Representation of gas hydrate fracture migration system by seismic
-
摘要: 南海是世界4大海洋油气聚集中心之一,南海北部陆坡已发现多个油气田和天然气水合物(以下简称水合物)矿藏。依靠高精度的地震探测技术,近年南海水合物矿藏的勘探大有进展,但是地震检测技术的成功率有待提高。科学钻探证实,单纯依靠稳定带中识别BSR寻找水合物有多解性,而水合物成藏系统的研究,尤其是对运聚输导系统的研究目前还不够深入。裂隙是南海北部水合物成藏成矿的主要输导体系,为有效表征水合物的裂隙输导系统,该文结合油气藏运聚系统研究的成功经验,将常规油气勘探中已成功应用的裂隙识别技术,应用到琼东南海域似海底反射区,成功雕刻表征出了水合物裂隙输导体系,并基于结果讨论了其运移效能。裂隙地震表征可作为水合物输导体系的研究手段应用于其成藏系统的研究。Abstract: The South China Sea is one of the four major offshore oil and gas accumulation centers in the world. Many oil and gas fields and hydrate deposits have been found on the northern slope of the South China Sea. The amount of hydrate resources is huge. Relying on high-precision seismic exploration technology, the exploration of hydrate deposits in the South China Sea has progressed greatly in recent years, but the success rate of seismic detection technology needs to be improved. Scientific drillings have proved that there are multiple solutions to find hydrate only by identifying BSR in the stable zone, while the research on hydrate accumulation system is not deep enough, especially the migration, accumulation and dispersion system. Fractures are the main systems of hydrate accumulation and mineralization in the north of the South China Sea. In order to effectively characterize the fracture system of hydrate, this paper, combined with the successful experience of oil and gas reservoir migration and accumulation system research, applied the fracture identification technology used to study fracture channels to discover the diapir gas field to the BSR area of Qiongdongnan Basin, and successfully identified the hydrate fracture transport system. Based on the results, the migration efficiency was discussed. In the study of gas hydrate accumulation systems, the seismic characterization of fractures can be used as a means to study the transport system.
-
Key words:
- gas hydrate /
- migration system /
- fracture identification technique /
- diapir /
- Qiongdongnan Basin
-
图 4 莺歌海盆地底辟裂隙三维可视化图
研究区位置见图 1中Z1。
Figure 4. Three dimensional visualization of diapir fractures in Yinggehai Basin
图 5 琼东南盆地BSR与裂隙空间展布
研究区位置见图 1中Z2。
Figure 5. BSR and fracture spatial distribution in Qiongdongnan Basin
-
[1] 吴能友, 张海啟, 杨胜雄, 等. 南海神狐海域天然气水合物成藏系统初探[J]. 天然气工业, 2007, 27(9): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200709004.htmWU Nengyou, ZHANG Haiqi, YANG Shengxiong, et al. Preliminary discussion on natural gas hydrate (NGH) reservoir system of Shenhu area, north slope of South China Sea[J]. Natural Gas Industry, 2007, 27(9): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200709004.htm [2] COLLETT T S. Gas hydrate petroleum systems in marine and arctic permafrost environments[C]//Proceedings of the unconventional energy resources: making the unconventional conventional: 29th Annual GCSSEPM Proceedings. Houston: Gulf Coast Section of the Society of Economic Paleontologists, Mineralogists Foundation, 2009: 6-30. [3] 苏丕波, 何家雄, 梁金强, 等. 南海北部陆坡深水区天然气水合物成藏系统及其控制因素[J]. 海洋地质前沿, 2017, 33(7): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201707001.htmSU Pibo, HE Jiaxiong, LIANG Jinqiang, et al. Natural gas hydrate migration and accumulation system and its controlling factors on northern deep water slope of the South China Sea[J]. Marine Geo-logy Frontiers, 2017, 33(7): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201707001.htm [4] 肖红平, 林畅松, 彭涌, 等. 天然气水合物油气系统概念内涵及实例分析[J]. 地球科学进展, 2017, 32(1): 21-33. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201701004.htmXIAO Hongping, LIN Changsong, PENG Yong, et al. Concept and intension of natural gas hydrate petroleum system and case analysis[J]. Advances in Earth Science, 2017, 32(1): 21-33. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201701004.htm [5] 刘静静, 刘震, 王子嵩, 等. 琼东南盆地深水区中央峡谷天然气藏输导模式研究[J]. 石油实验地质, 2019, 41(2): 193-199. doi: 10.11781/sysydz201902193LIU Jingjing, LIU Zhen, WANG Zisong, et al. Gas migration mode for the central canyon in deep-water Qiongdongnan Basin[J]. Petroleum Geology & Experiment, 2019, 41(2): 193-199. doi: 10.11781/sysydz201902193 [6] 王淑玲, 孙张涛. 全球天然气水合物勘查试采研究现状及发展趋势[J]. 海洋地质前沿, 2018, 34(7): 24-32. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201807004.htmWANG Shuling, SUN Zhangtao. Current status and future trends of exploration and pilot production of gas hydrate in the world[J]. Marine Geology Frontiers, 2018, 34(7): 24-32. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201807004.htm [7] 沙志彬, 郑涛, 张光学, 等. 海底高频地震仪观测系统优化设计及其在南海天然气水合物勘探中的应用[J]. 天然气工业, 2014, 34(7): 136-142. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201407033.htmSHA Zhibin, ZHENG Tao, ZHANG Guangxue, et al. An optimal design of a high-frequency ocean bottom seismometer (HF-OBS) and its application to the natural gas hydrate exploration in the South China Sea[J]. Natural Gas Industry, 2014, 34(7): 136-142. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201407033.htm [8] 周守为, 赵金洲, 李清平, 等. 全球首次海洋天然气水合物固态流化试采工程参数优化设计[J]. 天然气工业, 2017, 37(9): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201709003.htmZHOU Shouwei, ZHAO Jinzhou, LI Qingping, et al. Optimal design of the engineering parameters for the first global trial production of marine natural gas hydrates through solid fluidization[J]. Natural Gas Industry, 2017, 37(9): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201709003.htm [9] 张金华, 苏明, 魏伟, 等. 含气流体运移与天然气水合物成藏[J]. 地质科技情报, 2017, 36(2): 176-185. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201702023.htmZHANG Jinhua, SU Ming, WEI Wei, et al. Relationship between gas-bearing fluids migration and accumulation of natural gas hydrate[J]. Geological Science and Technology Information, 2017, 36(2): 176-185. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201702023.htm [10] 王鹏, 钟建华, 张亚金, 等. 断层识别技术及其在肇州油田的应用[J]. 石油物探, 2011, 50(5): 521-525. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT201105019.htmWANG Peng, ZHONG Jianhua, ZHANG Yajin, et al. Fault identification technique and its application in Zhaozhou Oilfield[J]. Geophysical Prospecting for Petroleum, 2011, 50(5): 521-525. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT201105019.htm [11] 李飞跃, 张功成, 杨海长, 等. 复杂断裂综合解释方法在长昌凹陷的应用[J]. 石油物探, 2017, 56(4): 543-550. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT201704010.htmLI Feiyue, ZHANG Gongcheng, YANG Haizhang, et al. Application of comprehensive interpretation method for complicated fractures in Changchang Sag[J]. Geophysical Prospecting for Petroleum, 2017, 56(4): 543-550. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT201704010.htm [12] 杨威, 贺振华, 陈学华. 三维体曲率属性在断层识别中的应用[J]. 地球物理学进展, 2011, 26(1): 110-115. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201101013.htmYANG Wei, HE Zhenhua, CHEN Xuehua. Application of three-dimensional volumetric curvature attributes to fault identification[J]. Progress in Geophysics, 2011, 26(1): 110-115. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201101013.htm [13] 聂妍. 潜山微小断层的表征方法[J]. 中国科技论文, 2019, 14(1): 28-32. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZX201901006.htmNIE Yan. Research on small faults description of buried hill[J]. China Sciencepaper, 2019, 14(1): 28-32. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZX201901006.htm [14] 宋瑞有, 于俊峰, 晁彩霞, 等. 裂隙识别技术及其在油气和水合物勘探中的应用[J]. 热带海洋学报, 2020, 39(1): 120-129. https://www.cnki.com.cn/Article/CJFDTOTAL-RDHY202001011.htmSONG Ruiyou, YU Junfeng, CHAO Caixia, et al. Fracture identification technique and its application in gas and hydrate exploration[J]. Journal of Tropical Oceanography, 2020, 39(1): 120-129. https://www.cnki.com.cn/Article/CJFDTOTAL-RDHY202001011.htm [15] 谢风猛. 古潜山裂缝储层预测新方法[J]. 物探与化探, 2010, 34(2): 233-236. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201002025.htmXIE Fengmeng. The application of geometrical properties to predicting fracture type reservoirs[J]. Geophysical and Geoche-mical Exploration, 2010, 34(2): 233-236. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201002025.htm [16] 宋瑞有, 于俊峰, 韩光明, 等. 莺歌海盆地底辟流体动态平衡体系及气藏模式[J]. 新疆石油地质, 2016, 37(5): 530-536. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201605007.htmSONG Ruiyou, YU Junfeng, HAN Guangming, et al. Diapiric hydro-dynamic balance system and gas reservoir model in Yinggehai Basin[J]. Xinjiang Petroleum Geology, 2016, 37(5): 530-536. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201605007.htm [17] 宋瑞有, 于俊峰, 韩光明, 等. 莺歌海盆地底辟类型及侵入方式[J]. 世界地质, 2017, 36(4): 1235-1243. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ201704024.htmSONG Ruiyou, YU Junfeng, HAN Guangming, et al. Diapiric types and intrusion patterns in Yinggehai Basin[J]. Global Geology, 2017, 36(4): 1235-1243. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ201704024.htm [18] 于俊峰, 侯静娴. 莺歌海盆地底辟构造演化非同期性[J]. 广东石油化工学院学报, 2018, 28(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-SHGD201801001.htmYU Junfeng, HOU Jingxian. Non-synchronism of diapir tectonic evolution in Yinggehai Basin[J]. Journal of Guangdong University of Petrochemical Technology, 2018, 28(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-SHGD201801001.htm [19] 肖坤泽, 童亨茂, 杨东辉, 等. 莺歌海盆地新近纪以来古构造地貌恢复[J]. 石油实验地质, 2020, 42(2): 215-222. doi: 10.11781/sysydz202002215XIAO Kunze, TONG Hengmao, YANG Donghui, et al. Restoration of Neogene paleo-geomorphology of Yinggehai Basin[J]. Petroleum Geology & Experiment, 2020, 42(2): 215-222. doi: 10.11781/sysydz202002215 [20] 韩光明, 李绪深, 童传新, 等. 莺歌海盆地中央底辟带油气垂向运移通道研究[J]. 海相油气地质, 2013, 18(3): 62-69. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ201303009.htmHAN Guangming, LI Xushen, TONG Chuanxin, et al. Study of Vertical Pathways of Hydrocarbon Migration in Central Diapir Zone, Yinggehai Basin[J]. Marine Origin Petroleum Geology, 2013, 18(3): 62-69. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ201303009.htm [21] 王秀娟, 吴时国, 刘学伟, 等. 东沙海域天然气水合物特征分析及饱和度估算[J]. 石油物探, 2009, 48(5): 445-452. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT200905005.htmWANG Xiujuan, WU Shiguo, LIU Xuewei, et al. Characteristic analysis and saturation estimation of gas hydrate in Dongsha sea area[J]. Geophysical Prospecting for Petroleum, 2009, 48(5): 445-452. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT200905005.htm [22] 宋瑞有. 南海北部陆缘声浑浊体成因机制及地震响应特征[J]. 中国海上油气, 2020, 32(3): 43-50. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202003005.htmSONG Ruiyou. Genetic mechanism and seismic response characteristics of acoustic turbidites in the northern margin of the South China Sea[J]. China Offshore Oil and Gas, 2020, 32(3): 43-50. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202003005.htm [23] 吴能友, 杨胜雄, 王宏斌, 等. 南海北部陆坡神狐海域天然气水合物成藏的流体运移体系[J]. 地球物理学报, 2009, 52(6): 1641-1650. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200906028.htmWU Nengyou, YANG Shengxiong, WANG Hongbin, et al. Gas-bearing fluid influx sub-system for gas hydrate geological system in Shenhu area, northern South China Sea[J]. Chinese Journal of Geophysics, 2009, 52(6): 1641-1650. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200906028.htm [24] 何家雄, 苏丕波, 卢振权, 等. 南海北部琼东南盆地天然气水合物气源及运聚成藏模式预测[J]. 天然气工业, 2015, 35(8): 19-29. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201508005.htmHE Jiaxiong, SU Pibo, LU Zhenquan, et al. Prediction of gas sources of natural gas hydrate in the Qiongdongnan Basin, northern South China Sea, and its migration, accumulation and reservoir formation pattern[J]. Natural Gas Industry, 2015, 35(8): 19-29. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201508005.htm [25] 梁金强, 王宏斌, 苏新, 等. 南海北部陆坡天然气水合物成藏条件及其控制因素[J]. 天然气工业, 2014, 34(7): 128-135. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201407032.htmLIANG Jinqiang, WANG Hongbin, SU Xin, et al. Natural gas hydrate formation conditions and the associated controlling factors in the northern slope of the South China Sea[J]. Natural Gas Industry, 2014, 34(7): 128-135. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201407032.htm [26] 何丽娟, 雷兴林, 张毅. 南海北部神狐海域天然气水合物形成聚集的数值模拟研究[J]. 地球物理学报, 2011, 54(5): 1285-1292. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201105019.htmHE Lijuan, LEI Xinglin, ZHANG Yi. Numerical modeling of gas hydrate accumulation in the marine sediments of Shenhu area, northern South China Sea[J]. Chinese Journal of Geophysics, 2011, 54(5): 1285-1292. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201105019.htm [27] 丛晓荣, 苏明, 吴能友, 等. 富生烃凹陷背景下热成因气对水合物成藏的贡献探讨[J]. 地质学报, 2018, 92(1): 170-183. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201801012.htmCONG Xiaorong, SU Ming, WU Nengyou, et al. Contribution of thermogenic gases to hydrate accumulation under the marine hydrocarbon-rich depression setting[J]. Acta Geologica Sinica, 2018, 92(1): 170-183. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201801012.htm [28] PORTNOV A, SANTRA M, COOK A E, et al. The Jackalope gas hydrate system in the northeastern Gulf of Mexico[J]. Marine and Petroleum Geology, 2020, 111: 261-278. [29] 张伟, 何家雄, 卢振权, 等. 琼东南盆地疑似泥底辟与天然气水合物成矿成藏关系初探[J]. 天然气地球科学, 2015, 26(11): 2185-2197. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201511022.htmZHANG Wei, HE Jiaxiong, LU Zhenquan, et al. Preliminary study of the relationship between the suspected mud diapir and natural gas hydrate in the Qiongdongnan Basin, northern South China Sea[J]. Natural Gas Geoscience, 2015, 26(11): 2185-2197. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201511022.htm