聚集分析[J]. 石油勘探与开发, 1991, 18(6): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK199106002.htm

    KUANG Jun. The structural characteristics and analysis of oil and gas accumulation in the southwestern part of Junggar Basin[J]. Petroleum Exploration and Development, 1991, 18(6): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK199106002.htm
    [20] 杜金虎, 支东明, 李建忠, 等. 准噶尔盆地南缘高探1井重大发现及下组合勘探前景展望[J]. 石油勘探与开发, 2019, 46(2): 205-215. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201902003.htm

    DU Jinhu, ZHI Dongming, LI Jianzhong, et al. Major breakthrough of well Gaotan 1 and exploration prospects of lower assemblage in southern margin of Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2019, 46(2): 205-215. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201902003.htm
    [21] 何海清, 支东明, 雷德文, 等. 准噶尔盆地南缘高泉背斜战略突破与下组合勘探领域评价[J]. 中国石油勘探, 2019, 24(2): 137-146. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201902001.htm

    HE Haiqing, ZHI Dongming, LEI Dewen, et al. Strategic breakthrough in Gaoquan anticline and exploration assessment on lower assemblage in the southern margin of Junggar Basin[J]. China Petroleum Exploration, 2019, 24(2): 137-146. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201902001.htm
    [22] 靳军, 王飞宇, 任江玲, 等. 四棵树凹陷高探1井高产油气成因与烃源岩特征[J]. 新疆石油地质, 2019, 40(2): 145-151. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201902003.htm

    JIN Jun, WANG Feiyu, REN Jiangling, et al. Genesis of high-yield oil and gas in well Gaotan-1 and characteristics of source rocks in Sikeshu Sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 2019, 40(2): 145-151. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201902003.htm
    [23] 梁宝兴, 周伟, 刘勇, 等. 四棵树凹陷高探1井流体特征及油藏类型分析[J]. 新疆石油地质, 2019, 40(2): 152-155. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201902004.htm

    LIANG Baoxing, ZHOU Wei, LIU Yong, et al. Fluid features and reservoir types in well Gaotan-1 in Sikeshu Sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 2019, 40(2): 152-155. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201902004.htm
    [24] 舒福昌, 张文秀. 伊朗BA原油沥青沉积及抑制高压模拟实验[J]. 科学技术与工程, 2018, 18(28): 87-92. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201828011.htm

    SHU Fuchang, ZHANG Wenxiu. Asphaltene deposition and inhibitors for Iranian BA crude oil by high pressure simulation test[J]. Science Technology and Engineering, 2018, 18(28): 87-92. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201828011.htm
    [25] 曹松, 杜政学, 吴仲岿, 等. 伊拉克H油田原油沥青质沉积趋势预测及分析[J]. 科学技术与工程, 2018, 18(33): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201833006.htm

    CAO Song, DU Zhengxue, WU Zhongkui, et al. Prediction and analysis of asphaltene deposition trend in Iraq H oilfield[J]. Science Technology and Engineering, 2018, 18(33): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201833006.htm
    [26] 王琛, 李天太, 高辉, 等. CO2驱沥青质沉积量对致密砂岩油藏采收率的影响机理[J]. 油气地质与采收率, 2018, 25(3): 107-111. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201803016.htm

    WANG Chen, LI Tiantai, GAO Hui, et al. Potential evaluation of different thermal-recovery technologies for heavy oil[J]. Petroleum Geology and Recovery Efficiency, 2018, 25(3): 107-111. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201803016.htm
    [27] 干华文, 孙红海, 刘勇, 等. 桑塔木油田沥青析出影响因素及举措[J]. 承德石油高等专科学校学报, 2017, 19(1): 27-31. https://www.cnki.com.cn/Article/CJFDTOTAL-CDSY201701008.htm

    GAN Huawen, SUN Honghai, LIU Yong, et al. Factors influencing asphalt precipitation in Sangtamu oilfield and countermeasures[J]. Journal of Chengde Petroleum College, 2017, 19(1): 27-31. https://www.cnki.com.cn/Article/CJFDTOTAL-CDSY201701008.htm
    [28] 何汉平, 黄健林, 赵凤兰, 等. 伊朗雅达油田完井测试作业中沥青质析出分析[J]. 科技导报, 2014, 32(21): 52-55. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201421020.htm

    HE Hanping, HUANG Jianlin, ZHAO Fenglan, et al. Asphaltene precipitation analysis in well testing in Yada oilfield, Iran[J]. Science & Technology Review, 2014, 32(21): 52-55. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201421020.htm
    [29] 赵凤兰, 鄢捷年. 原油沥青质的沉积条件及其控制[J]. 石油大学学报(自然科学版), 2005, 29(4): 56-59. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX200504012.htm

    ZHAO Fenglan, YAN Jienian. Precipitation condition of crude asphaltene and its controlling[J]. Journal of the University of Petroleum, China, 2005, 29(4): 56-59. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX200504012.htm
    [30] SEDGHI M, GOUAL L, WELCH W, et al. Effect of asphaltene structure on association and aggregation using molecular dynamics[J]. The Journal of Physical Chemistry B, 2013, 117(18): 5765-5776.
    [31] 闪从新, 李晓平, 秦海菲, 等. 多裂缝水平井非稳态产能模型及计算方法研究[J]. 油气井测试, 2008, 17(6): 5-7. https://www.cnki.com.cn/Article/CJFDTOTAL-YQJC200806004.htm

    SHAN Congxin, LI Xiaoping, QIN Haifei, et al. Study on the unsteady productivity model of horizontal well with multiple transversal fracture and calculation method[J]. Well Testing, 2008, 17(6): 5-7. https://www.cnki.com.cn/Article/CJFDTOTAL-YQJC200806004.htm
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  780
  • HTML全文浏览量:  192
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-27
  • 修回日期:  2020-09-01
  • 刊出日期:  2020-11-28

目录

    /

    返回文章
    返回