Evaluation of upgrading potential and strategy for inferred initially in-place petroleum
-
摘要: 在低油价形势下,保有预测储量的有效升级动用是大家关注的焦点问题。目前保有石油预测储量基数大,缺乏针对预测储量升级潜力评价的系统性研究。采用漏斗筛选模型分层次建立清晰有效的预测储量升级潜力评价方法流程体系,强调升级过程中各阶段风险的评价和控制。为了最大程度降低地质风险评价中的人为因素影响,首次采用距离综合评价方法(TOPSIS法)对影响储量升级的地质因素进行评价,此方法应用于渤海湾盆地碎屑岩油藏,优选出升级潜力区块11个,取得良好的应用效果。研究结果表明,预测储量不确定性较大,在升级过程中,及时识别风险,找出难点,制定行之有效的升级策略,采用与之相适应的技术手段,寻求突破,才能进一步推动储量的高效升级动用。Abstract: Under the background of low oil price, the effective upgrading and utilization of the inferred initially in-place petroleum reserves are essential. At present, there is a large quantity of existing inferred initially in-place petroleum, but there is no systematic study on the evaluation of the upgrading potential. In this paper, a funnel screening method is used to establish a clear and effective evaluation procedure and to focus on the evaluation and control of risks in each stage of the process. In order to minimize the influence of human factors in geological risk assessment, the technique for order preference by similarity to an ideal solution (TOPSIS) is used to evaluate the geological factors that affect the reserves upgrading for the first time. Eleven potential upgrading blocks have been selected and achieved good results in clastic rock reservoirs in the Bohai Bay Basin. The research results show that the uncertainty of the predicted reserves is large. In the upgrading process, the risks and difficulties should be identified in time. The corresponding technical measures are taken and the strategy are proposed, which provides guarantee for the further efficient and economic upgrading of reserves.
-
表 1 评价区块地质因素标准化参数
Table 1. Standardized parameters of geological factors of evaluation blocks
区块 标准化有效厚度 标准化有效孔隙度 标准化渗透率 标准化埋深 标准化丰度 A1 0.09 0.81 1.00 0.67 0.53 A2 0.09 0.72 0.25 0.93 0.18 A3 0.14 1.00 0.60 0.90 0.69 A4 0.01 0.81 0.17 0.77 0.35 A5 0.14 0.40 0.97 1.00 0.49 A6 0.03 0.75 0.04 0.97 0.29 A7 0.36 0.12 0.05 0.35 0.42 A8 0.08 0.80 0.43 0.66 0.36 A9 1.00 0.00 0.01 0.36 1.00 A10 0.40 0.12 0.00 0.32 0.50 A11 0.05 0.40 0.07 0.19 0.16 A12 0.05 0.28 0.00 0.23 0.20 A13 0.06 0.28 0.00 0.09 0.23 A14 0.09 0.02 0.00 0.00 0.08 A15 0.05 0.36 0.01 0.16 0.25 A16 0.18 0.02 0.00 0.24 0.18 A17 0.00 0.40 0.04 0.33 0.09 A18 0.01 0.01 0.02 0.05 0.00 A19 0.02 0.28 0.51 0.30 0.10 A20 0.11 0.19 0.09 0.70 0.11 A21 0.27 0.00 0.02 0.06 0.13 A22 0.08 0.12 0.07 0.46 0.16 表 2 评价区块TOPSIS参数及开发技术风险参数
Table 2. TOPSIS parameters and development technical risk parameters of evaluation blocks
区块 距最优样本距离di+ 距最劣样本距离di- 贴近度评价因子ci+ 开发技术风险性 A1 1.10 1.54 0.42 0.20 A2 1.46 1.22 0.55 0.55 A3 1.00 1.64 0.38 0.57 A4 1.48 1.18 0.56 0.45 A5 1.16 1.54 0.43 0.52 A6 1.56 1.26 0.55 0.53 A7 1.69 0.66 0.72 0.30 A8 1.32 1.18 0.53 0.32 A9 1.55 1.46 0.51 0.45 A10 1.69 0.72 0.70 0.72 A11 1.87 0.48 0.80 0.65 A12 1.91 0.42 0.82 0.8 A13 1.96 0.38 0.84 0.77 A14 2.15 0.12 0.95 0.85 A15 1.89 0.47 0.80 0.63 A16 1.97 0.35 0.85 0.77 A17 1.89 0.53 0.78 0.67 A18 2.19 0.06 0.97 0.4 A19 1.74 0.66 0.73 0.6 A20 1.78 0.74 0.71 0.65 A21 2.03 0.31 0.87 0.63 A22 1.86 0.51 0.78 0.67 表 3 优选的升级潜力区块
Table 3. Preferred upgrade potential blocks
区块 埋深/m 试油产量/ (m3·d-1) A1 1 825.00 25.35 A2 1 035.83 6.60 A3 1 110.00 5.90 A4 1 505.00 9.15 A6 897.50 8.10 A7 2 793.50 141.00 A8 1 845.19 41.77 A9 2 740.00 6.30 A10 2 875.00 21.60 A21 2 940.00 5.99 A22 1 725.00 32.30 表 4 不同类型油藏升级策略
Table 4. Upgrading strategies for different types of reservoirs
油藏类别 升级的主要难点 采取的升级策略 特殊岩性 勘探技术:特殊岩性储层的预测 地震技术:高精度三维地震提高复杂条件下的断裂地质及缝洞体系成像精度,实现特殊岩性储层精细刻画 稠油 开发技术:敏感性强,油稠、产能低,达不到商业开发要求,有待技术突破 开发技术:通过热采、注水等方式提高产能,实现储量经济有效开发 中高渗 勘探技术:圈闭的识别,复杂断裂体系的描述 高精度三维地震处理解释:落实构造、断层如复杂的走滑断裂构造及潜山内部断裂空间展布、地层分布及潜山面构造特征,精细描述复杂潜山圈闭 低渗—特低渗 勘探技术:薄储层预测,致密储层甜点识别 勘探技术:发展单点高密度勘探技术,提高砂组分辨率,使得储层反演结果与实际厚度变化更加吻合;提高滩坝砂、浊积砂等致密储层甜点识别效果 低渗—特低渗 开发技术:渗透率低,产能低,能量递减快 开发技术:发展体积压裂等储层改造技术,改造储层,提高产能。对于低渗储层注水开发,补充地层能量 表 5 渤海湾盆地某油田B区块储量升级关键参数对比
Table 5. Comparison of key parameters for reserves upgrading in block B, X oil field, Bohai Bay Basin
层位 储量类别 含油面积/km2 有效厚度/m 有效孔隙度/% 含油饱和度/% 体积系数 地面原油密度/ (g·cm-3) 沙一段1砂组 预测 5.42 21.9 10.0 60.0 1.186 0.874 控制 0.33 9.6 13.2 60.9 1.186 0.870 沙一段2砂组 预测 5.12 35.8 10.0 60.0 1.186 0.889 控制 2.34 25.5 13.2 60.9 1.186 0.880 沙二段1砂组 预测 4.58 24.5 10.0 60.0 1.186 0.889 控制 0.27 8.2 13.2 60.9 1.186 0.880 -
[1] 张玲, 魏萍, 肖席珍. SEC储量评估特点及影响因素[J]. 石油与天然气地质, 2011, 32(2): 293-301. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201102022.htmZHANG Ling, WEI Ping, XIAO Xizhen. Characteristics and their influential factors of SEC reserve evaluation[J]. Oil & Gas Geo-logy, 2011, 32(2): 293-301. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201102022.htm [2] 黄学斌, 魏萍, 郭鸣黎, 等. SEC储量成本指标计算方法探讨[J]. 石油实验地质, 2014, 36(4): 506-510. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201404019.htmHUANG Xuebin, WEI Ping, GUO Mingli, et al. Discussion of cost index calculation method on SEC reserves[J]. Petroleum Geology & Experiment, 2014, 36(4): 506-510. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201404019.htm [3] 郭鸣黎, 陈凌, 汪桂敏, 等. SEC准则下缝洞型碳酸盐岩油藏储量评估及应用实例探究[J]. 油气藏评价与开发, 2020, 10(2): 11-17. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202002003.htmGUO Mingli, CHEN Ling, WANG Guiming, et al. Inquiry into evaluation methods and its application for reserves of carbonate fractured-vuggy reservoirs under SEC rules[J]. Reservoir Evaluation and Development, 2020, 10(2): 11-17. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202002003.htm [4] 王鸣川, 商晓飞, 段太忠, 等. 海外油气田开发新项目储量评价方法[J]. 石油实验地质, 2020, 42(2): 296-301. doi: 10.11781/sysydz202002296WANG Mingchuan, SHANG Xiaofei, DUAN Taizhong, et al. Reserves evaluation for new investment projects in overseas oil and gas field development[J]. Petroleum Geology & Experiment, 2020, 42(2): 296-301. doi: 10.11781/sysydz202002296 [5] 王庆帅. 可靠技术在南海气田SEC储量评估中的应用[J]. 石油实验地质, 2019, 41(6): 923-930. doi: 10.11781/sysydz201906923WANG Qingshuai. Application of reliable technology in SEC reserve evaluation of South China Sea Gas Field[J]. Petroleum Geology & Experiment, 2019, 41(6): 923-930. doi: 10.11781/sysydz201906923 [6] 尹万泉, 武毅, 于军. 辽河油田SEC动态储量关键影响因素分析[J]. 特种油气藏, 2019, 26(2): 87-90. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201902015.htmYIN Wanquan, WU Yi, YU Jun. Key influencing factor analysis of the SEC dynamic reserve in Liaohe oilfield[J]. Special Oil & Gas Reservoirs, 2019, 26(2): 87-90. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201902015.htm [7] 周亚彤. 延川南煤层气田动态特征和SEC动态储量评估方法研究[J]. 油气藏评价与开发, 2020, 10(4): 53-58. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202004009.htmZHOU Yatong. Dynamic characteristics and SEC dynamic reserve assessment of CBM gas field in South Yanchuan[J]. Reservoir Evaluation and Development, 2020, 10(4): 53-58. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202004009.htm [8] 刘瑞娟. 统计法在渤南洼陷南斜坡沙三段资源潜力评价中的应用[J]. 特种油气藏, 2019, 26(6): 41-45. doi: 10.3969/j.issn.1006-6535.2019.06.007LIU Ruijuan. Application of statistical method in the resource potential evaluation of Sha-3 Member in the south slope of south Bohai Depression[J]. Special Oil & Gas Reservoirs, 2019, 26(6): 41-45. doi: 10.3969/j.issn.1006-6535.2019.06.007 [9] 覃利娟. 概率法在油气储量不确定性分析中的应用[J]. 断块油气田, 2019, 26(6): 723-727. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201906010.htmQIN Lijuan. Application of probability method to uncertainty analysis of oil and gas reserves[J]. Fault-Block Oil & Gas Field, 2019, 26(6): 723-727. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201906010.htm [10] 李友强. 济阳坳陷低渗透砂岩油藏控制储量升级评价[J]. 石油天然气学报(江汉石油学院学报), 2013, 35(6): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX201306008.htmLI Youqiang. Controlled reserves upgrade evaluation in permeability sandstone reservoirs of Jiyang Depression[J]. Journal of Oil and Gas Technology (Journal of Jianghan Petroleum Institute), 2013, 35(6): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX201306008.htm [11] 秦伟军, 付兆辉. 油气预测储量区块升级评价方法[J]. 石油实验地质, 2015, 37(1): 117-123. doi: 10.11781/sysydz201501117QIN Weijun, FU Zhaohui. Improving evaluation of predicted hydrocarbon reserve zones[J]. Petroleum Geology & Experiment, 2013, 35(1): 117-123. doi: 10.11781/sysydz201501117 [12] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 石油天然气资源/储量分类: GB/T 19492-2004[S]. 北京: 中国标准出版社, 2004.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Classifications for petroleum resources/reserves: GB/T 19492-2004[S]. Beijing: China Standard Press, 2004. [13] 童佳, 刘小刚. 销售漏斗原理的逆向思考[J]. 中国市场, 2012(40): 5-6. https://www.cnki.com.cn/Article/CJFDTOTAL-SCZG201240001.htmTONG Jia, LIU Xiaogang. The reverse thinking of the principle of sales funnel[J]. China Market, 2012(40): 5-6. https://www.cnki.com.cn/Article/CJFDTOTAL-SCZG201240001.htm [14] YENSEN K. 4 salesfunnel misconceptions[J]. Target Marketing, 2004(3): 17-21. [15] LIN M Y, WANG C C, CHEN M S, et al. Using AHP and TOPSIS approaches in customer-driven product design process[J]. Computers in Industry, 2008, 59(1): 17-31. [16] 王新民, 秦健春, 张钦礼, 等. 基于AHP-TOPSIS评判模型的姑山驻留矿采矿方法优选[J]. 中南大学学报(自然科学版), 2013, 44(3): 1131-1137. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201303042.htmWANG Xinmin, QIN Jianchun, ZHANG Qinli, et al. Mining method optimization of Gu Mountain stay ore based on AHP-TOPSIS eva-luation model[J]. Journal of Central South University (Science and Technology), 2013, 44(3): 1131-1137. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201303042.htm [17] 张君峰, 毕海滨, 许浩, 等. 国外致密油勘探开发新进展及借鉴意义[J]. 石油学报, 2015, 36(2): 127-137. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201502001.htmZHANG Junfeng, BI Haibin, XU Hao, et al. New progress and reference significance of overseas tight oil exploration and deve-lopment[J]. Acta Petrolei Sinica, 2015, 36(2): 127-137. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201502001.htm [18] 周庆凡, 杨国丰. 致密油与页岩油的概念与应用[J]. 石油与天然气地质, 2012, 33(4): 541-544. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201204009.htmZHOU Qingfan, YANG Guofeng. Definition and application of tight oil and shale oil terms[J]. Oil & Gas Geology, 2012, 33(4): 541-544. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201204009.htm [19] 刘春燕. 致密碎屑岩储层"甜点"形成及保持机理: 以鄂尔多斯盆地西南部镇泾地区延长组长8油层组为例[J]. 石油与天然气地质, 2015, 36(6): 873-879. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201506003.htmLIU Chunyan. Formation and preservation mechanism of sweet spot in tight clastic reservoirs: a case study of Chang 8 oil layer of Yanchang Formation in Zhenjing area, southwest Ordos Basin[J]. Oil & Gas Geology, 2015, 36(6): 873-879. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201506003.htm [20] 钟大康. 致密油储层微观特征及其形成机理: 以鄂尔多斯盆地长6—长7段为例[J]. 石油与天然气地质, 2017, 38(1): 49-61. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201701007.htmZHONG Dakang. Micro-petrology, pore throat characteristics and genetic mechanism of tight oil reservoirs: a case from the 6th and 7th members of Triassic Yanchang Formation in the Ordos Basin[J]. Oil & Gas Geology, 2017, 38(1): 49-61. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201701007.htm [21] 陈晓智, 陈桂华, 李祺鑫, 等. 致密砂岩气储量不确定性计算方法及意义[J]. 断块油气田, 2019, 26(1): 17-20. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201901005.htmCHEN Xiaozhi, CHEN Guihua, LI Qixin, et al. Uncertainty reserves calculation for tight sandstone gas and its significance[J]. Fault-Block Oil and Gas Field, 2019, 26(1): 17-20. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201901005.htm [22] 朱如凯, 邹才能, 吴松涛, 等. 中国陆相致密油形成机理与富集规律[J]. 石油与天然气地质, 2019, 40(6): 1168-1184. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201906002.htmZHU Rukai, ZOU Caineng, WU Songtao, et al. Mechanism for generation and accumulation of continental tight oil in China[J]. Oil & Gas Geology, 2019, 40(6): 1168-1184. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201906002.htm [23] 周义博, 刘卫东, 孙灵辉, 等. 致密油藏水驱可动用性研究[J]. 断块油气田, 2019, 26(2): 244-247. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201902024.htmZHOU Yibo, LIU Weidong, SUN Linghui, et al. Research on availability of water flooding in tight oil reservoir[J]. Fault-Block Oil and Gas Field, 2019, 26(2): 244-247. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201902024.htm [24] 李锦锋, 杨连如, 张凤博, 等. 下寺湾油田延长组长8段致密油富集主控因素及"甜点"模式[J]. 油气藏评价与开发, 2019, 9(6): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ201906001.htmLI Jinfeng, YANG Lianru, ZHANG Fengbo, et al. Main controlling factors of enrichment and sweet spot mode of tight sandstone oil reservoir in Chang-8 Member of Yanchang Formation in Xiasiwan Oilfield[J]. Reservoir Evaluation and Development, 2019, 9(6): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ201906001.htm [25] 彭金宁, 邱岐, 王东燕, 等. 苏北盆地古近系阜宁组致密油赋存状态与可动用性[J]. 石油实验地质, 2020, 42(1): 53-59. doi: 10.11781/sysydz202001053PENG Jinning, QIU Qi, WANG Dongyan, et al. Occurrence and recoverability of tight oil in Paleogene Funing Formation, Subei Basin[J]. Petroleum Geology & Experiment, 2020, 42(1): 53-59. doi: 10.11781/sysydz202001053 [26] 闫林, 袁大伟, 陈福利, 等. 陆相致密油藏差异化含油控制因素及分布模式[J]. 新疆石油地质, 2019, 40(3): 262-268. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201903002.htmYAN Lin, YUAN Dawei, CHEN Fuli, et al. A study on differentiated oil-bearing controlling factors and distribution patterns of continental tight oil reservoir[J]. Xinjiang Petroleum Geology, 2019, 40(3): 262-268. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201903002.htm [27] 杨华, 李士祥, 刘显阳. 鄂尔多斯盆地致密油、页岩油特征及资源潜力[J]. 石油学报, 2013, 34(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201301000.htmYANG Hua, LI Shixiang, LIU Xianyang. Characteristics and resource prospects of tight oil and shale oil in Ordos Basin[J]. Acta Petrolei Sinica, 2013, 34(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201301000.htm [28] 姚泾利, 邓秀芹, 赵彦德, 等. 鄂尔多斯盆地延长组致密油特征[J]. 石油勘探与开发, 2013, 40(2): 150-158. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201302002.htmYAO Jingli, DENG Xiuqin, ZHAO Yande, et al. Characteristics of tight oil in Triassic Yanchang Formation, Ordos Basin[J]. Petroleum Exploration and Development, 2013, 40(2): 150-158. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201302002.htm [29] 贾承造, 邹才能, 李建忠, 等. 中国致密油评价标准、主要类型、基本特征及资源前景[J]. 石油学报, 2012, 33(3): 343-350. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201203000.htmJIA Chengzao, ZOU Caineng, LI Jianzhong, et al. Assessment criteria, main types, basic features and resource prospects of the tight oil in China[J]. Acta Petrolei Sinica, 2012, 33(3): 343-350. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201203000.htm [30] 王秀宇, 巨明霜, 杨文胜, 等. 致密油藏动态渗吸排驱规律与机理[J]. 油气地质与采收率, 2019, 26(3): 92-98. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201903012.htmWANG Xiuyu, JU Mingshuang, YANG Wensheng, et al. Dynamic imbibition principles and mechanism of tight oil reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(3): 92-98. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201903012.htm