Characteristics and main controlling factors of carbonate reservoirs of Middle-Lower Ordovician, Shunnan area, Tarim Basin
-
摘要: 顺南地区位于塔里木盆地顺托果勒低隆的南部,目前已有多口井钻获天然气。随着勘探的推进,对储层发育规律的认识成为影响勘探评价的关键问题之一。在沉积相和构造演化背景研究的基础上,基于岩心描述、薄片鉴定、物性分析、综合录井和储层预测综合分析,对该区中下奥陶统储层进行了研究。中下奥陶统碳酸盐岩发育断控及热液改造的孔缝洞、白云岩晶间孔和晶间溶孔、灰岩颗粒内微孔隙等多尺度的储集空间,可划分为裂缝-孔隙型、断控缝洞型、热液改造孔缝洞型3种储层类型。裂缝-孔隙型分布于一间房组-鹰山组上段灰岩和鹰山组下段白云岩基质中,基质物性较差,为特低孔特低渗储层;断控缝洞型、热液改造孔缝洞型沿NE向走滑断裂带分布。多阶段发育的走滑断裂及伴生裂缝本身既可形成缝洞体储集空间,又沟通孔隙和微孔隙、晶间孔和晶间溶孔成为连通的有效储层,同时也是热液流体作用的先决条件,因而是规模有效储层的主控因素。Abstract: Natural gas breakthroughs have been made in many wells recently in the Shunnan in the southern part of the Shuntoguole low uplift in the Tarim Basin. With the advancement of exploration, the understanding of reservoir development is one of the key issues affecting exploration evaluation. Based on the research of sedimentary facies and tectonic evolution, core description, thin section analysis, physical property analysis, comprehensive logging and reservoir prediction were used to study the carbonate reservoirs in the Middle-Lower Ordovician in the study area. The reservoir spaces include pores and fractures controlled by fault and hydrothermal fluid activities, and also intercrystalline pores and intercrystalline solution pores in dolomite reservoirs, micropores in limestone reservoirs. There are three types of reservoirs, including fracture-cavity type controlled by faults, fracture-cavity type controlled by hydrothermal fluid activities, and fractures-pores. The fractures-pores mainly distribute in limestones in the Yijianfang Formation and the upper Yingshan Formation and in dolomites in the Lower Yingshan Formation. They have poor physical properties, and are featured by extra-low porosity and permeability. The fracture-cavity types controlled by faults and hydrothermal fluid activities mainly distribute along the NE strike-slip fault zone. Strike-slip fractures and associated fractures developed in multiple stages are the main controlling factors for large-scale effective reservoirs. They formed fractured-vuggy reservoirs. Meanwhile, they connected pores and micropores, intercrystalline pores, and intercrystalline dissolution pores, forming connected effective reservoirs, which was also a prerequisite for hydrothermal fluid activities.
-
Key words:
- reservoir feature /
- carbonate rock /
- Middle-Lower Ordovician /
- Shunnan area /
- Tarim Basin
-
图 2 塔里木盆地顺南地区中下奥陶统储层岩石学特征和孔隙发育特征
a.亮晶颗粒(藻屑)灰岩, 选择性粒内微溶蚀, SN7井, 6 484.12 m, O2yj, (-); b.亮晶砂屑(藻屑)灰岩, 粒内微溶孔, 早期粒间孔方解石胶结, SN7井, 6 576.00 m, O2yj, (-); c.藻粘结灰岩, 粒内微溶孔和晚期开启的构造缝, SN7井, 6 549.5 m, O2yj, (-); d.藻屑颗粒, 颗粒间致密, 扫描电镜照片; e.藻屑颗粒内部的晶间孔隙, 扫描电镜照片; f.藻屑颗粒内部的有机质收缩孔, 氩离子抛光—聚焦离子束扫描电镜照片; g.细晶白云岩, 碎粒化, 压裂缝充填沥青, SN7井, 7 103.50 m, O1-2ys, (-); h.微裂缝与扩溶缝, SN501井, 6 952.06 m, O1-2ys, 铸体薄片; i.白云石晶间孔、晶间溶孔, 与h为同一铸体薄片; j.硅质岩, 硅质交代保持了原岩碎粒化结构, O1-2ys, 铸体薄片; k.硅化岩, 基质交代石英, SN4井, 6 673.22 m(+); o.硅化岩中的石英晶间孔隙, SN4井, 6 673.22 m, 铸体薄片
Figure 2. Petrographic characteristics and pore development of classic samples in carbonate reservoirs of Middle-Lower Ordovician, Shunnan area, Tarim Basin
图 5 塔里木盆地顺南地区一间房组灰岩物性特征[27]
Figure 5. Physical properties of limestones in Yijianfang Formation, Shunnan area, Tarim Basin
表 1 塔里木盆地顺南地区钻井放空漏失统计
Table 1. Statistics of well emptying and leakage in Shunnan area, Tarim Basin
井号 井段/m 层段 漏失/m3 放空/m SN4 6 672.00~6 674.00 O1-2ys2 1 493.41 SN4 6 673.52~6 679.00 O1-2ys2 5.48 SN401 6 457.07 O1-2ys2 3 391.50 SN401 6 457.07~6 458.68 O1-2ys2 1.61 SN5 7 209.80 O1-2ys1 1 152.50 SN501 7 168.56 O1-2ys1 327.70 SN5-1 7 216.68 O1-2ys1 压井漏失141.00 SN5-2 7 106.83 O1-2ys1 36.50 SN6 7 502.15~7 504.50 O1-2ys1 2.35 SN6 7 505.80~7 525.00 O1-2ys1 1 996.70 SN7 6 945.05~7 276.00 O1-2ys1 1 841.10 表 2 塔里木盆地顺南地区碳酸盐岩各类储集空间与成因关系统计
Table 2. Statistics of carbonate reservoir space and its generation in Shunnan area, Tarim Basin
地层 岩性 孔隙类型 成因 断裂关系 热液改造程度 微相关系 实例井 O2yj 颗粒灰岩、藻粘结灰岩 粒内孔、粒内溶孔、粒内微孔 准同生期溶蚀、埋藏期有机酸溶蚀 ++ SN7 O1-2ys2 硅化灰岩、硅化岩 裂缝、孔洞、石英晶间孔 断裂、热蚀变矿物充填、硅质交代 ++ +++ SN4 O1-2ys1- O1p 细—粗晶白云岩 裂缝—扩溶缝、晶间孔、晶间溶孔 白云岩化、断裂—裂隙 + + SN501 O1-2 构造破裂碳酸盐岩 洞穴、多尺度裂缝 多期走滑断裂 +++ SN1/4/401/4-1,SN5/501/6/7,SN5-1/5-2 注: “+”表示孔隙的形成受有关因素影响的程度,“+++”最强;“++”中等;“+”弱。 表 3 塔里木盆地顺南地区微生物相关灰岩岩心柱塞样物性分析
Table 3. Physical properties of microbialite core plugs in Shunnan area, Tarim Basin
送样号 深度/m 岩性 孔隙度/% 渗透率/10-3 μm2 SN7-4-39 6 550.70 颗粒(藻屑)灰岩 2.08 低于检测限 SN7-4-30 6 549.57 颗粒(藻屑)灰岩 4.39 2.35 SN7-4-14 6 547.11 窗孔灰岩 3.70 0.47 SN7-3-28-2 6 534.00 颗粒(藻屑)灰岩 1.60 1.17 SN7-3-28-1 6 533.95 颗粒(藻屑)灰岩 2.35 低于检测限 SN7-3-25-2 6 533.64 颗粒(藻屑)灰岩 4.04 0.05 SN7-3-5-2 6 530.58 窗孔灰岩 3.39 0.09 SN7-2-45 6 491.72 颗粒(藻屑)灰岩 1.13 0.05 SN7-2-30 6 489.24 窗孔灰岩 1.77 低于检测限 SN7-2-24 6 487.93 颗粒(藻屑)灰岩 2.98 1.78 SN7-2-5 6 484.97 颗粒(藻屑)灰岩 3.83 5.30 SN7-1-13 6 429.08 瘤状球粒粒泥灰岩 0.97 低于检测限 SN7-1-10 6 428.55 瘤状球粒粒泥灰岩 1.27 0.35 SN7-1-2 6 426.90 瘤状球粒粒泥灰岩 1.11 3.73 ST1-1-20 7 672.24 生屑泥晶灰岩 3.30 0.39 ST1-1-39 7 675.60 瘤状生屑泥晶灰岩 1.41 0.07 ST1-1-44 7 676.10 瘤状生屑泥晶灰岩 1.70 低于检测限 ST1-2-2 7 704.37 泥晶灰岩,含硅质,硅质部分孔隙发育 7.77 0.11 ST1WX-1 7 704.48~7 704.50 亮晶生屑砂屑灰岩,见粒状石英, 藻屑内见沥青 5.51 0.04 ST1-2-5 7 704.84 瘤状生屑泥晶灰岩 2.97 低于检测限 ST1-2-10 7 705.65 含生屑泥晶灰岩 3.21 低于检测限 ST1-2-11 7 705.82 含生屑泥晶灰岩(藻屑沥青浸染) 2.85 低于检测限 ST1-2-12 7 706.06~7 706.22 泥晶灰岩(热蚀变) 4.24 低于检测限 ST1-2-12 7 706.06~7 706.22 泥晶灰岩(热蚀变) 2.97 0.02 ST1-2-13 7 706.47 含生屑泥晶灰岩(生屑沥青浸染) 3.26 低于检测限 ST1-2-14 7 706.73 含生屑泥晶灰岩(藻屑沥青浸染) 5.34 低于检测限 ST1-2-18 7 707.21 含生屑泥晶灰岩 5.76 0.09 ST1WX-6 7 707.39 亮晶生屑灰岩(生屑沥青质浸染)、粒状石英 6.76 0.01 ST1WX-6 7 707.39 亮晶生屑灰岩(生屑沥青质浸染)、粒状石英 4.42 0.03 ST1-2-23 7 707.57 泥亮晶生屑灰岩 3.38 低于检测限 ST1-2-24 7 707.80 生屑砂屑泥晶灰岩 4.24 低于检测限 ST1-2-28 7 708.40 生屑砂屑泥晶灰岩 3.64 低于检测限 ST1-2-32 7 708.82 生屑泥晶灰岩 3.70 12.26(裂缝) ST1-2-38 7 709.30 生屑泥晶灰岩 4.40 低于检测限 ST1-3-10 7 860.66 泥亮晶砂砾屑灰岩 0.99 0.04 ST1-4-10 7 862.42 灰泥岩 1.62 0.06 -
[1] 马永生, 何治亮, 赵培荣, 等. 深层-超深层碳酸盐岩储层形成机理新进展[J]. 石油学报, 2019, 40(12): 1415-1425. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201912017.htmMA Yongsheng, HE Zhiliang, ZHAO Peirong, et al. A new progress in formation mechanism of deep and ultra-deep carbonate reservoir[J]. Acta Petrolei Sinica, 2019, 40(12): 1415-1425. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201912017.htm [2] 漆立新. 塔里木盆地顺北超深断溶体油藏特征与启示[J]. 中国石油勘探, 2020, 25(1): 102-111. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202001010.htmQI Lixin. Characteristics and inspiration of ultra-deep fault-karst reservoir in the Shunbei area of the Tarim Basin[J]. China Petroleum Exploration, 2020, 25(1): 102-111. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202001010.htm [3] 焦方正. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J]. 石油与天然气地质, 2018, 39(2): 207-216. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201802002.htmJIAO Fangzheng. Significance and prospect of ultra-deep carbonate fault-karst reservoirs in Shunbei area, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(2): 207-216. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201802002.htm [4] 漆立新. 塔里木盆地顺托果勒隆起奥陶系碳酸盐岩超深层油气突破及其意义[J]. 中国石油勘探, 2016, 21(3): 38-51. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201603004.htmQI Lixin. Oil and gas breakthrough in ultra-deep Ordovician carbonate formations in Shuntuoguole uplift, Tarim Basin[J]. China Petroleum Exploration, 2016, 21(3): 38-51. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201603004.htm [5] 王铁冠, 宋到福, 李美俊, 等. 塔里木盆地顺南-古城地区奥陶系鹰山组天然气气源与深层天然气勘探前景[J]. 石油与天然气地质, 2014, 35(6): 753-762. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201406003.htmWANG Tieguan, SONG Daofu, LI Meijun, et al. Natural gas source and deep gas exploration potential of the Ordovician Yingshan Formation in the Shunnan-Gucheng region, Tarim Basin[J]. Oil & Gas Geology, 2014, 35(6): 753-762. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201406003.htm [6] 韩晓影, 汤良杰, 曹自成, 等. 塔中北坡"复合花状"构造发育特征及成因机制[J]. 地球科学, 2018, 43(2): 525-537. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201802014.htmHAN Xiaoying, TANG Liangjie, CAO Zicheng, et al. Characte-ristics and formation mechanism of composite flower structures in northern slope of Tazhong uplift, Tarim Basin[J]. Earth Science, 2018, 43(2): 525-537. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201802014.htm [7] 张继标, 张仲培, 汪必峰, 等. 塔里木盆地顺南地区走滑断裂派生裂缝发育规律及预测[J]. 石油与天然气地质, 2018, 39(5): 955-964. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805011.htmZHANG Jibiao, ZHANG Zhongpei, WANG Bifeng, et al. Development pattern and prediction of induced fractures from strike-slip faults in Shunnan area, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(5): 955-964. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805011.htm [8] 乔桂林, 赵永强, 沙旭光, 等. 塔里木盆地塔中隆起南坡油气勘探领域[J]. 石油实验地质, 2019, 41(5): 630-637. doi: 10.11781/sysydz201905630QIAO Guilin, ZHAO Yongqiang, SHA Xuguang, et al. Oil and gas exploration domains on the southern slope of Central Tarim Uplift, Tarim Basin[J]. Petroleum Geology & Experiment, 2019, 41(5): 630-637. doi: 10.11781/sysydz201905630 [9] 彭丽, 王振彪, 阳建平, 等. 塔里木盆地塔中10号构造带志留系柯坪塔格组低渗储层特征及控制因素[J]. 石油实验地质, 2019, 41(3): 355-362. doi: 10.11781/sysydz201903355PENG Li, WANG Zhenbiao, YANG Jianping, et al. Characteristics and controlling factors of low-permeability reservoirs in Silurian Kepingtage Formation, 10th tectonic belt in the Tazhong area, Tarim Basin[J]. Petroleum Geology & Experiment, 2019, 41(3): 355-362. doi: 10.11781/sysydz201903355 [10] 云露, 曹自成. 塔里木盆地顺南地区奥陶系油气富集与勘探潜力[J]. 石油与天然气地质, 2014, 35(6): 788-797. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201406008.htmYUN Lu, CAO Zicheng. Hydrocarbon enrichment pattern and exploration potential of the Ordovician in Shunnan area, Tarim Basin[J]. Oil & Gas Geology, 2014, 35(6): 788-797. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201406008.htm [11] 韩俊, 曹自成, 邱华标, 等. 塔中北斜坡奥陶系走滑断裂带与岩溶储集体发育模式[J]. 新疆石油地质, 2016, 37(2): 145-151. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201602005.htmHAN Jun, CAO Zicheng, QIU Huabiao, et al. Model for strike-slip fault zones and karst reservoir development of Ordovician in northern slope of Tazhong uplift, Tarim Basin[J]. Xinjiang Petroleum Geology, 2016, 37(2): 145-151. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201602005.htm [12] 尤东华, 韩俊, 胡文瑄, 等. 超深层灰岩孔隙-微孔隙特征与成因: 以塔里木盆地顺南7井和顺托1井一间房组灰岩为例[J]. 石油与天然气地质, 2017, 38(4): 693-702. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201704006.htmYOU Donghua, HAN Jun, HU Wenxuan, et al. Characteristics and genesis of pores and micro-pores in ultra-deep limestones: a case study of Yijianfang Formation limestones from Shunnan-7 and Shuntuo-1 wells in Tarim Basin[J]. Oil & Gas Geology, 2017, 38(4): 693-702. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201704006.htm [13] 焦存礼, 何碧竹, 王天宇, 等. 顺托果勒奥陶系一间房组超深层灰岩储层类型及储集空间定量表征[J]. 岩石学报, 2018, 34(6): 1835-1846. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201806019.htmJIAO Cunli, HE Bizhu, WANG Tianyu, et al. Types and quantitative characterization of reservoir spaces of the ultra-deep limestone reservoirs in the Yijianfang Formation during the Middle Ordovician, Shuntuoguole area, Tarim Basin[J]. Acta Petrologica Sinica, 2018, 34(6): 1835-1846. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201806019.htm [14] 李培军, 陈红汉, 唐大卿, 等. 塔里木盆地顺南地区中-下奥陶统NE向走滑断裂及其与深成岩溶作用的耦合关系[J]. 地球科学, 2017, 42(1): 93-104. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201701008.htmLI Peijun, CHEN Honghan, TANG Daqing, et al. Coupling relationship between NE strike-slip faults and hypogenic karstification in Middle-Lower Ordovician of Shunnan area, Taim Basin, Northwest China[J]. Earth Science, 2017, 42(1): 93-104. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201701008.htm [15] 李映涛, 叶宁, 袁晓宇, 等. 塔里木盆地顺南4井中硅化热液的地质与地球化学特征[J]. 石油与天然气地质, 2015, 36(6): 934-944. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201506010.htmLI Yingtao, YE Ning, YUAN Xiaoyu, et al. Geological and geoche-mical characteristics of silicified hydrothermal fluids in well Shunnan 4, Tarim Basin[J]. Oil & Gas Geology, 2015, 36(6): 934-944. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201506010.htm [16] 陈红汉, 鲁子野, 曹自成, 等. 塔里木盆地塔中地区北坡奥陶系热液蚀变作用[J]. 石油学报, 2016, 37(1): 43-63. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201601005.htmCHEN Honghan, LU Ziye, CAO Zicheng, et al. Hydrothermal alteration of Ordovician reservoir in northeastern slope of Tazhong uplift, Tarim Basin[J]. Acta Petrolei Sinica, 2016, 37(1): 43-63. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201601005.htm [17] 何治亮, 云露, 尤东华, 等. 塔里木盆地阿-满过渡带超深层碳酸盐岩储层成因与分布预测[J]. 地学前缘, 2019, 26(1): 13-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201901003.htmHE Zhiliang, YUN Lu, YOU Donghua, et al. Genesis and distribution prediction of the ultra-deep carbonate reservoirs in the transitional zone between the Awati and Manjiaer depressions, Tarim Basin[J]. Earth Science Frontiers, 2019, 26(1): 13-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201901003.htm [18] 沈安江, 陈娅娜, 蒙绍兴, 等. 中国海相碳酸盐岩储层研究进展及油气勘探意义[J]. 海相油气地质, 2019, 24(4): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ201904001.htmSHEN Anjiang, CHEN Ya'na, MENG Shaoxing, et al. The research progress of marine carbonate reservoirs in China and its significance for oil and gas exploration[J]. Marine Origin Petroleum Geology, 2019, 24(4): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ201904001.htm [19] LI Chuanxin, WANG Xiaofeng, LI Benliang, et al. Paleozoic fault systems of the Tazhong Uplift, Tarim Basin, China[J]. Marine and Petroleum Geology, 2013, 39(1): 48-58. [20] 任建业, 阳怀忠, 胡德胜, 等. 塔里木盆地中央隆起带断裂活动及其对海相克拉通解体的作用[J]. 地球科学(中国地质大学学报), 2012, 37(4): 645-653. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201204005.htmREN Jianye, YANG Huaizhong, HU Desheng, et al. Fault activity and its controlling to marine cratonic breakup in Tarim Basin[J]. Earth Science(Journal of China University of Geosciences), 2012, 37(4): 645-653. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201204005.htm [21] 任建业, 张俊霞, 阳怀忠, 等. 塔里木盆地中央隆起带断裂系统分析[J]. 岩石学报, 2011, 27(1): 219-230. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201101015.htmREN Jianye, ZHANG Junxia, YANG Huaizhong, et al. Analysis of fault systems in the central uplift, Tarim Basin[J]. Acta Petrologica Sinica, 2011, 27(1): 219-230. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201101015.htm [22] 曹颖辉, 李洪辉, 闫磊, 等. 塔里木盆地满西地区寒武系台缘带分段演化特征及其对生储盖组合的影响[J]. 天然气地球科学, 2018, 29(6): 796-806. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201806005.htmCAO Yinghui, LI Honghui, YAN Lei, et al. The sectional evolution characteristics of Cambrian platform margin in Manxi area of Tarim Basin and its differences in source-reservoir-cap combination conditions[J]. Natural Gas Geoscience, 2018, 29(6): 796-806. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201806005.htm [23] 陈永权, 严威, 韩长伟, 等. 塔里木盆地寒武纪-早奥陶世构造古地理与岩相古地理格局再厘定: 基于地震证据的新认识[J]. 天然气地球科学, 2015, 26(10): 1831-1843. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201510003.htmCHEN Yongquan, YAN Wei, HAN Changwei, et al. Redefinition on structural paleogeography and lithofacies paleogeography framework from Cambrian to Early Ordovician in the Tarim Basin: a new approach based on seismic stratigraphy evidence[J]. Natural Gas Geoscience, 2015, 26(10): 1831-1843. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201510003.htm [24] 赵锐, 赵腾, 李慧莉, 等. 塔里木盆地顺托果勒地区中下奥陶统鹰山组与一间房组沉积相与旋回地层[J]. 东北石油大学学报, 2019, 43(4): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY201904001.htmZHAO Rui, ZHAO Teng, LI Huili, et al. Sedimentary facies and cyclic stratigraphy of Yingshan and Yijianfang formations of Lower-Middle Ordovicican in Shuntuoguole area, Tarim Basin[J]. Journal of Northeast Petroleum University, 2019, 43(4): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY201904001.htm [25] 蔡习尧, 钱一雄, 陈强路, 等. 塔里木盆地古隆1井奥陶系恰尔巴克组与一间房组的发现及意义[J]. 石油实验地质, 2011, 33(4): 348-352. doi: 10.11781/sysydz201104348CAI Xiyao, QIAN Yixiong, CHEN Qianglu, et al. Discovery and significance of Qrebake and Yijianfang formations of Ordovician in well GL1, Tarim Basin[J]. Petroleum Geology & Experiment, 2011, 33(4): 348-352. doi: 10.11781/sysydz201104348 [26] 王玉伟, 陈红汉, 曹自成, 等. 塔里木盆地塔中北坡奥陶系微生物碳酸盐岩储层形成机制与评价[J]. 地球科学, 2019, 44(2): 559-571. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201902019.htmWANG Yuewei, CHEN Honghan, CAO Zicheng, et al. Forming mechanism of Ordovician microbial carbonate reservoir in northern slope of Tazhong uplift, Tarim Basin[J]. Earth Science, 2019, 44(2): 559-571. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201902019.htm [27] 孟万斌, 肖春晖, 冯明石, 等. 碳酸盐岩成岩作用及其对储层的影响: 以塔中顺南地区一间房组为例[J]. 岩性油气藏, 2016, 28(5): 26-33. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201605003.htmMENG Wanbin, XIAO Chunhui, FENG Mingshi, et al. Carbonate diagenesis and its influence on reservoir: a case study from Yijianfang Formation in Shunnan area, central Tarim Basin[J]. Lithologic Reservoirs, 2016, 28(5): 26-33. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201605003.htm [28] 尤东华, 韩俊, 胡文瑄, 等. 塔里木盆地顺南501井鹰山组白云岩储层特征与成因[J]. 沉积学报, 2018, 36(6): 1206-1217. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201806014.htmYOU Donghua, HAN Jun, HU Wenxuan, et al. Characteristics and genesis of dolomite reservoirs in the Yingshan Formation of well SN501 in the Tarim Basin[J]. Acta Sedimentologica Sinica, 2018, 36(6): 1206-1217. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201806014.htm [29] 张哨楠, 黄柏文, 隋欢, 等. 古城地区鹰山组储层特征及成岩孔隙演化[J]. 西南石油大学学报(自然科学版), 2019, 41(1): 33-46. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201901003.htmZHANG Shaonan, HUANG Bowen, SUI Huan, et al. The reservoir characteristics and the pore evolution of Yingshan Formation in Gucheng region, Tarim Basin[J]. Journal of Southwest Petroleum Univefsity (Science & Technology Edition), 2019, 41(1): 33-46. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201901003.htm [30] 刘军, 任丽丹, 李宗杰, 等. 塔里木盆地顺南地区深层碳酸盐岩断裂和裂缝地震识别与评价[J]. 石油与天然气地质, 2017, 38(4): 703-710. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201704007.htmLIU Jun, REN Lidan, LI Zongjie, et al. Seismic identification and evaluation of deep carbonate faults and fractures in Shunnan area, Tarim Basin[J]. Oil & Gas Geology, 2017, 38(4): 703-710. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201704007.htm [31] YOU Donghua, HAN Jun, HU Wenxuan, et al. Characteristics and formation mechanisms of silicified carbonate reservoirs in well SN4 of the Tarim Basin[J]. Energy Exploration & Exploitation, 2018, 36(4): 820-849. [32] 邬光辉, 陈志勇, 曲泰来, 等. 塔里木盆地走滑带碳酸盐岩断裂相特征及其与油气关系[J]. 地质学报, 2012, 86(2): 219-227. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201202002.htmWU Guanghui, CHEN Zhiyong, QU Tailai, et al. Characteristics of the strik-slip fault facies in Ordovician carbonate in the Tarim Basin, and its relations to hydrocarbon[J]. Acta Geologica Sinica, 2012, 86(2): 219-227. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201202002.htm [33] 屈泰来, 邬光辉, 刘加良, 等. 碳酸盐岩断裂相分类特征: 以新疆塔里木盆地柯坪露头为例[J]. 地球学报, 2011, 32(5): 541-548. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201105006.htmQU Tailai, WU Guanghui, LIU Jialiang, et al. The classification and characteristics of carbonate fault facies: a case study of the outcrop of Kalpin area, Tarim Basin in Xinjiang[J]. Acta Geoscientica Sinica, 2011, 32(5): 541-548. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201105006.htm