Gas-bearing characteristics and preservation conditions of Upper Ordovician Wufeng-Lower Silurian Longmaxi shale in western Hubei
-
摘要: 上奥陶统五峰组—下志留统龙马溪组为鄂西地区重要的页岩气勘探目的层。利用鄂西地区20多口调查井资料,对其五峰组—龙马溪组岩性、沉积相、含气性特征及保存条件进行了分析。五峰组以黑色含碳硅质页岩为主,为深水硅泥质陆棚相,龙马溪组以灰黑色碳质页岩为主,为深水泥质陆棚相;五峰组—龙马溪组与下志留统新滩组下部组成2个三级层序且含气量符合TST1 > TST2 > HST2 > HST1的特征,五峰组含气性略好于龙马溪组,天阳坪断裂以北及咸丰断裂带以东含气量好,由于多数钻井处于深水陆棚相,沉积相对含气性的平面差异影响较小;目的层顶板下志留统新滩组粉砂质泥岩和底板奥陶系致密灰岩横向分布稳定,为区域良好盖层;五峰组—龙马溪组埋藏史可以划分为4个阶段,与四川盆地相比鄂西地区的埋藏史呈现“抬升时间偏早”和“抬升速率过快”的特征。埋深、距离正断层的远近对含气性有一定影响,但断裂和褶皱的匹配样式是影响含气量高低的最关键因素,远离正断层且位于向斜核部或翼部,离正断层较远、位于断层下盘且上倾方向未与断裂沟通这2种构造样式有利于页岩气的聚集成藏。Abstract: The Upper Ordovician Wufeng to Lower Silurian Longmaxi formations are important exploration targets for shale gas in the western Hubei province. The lithology, sedimentary facies, gas-bearing characteristics and preservation conditions of the Wufeng-Longmaxi formations were analyzed with the samples of more than 20 survey wells. The Wufeng Formation is dominated by black carbonaceous siliceous shale of deep-water siliceous argillaceous shelf facies, while the Longmaxi Formation is dominated by gray-black carbonaceous shale of deep-water argillaceous shelf facies. The Wufeng-Longmaxi formations and the lower part of Lower Silurian Xintan Formation consist of two three-level sequences, and the gas content conforms to the characteristics of TST1 > TST2 > HST2 > HST1. The gas content of the Wufeng Formation is slightly higher than that of the Longmaxi Formation. A good gas potential has been found to the north of Tianyangping Fault and the east of Xianfeng Fault. Since most wells were in the deep shelf facies area, sedimentary facies have little effect on the plane distribution of shale gas content. The studies of preservation conditions showed that both the Xintan Formation as the roof and the Ordovician as the floor have good sealing properties. The burial history of Wufeng-Longmaxi formations can be divided into four stages, and shows the characteristics of "early uplift time" and "rapid uplift rate" when compared with the Sichuan Basin. The burial depth and the distance to normal fault have certain influence on the gas content. However, the matching pattern between fault and fold is the most important factor affecting gas content. Two structural patterns are beneficial to shale gas accumulation, one is being far away from normal fault and locating at the syncline wing or core, the other is being far away from normal fault and locating at the footwall of fault and the target stratum is not connected to the fault in the up-dip direction.
-
Key words:
- preservation condition /
- shale gas /
- gas content /
- Wufeng-Longmaxi formations /
- western Hubei
-
表 1 鄂西地区主要区域断裂带特征
Table 1. Characteristics of main regional fault zones in western Hubei province
名称 性质 走向 倾向 倾角/(°) 长度/km 切穿层位 齐岳山断裂(F1) 压扭性 北北东 北西 80 50 建始—彭水断裂(F2) 早期压扭、后期张性 北北东 南东 310 恩施—黔江断裂(F3) 张性断裂 北北东 南东 60~80 120 三叠系—志留系 大青山断裂(F4) 早期张性、晚期压扭性 北北东 东 160 三叠系—志留系 咸丰断裂(F5) 早期为压扭性、后期张性 北北东 北西 50 80 襄广断裂(F6) 早期逆冲、中期断陷、后期逆冲推覆 北东东 北 25~75 300 阳日断裂(F7) 逆冲断层 东西 北 30~80 120 志留系—震旦系 新华断裂(F8) 早期压剪性,后期张性 北北东 西 360 侏罗系—震旦系 仙女山断裂(F9) 早期张性、中期压扭性、后期张性 北北西 南西 100 白垩系—二叠系 天阳坪断裂(F10) 逆冲断层 北西 南西 20~40 150 寒武系—震旦系 雾渡河断裂(F11) 早期压性、后期张性 北西 北 60~80 160 寒武系—震旦系 通城河断裂(F12) 张性断裂 北北西 东 200 三叠系—寒武系 远安断裂(F13) 早期压扭性、中期张性、后期压扭性 北北西 西 50~80 60 志留系—震旦系 表 2 鄂西地区上奥陶统五峰组—下志留统龙马溪组含气性特征统计
Table 2. Characteristics of gas content of Wufeng-Longmaxi formations in western Hubei province
井号 底界埋深/m 厚度/
mω(TOC)/% 沉积相带 构造部位 与正断层距离/
km解吸含气量/
(m3·t-1)总含气量/
(m3·t-1)咸地2 1 520.0 73.1 0.65~8.08$\frac{0.65 \sim 8.08}{1.95}$1.95 深水陆棚 中央背斜带桑柘坪向斜近核部 距恩施—黔江断裂
12.5$\frac{0.15 \sim 1.75}{0.62}$ $\frac{0.63 \sim 3.45}{1.56}$ 来地1 947.9 50.9 深水陆棚 咸丰背斜带内次级向斜近核部 距新华断裂
13.9$\frac{0.80 \sim 3.73}{1.67}$ ZY1 261.5 35.9 $\frac{0.26 \sim 4.71}{1.55}$ 深水陆棚 咸丰背斜带次级向斜近核部 距新华断裂
1.9$\frac{0.30 \sim 0.50}{0.40}$ ZY2 378.4 35.4 $\frac{0.20 \sim 7.60}{1.88}$ 深水陆棚 咸丰背斜带次级向斜近核部 距新华断裂
1.4$\frac{0.22 \sim 0.39}{0.34}$ $\frac{1.37 \sim 2.13}{1.68}$ WD1 422.0 31.2 $\frac{1.10 \sim 5.00}{3.17}$ 深水陆棚 中央背斜带西翼 距建始—彭水断裂
5.6$\frac{0.20 \sim 1.40}{0.63}$ 茅地1 899.4 51.6 $\frac{0.99 \sim 6.20}{3.42}$ 深水陆棚 中央背斜带东翼 距建始—彭水断裂
3.7$\frac{0.04 \sim 0.09}{0.07}$ $\frac{0.18 \sim 0.47}{0.35}$ 建地1 1 780.0 42.0 $\frac{0.20 \sim 10.50}{4.39}$ 深水陆棚 花果坪向斜西翼次级背斜东翼 距新华断裂
13.6$\frac{0.11 \sim 0.92}{0.53}$ ZD2 921.5 38.8 $\frac{0.36 \sim 7.76}{1.86}$ 深水陆棚 香龙山背斜北翼 距新华断裂
4.7$\frac{0 \sim 0.12}{0.03}$ $\frac{0 \sim 0.19}{0.04}$ ZD1 346.0 38.8 $\frac{0.54 \sim 4.58}{1.52}$ 深水陆棚 香龙山背斜北翼 距新华断裂
2.20 秭地3 1 162.4 42.5 $\frac{0.08 \sim 5.40}{2.34}$ 深水陆棚 黄陵背斜带次级褶皱背斜东翼 距仙女山断裂
11.8$\frac{0.50 \sim 1.09}{0.73}$ $\frac{1.04 \sim 1.73}{1.31}$ 红地1 496.3 44.5 $\frac{0.23 \sim 5.04}{2.31}$ 深水陆棚 神农架背斜北翼 WD6 245.0 24.5 $\frac{0.90 \sim 4.50}{2.11}$ 深水陆棚 黄陵背斜带西翼 距仙女山断裂
1.7$\frac{0.30 \sim 1.16}{0.36}$ 远地1 786.0 30.0 $\frac{0.43 \sim 4.25}{1.73}$ 深水陆棚 黄陵背斜东翼 距通城河断裂
2.9$\frac{0.13 \sim 1.19}{0.62}$ $\frac{0.32 \sim 1.94}{1.03}$ 宜地1 1 341.0 25.0 $\frac{0.80 \sim 6.00}{3.32}$ 深水陆棚 黄陵背斜东翼 距通城河断裂
7.1$\frac{0.50 \sim 2.16}{0.80}$ 夷地1 625.0 26.1 $\frac{0.24 \sim 5.53}{1.79}$ 深水陆棚 黄陵背斜东翼 距通城河断裂
16.8$\frac{0.52 \sim 2.82}{1.29}$ $\frac{0.57 \sim 3.31}{1.65}$ 宜页2 2 731.0 45.0 $\frac{1.07 \sim 4.30}{2.56}$ 深水陆棚 黄陵背斜东翼 距通城河断裂
12.9$\frac{1.03 \sim 3.33}{1.97}$ WD2 317.9 22.9 $\frac{1.31 \sim 4.89}{2.99}$ 深水陆棚斜坡 香龙山背斜西翼 距新华断裂
2.8$\frac{0.10 \sim 0.30}{0.20}$ $\frac{1.20 \sim 1.55}{1.38}$ 巴地2 1 420.0 23.8 $\frac{0.06 \sim 4.34}{1.86}$ 深水陆棚斜坡 香龙山背斜南东翼 距新华断裂
2.10 长地2 584.6 14.0 $\frac{0.56 \sim 2.28}{1.63}$ 浅水陆棚 宜都—鹤峰背斜带次级向斜北翼 $\frac{0.05 \sim 0.11}{0.07}$ $\frac{0.21 \sim 0.46}{0.28}$ 注:式中分式的意义为:$\frac{\text { 最小值~ 最大值}}{\text { 平均值}}$。 -
[1] 张金川, 金之钧, 袁明生. 页岩气成藏机理和分布[J]. 天然气工业, 2004, 24(7): 15-18. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200407004.htmZHANG Jinchuan, JIN Zhijun, YUAN Mingsheng. Reservoiring mechanism of shale gas and its distribution[J]. Natural Gas Industry, 2004, 24(7): 15-18. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200407004.htm [2] 王志刚. 涪陵页岩气勘探开发重大突破与启示[J]. 石油与天然气地质, 2005, 36(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201501002.htmWANG Zhigang. Breakthrough of Fuling shale gas exploration and development and its inspiration[J]. Oil & Gas Geology, 2005, 36(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201501002.htm [3] 卢龙飞, 秦建中, 申宝剑, 等. 中上扬子地区五峰组—龙马溪组硅质页岩的生物成因证据及其与页岩气富集的关系[J]. 地学前缘, 2018, 25(4): 226-236. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201804022.htmLU Longfei, QIN Jianzhong, SHEN Baojian, et al. The origin of biogenic silica in siliceous shale from Wufeng-Longmaxi Formation in the Middle and Upper Yangtze region and its relationship with shale gas enrichment[J]. Earth Science Frontiers, 2018, 25(4): 226-236. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201804022.htm [4] 腾格尔, 申宝剑, 俞凌杰, 等. 四川盆地五峰组—龙马溪组页岩气形成与聚集机理[J]. 石油勘探与开发, 2017, 44(1): 69-78. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201701009.htmTENG B, SHEN Baojian, YU Lingjie, et al. Mechanisms of shale gas generation and accumulation in the Ordovician Wufeng-Longmaxi Formation, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44(1): 69-78. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201701009.htm [5] 聂海宽, 金之钧, 边瑞康, 等. 四川盆地及其周缘上奥陶统五峰组—下志留统龙马溪组页岩气"源—盖控藏"富集[J]. 石油学报, 2016, 37(5): 557-571. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201605001.htmNie Haikuan, JIN Zhijun, BIAN Ruikang, et al. The "source-cap hydrocarbon-controlling" enrichment of shale gas in Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation of Sichuan Basin and its periphery[J]. Acta Petrolei Sinica, 2016, 37(5): 557-571. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201605001.htm [6] 赵文智, 李建忠, 杨涛, 等. 中国南方海相页岩气成藏差异性比较与意义[J]. 石油勘探与开发, 2016, 43(4): 499-510. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201604002.htmZHAO Wenzhi, LI Jianzhong, YANG Tao, et al. Geological diffe-rence and its significance of marine shale gases in South China[J]. Petroleum Exploration and Development, 2016, 43(4): 499-510. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201604002.htm [7] 龙幼康. 中扬子地区下古生界页岩气的勘探潜力[J]. 地质通报, 2011, 30(2): 344-348. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2011Z1021.htmLONG Youkang. Lower Paleozoic shale gas exploration potential in the central Yangtze area, China[J]. Geological Bulletin of China, 2011, 30(2): 344-348. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2011Z1021.htm [8] 翟刚毅, 王玉芳, 包书景, 等. 我国南方海相页岩气富集高产主控因素及前景预测[J]. 地球科学, 2017, 42(7): 1057-1068. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201707002.htmZHAI Gangyi, WANG Yufang, BAO Shujing, et al. Major factors controlling the accumulation and high productivity of marine shale gas and prospect forecast in southern China[J]. Earth Science, 2017, 42(7): 1057-1068. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201707002.htm [9] 王秀平, 牟传龙, 肖朝晖, 等. 鄂西来凤—咸丰地区五峰组—龙马溪组岩石学特征及其成因[J]. 石油与天然气地质, 2019, 40(1): 50-66. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201901007.htmWANG Xiuping, MOU Chuanlong, XIAO Zhaohui, et al. Petrologic characteristics and genesis analysis of the Ordovician Wufeng Formation-Silurian Longmaxi Formation in Laifeng-Xianfeng area of western Hubei[J]. Oil & Gas Geology, 2019, 40(1): 50-66. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201901007.htm [10] 武瑾, 梁峰, 吝文, 等. 渝东北地区巫溪2井五峰组—龙马溪组页岩气储层及含气性特征[J]. 石油学报, 2017, 38(5): 512-524. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201705004.htmWU Jin, LIANG Feng, LIN Wen, et al. Reservoirs characteristics and gas-bearing capacity of Wufeng-Longmaxi Formation shale in Well WX-2, northeast Chongqing area[J]. Acta Petrolei Sinica, 2017, 38(5): 512-524. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201705004.htm [11] 王宏坤, 吕修祥, 王玉满, 等. 鄂西下志留统龙马溪组页岩储集特征[J]. 天然气地球科学, 2018, 29(3): 415-423. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201803012.htmWANG Hongkun, LÜ Xiuxiang, WANG Yuman, et al. The reservoir characteristics of Lower Silurian Longmaxi Formation in western Hubei[J]. Natural Gas Geoscience, 2018, 29(3): 415-423. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201803012.htm [12] YI Jizheng, BAO Hanyong, ZHENG Aiwei, et al. Main factors controlling marine shale gas enrichment and high-yield wells in South China: a case study of the Fuling shale gas field[J]. Marine and Petroleum Geology, 2019, 103: 114-125. [13] 郭彤楼. 中国式页岩气关键地质问题与成藏富集主控因素[J]. 石油勘探与开发, 2016, 43(3): 317-326. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201603002.htmGUO Tonglou. Key geological issues and main controls on accumulation and enrichment of Chinese shale gas[J]. Petroleum Exploration and Development, 2016, 43(3): 317-326. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201603002.htm [14] 郭卫星, 熊亮, 魏力民. 川东南构造变形特征及其对页岩气保存的影响[J]. 煤田地质与勘探, 2016, 44(6): 21-26. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT201606004.htmGUO Weixing, XIONG Liang, WEI Limin. Structure deformation of southeast Sichuan and its influences on preservation of shale gas[J]. Coal Geology & Exploration, 2016, 44(6): 21-26. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT201606004.htm [15] 潘仁芳, 唐小玲, 孟江辉, 等. 桂中坳陷上古生界页岩气保存条件[J]. 石油与天然气地质, 2014, 35(4): 534-541. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201404013.htmPAN Renfang, TANG Xiaoling, MENG Jianghui, et al. Shale gas preservation conditions for the Upper Paleozoic in Guizhong Depression[J]. Oil & Gas Geology, 2014, 35(4): 534-541. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201404013.htm [16] 陈更生, 董大忠, 王世谦, 等. 页岩气藏形成机理与富集规律初探[J]. 天然气工业, 2009, 29(5): 17-21. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200905004.htmCHEN Gengsheng, DONG Dazhong, WANG Shiqian, et al. A preli-minary study on accumulation mechanism and enrichment pattern of shale gas[J]. Natural Gas Industry, 2009, 29(5): 17-21. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200905004.htm [17] 魏志红. 四川盆地及其周缘五峰组—龙马溪组页岩气的晚期逸散[J]. 石油与天然气地质, 2015, 36(4): 659-665. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201504017.htmWEI Zhihong. Late fugitive emission of shale gas from Wufeng-Longmaxi Formation in Sichuan Basin and its periphery[J]. Oil & Gas Geology, 2015, 36(4): 659-665. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201504017.htm [18] 王佳, 谭先锋, 田景春, 等. 富有机质页岩中烃类动态运移对页岩气富集成藏的制约: 以四川盆地龙马溪组为例[J]. 石油实验地质, 2017, 39(6): 755-762. doi: 10.11781/sysydz201706755WANG Jia, TAN Xianfeng, TIAN Jingchun, et al. Constraints of hydrocarbon migration in Longmaxi shale in Sichuan Basin on shale gas accumulation[J]. Petroleum Geology & Experiment, 2017, 39(6): 755-762. doi: 10.11781/sysydz201706755 [19] 聂海宽, 包书景, 高波, 等. 四川盆地及其周缘下古生界页岩气保存条件研究[J]. 地学前缘, 2012, 19(3): 280-294. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201203030.htmNIE Haikuan, BAO Shujing, GAO Bo, et al. A study of shale gas preservation conditions for the Lower Paleozoic in Sichuan Basin and its periphery[J]. Earth Science Frontiers, 2012, 19(3): 280-294. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201203030.htm [20] 郭旭升. 南方海相页岩气"二元富集"规律: 四川盆地及周缘龙马溪组页岩气勘探实践认识[J]. 地质学报, 2014, 88(7): 1209-1218. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201407001.htmGUO Xusheng. Rules of two-factor enrichiment for marine shale gas in southern China: understanding from the Longmaxi Formation Shale Gas in Sichuan Basin and its surrounding area[J]. Acta Geologica Sinica, 2014, 88(7): 1209-1218. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201407001.htm [21] 郭彤楼, 张汉荣. 四川盆地焦石坝页岩气田形成与富集高产模式[J]. 石油勘探与开发, 2014, 41(1): 28-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201401003.htmGUO Tonglou, ZHANG Hanrong. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin[J]. Petroleum Exploration and Development, 2014, 41(1): 28-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201401003.htm [22] 王濡岳, 丁文龙, 龚大建, 等. 黔北地区海相页岩气保存条件: 以贵州岑巩区块下寒武统牛蹄塘组为例[J]. 石油与天然气地质, 2016, 37(1): 45-55. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201601008.htmWANG Ruyue, DING Wenlong, GONG Dajian, et al. Gas preservation conditions of marine shale in northern Guizhou area: a case study of the Lower Cambrian Niutitang Formation in the Cen'gong block, Guizhou Province[J]. Oil & Gas Geology, 2016, 37(1): 45-55. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201601008.htm [23] 姜生玲, 毛曼, 洪克岩, 等. 湘鄂西地区下寒武统牛蹄塘组页岩气聚集条件及含气性影响因素[J]. 海相油气地质, 2018, 23(1): 75-82. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ201801009.htmJIANG Shengling, MAO Man, HONG Keyan, et al. Conditions of shale gas accumulation and gas-bearing factors of Lower Cambrian Niutitang formation in western Hu'nan and Hubei[J]. Marine Origin Petroleum Geology, 2018, 23(1): 75-82. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ201801009.htm