Influencing factors for breakthrough pressure of carbonate caprocks
-
摘要: 除传统的膏盐岩和泥页岩外,较多研究证实碳酸盐岩也可作为油气封盖层。突破压力是盖层封闭能力评价的特征参数,通过对塔里木盆地不同岩性类型、不同样品长度的碳酸盐岩在不同温度下进行突破压力测定实验,分析岩石特征、温度、样品长度对实验结果的影响。岩性、渗透率及裂缝发育情况对结果影响明显;相同温度下,样品长度跟突破压力结果没有较好的相关性;不同温度下,大部分样品随温度的升高突破压力逐渐降低。因此在盖层评价中地温对盖层的封闭能力有着不可忽视的作用,是盖层封闭能力评价需要考虑的关键因素,高地温情况下泥质含量高的碳酸盐岩具有更好的封闭能力。Abstract: In addition to traditional gypsum salt rocks and shale rocks, many studies have confirmed that carbonate rocks also work as oil and gas seals. Breakthrough pressure is a characteristic parameter for the evaluation of the sealing ability of cap rocks. Different lithology types and lengths of carbonate rocks were subjected to breakthrough pressure measurement experiments at different temperatures, results showed that lithology, permeability and fracture development have obvious effects to rock characteristics. At the same temperature, sample length does not have a good correlation with breakthrough pressure, however, at different temperatures, the breakthrough pressure of most samples gradually decreases with the increase of temperature. Therefore, formation temperature has a non-negligible effect on the sealing ability of cap rocks. It is a key factor that needs to be considered for the evaluation of the sealing capacity of cap rocks. The carbonate rock with a high argillaceous content has better sealing capacity under high geothermal conditions.
-
Key words:
- high temperature /
- carbonate rock /
- breakthrough pressure /
- influencing factors
-
图 5 20 MPa下温度对界面张力的影响
数据引自文献[21]。
Figure 5. Effect of temperature on interfacial tension at the pressure of 20 MPa
图 7 不同岩性突破压力随温度变化关系
泥岩数据引自文献[22]。
Figure 7. Correlation between breakthrough pressure and temperature for different lithologies
表 1 塔里木盆地寒武系—奥陶系碳酸盐岩部分盖层样品基本参数
Table 1. Basic parameters of Cambrian-Ordovician carbonate samples in Tarim Basin
样品序号 层位 岩性 孔隙度/
%渗透率/
10-3 μm2直径/
mm岩石密度/
(g·cm-3)系 组 A1 奥陶系 吐木休克组 亮晶藻砂屑灰岩 0.37 0.042 3 24.87 A2 奥陶系 吐木休克组 泥晶生屑灰岩 0.02 0.000 8 24.87 A3 奥陶系 吐木休克组 亮晶藻砂屑灰岩 2.70 0.021 6 2.63 A4 奥陶系 一间房组 泥晶颗粒灰岩 0.29 0.000 8 24.87 A5 奥陶系 一间房组 泥晶灰岩 1.15 0.007 7 2.68 A6 奥陶系 一间房组 颗粒灰岩 2.51 0.015 4 2.63 A7 奥陶系 鹰山组 亮晶砂屑灰岩 0.39 0.015 7 24.85 A8 奥陶系 鹰山组 粉细晶含灰云岩 0.61 0.002 8 24.87 A9 寒武系 下丘里塔格组 泥粉晶白云岩 6.03 0.017 4 25.20 2.67 A10 寒武系 阿瓦塔格组 膏质云岩 1.26 0.009 5 24.89 A11 寒武系 阿瓦塔格组 泥晶白云岩 19.31 0.684 0 25.30 2.29 A12 寒武系 沙伊里克组 含泥膏质云岩 0.39 0.003 6 24.75 A13 寒武系 吾松格尔组 致密云岩 2.74 0.009 4 25.30 2.76 表 2 塔里木盆地不同碳酸盐岩样品矿物组成
Table 2. Mineral compositions of different types of carbonate rocks in Tarim Basin
样品序号 岩性 矿物组分/% 方解石 白云石 泥质 硅质 黄铁矿 硬石膏 石英 C1 泥晶生屑灰岩 83.9 1.5 9.6 5 C2 亮晶藻砂屑灰岩 99 1 C3 泥晶颗粒灰岩 97 3 < 1 < 1 C4 亮晶砂屑灰岩 89 6.0 5 C5 粉细晶含灰云岩 14.3 85.7 C6 膏质云岩 63.1 27.8 9.1 C7 含泥膏质云岩 52.0 10 38.0 -
[1] 周波, 李慧莉, 云金表, 等. 基于成藏体系理论的碳酸盐岩含油气区带评价方法: 以塔里木盆地寒武系为例[J]. 石油实验地质, 2020, 42(1): 132-138. doi: 10.11781/sysydz202001132ZHOU Bo, LI Huili, YUN Jinbiao, et al. Petroleum accumulation system evaluation of carbonate oil and gas: a case study of Cam-brian in Tarim Basin[J]. Petroleum Geology & Experiment, 2020, 42(1): 132-138. doi: 10.11781/sysydz202001132 [2] 吕修祥, 屈怡倩, 于红枫, 等. 碳酸盐岩盖层封闭性讨论: 以塔里木盆地塔中北斜坡奥陶系为例[J]. 石油实验地质, 2014, 36(5): 532-538. doi: 10.11781/sysydz201405532LÜ Xiuxiang, QU Yiqian, YU Hongfeng, et al. Sealing capacity of carbonate cap rocks: a case study of Ordovician in northern slope of central Tarim Basin[J]. Petroleum Geology & Experiment, 2014, 36(5): 532-538. doi: 10.11781/sysydz201405532 [3] BERG R R. Capillary pressures in stratigraphic traps[J]. AAPG Bulletin, 1975, 59(6): 939-956. [4] SCHOWALTER T T. Mechanics of secondary hydrocarbon migration and entrapment[J]. AAPG Bulletin, 1979, 63(5): 723-760. [5] 刘东鹰. 江苏下扬子区中—古生界盖层突破压力特征[J]. 石油实验地质, 2010, 32(4): 362-365. doi: 10.11781/sysydz201004362LIU Dongying. Characteristics of breakthrough pressure of Mesozoic-Paleozoic cover in Jiangsu Lower Yangtze area[J]. Petroleum Geo-logy & Experiment, 2010, 32(4): 362-365. doi: 10.11781/sysydz201004362 [6] 魏宁, 李小春, 王颖, 等. 不同温压条件下泥质粉砂岩二氧化碳突破压的试验研究[J]. 岩土力学, 2014, 35(1): 98-104. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401014.htmWEI Ning, LI Xiaochun, WANG Ying, et al. Experimental studies of CO2 breakthrough pressure of argillaceous siltstone under different pressures and temperatures[J]. Rock and Soil Mechanics, 2014, 35(1): 98-104. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401014.htm [7] AMANN-HILDENBRAND A, BERTIER P, BUSCH A, et al. Experimental investigation of the sealing capacity of generic clay-rich caprocks[J]. International Journal of Greenhouse Gas Control, 2013, 19: 620-641. [8] 邓祖佑, 王少昌, 姜正龙, 等. 天然气封盖层的突破压力[J]. 石油与天然气地质, 2000, 21(2): 136-138. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200002010.htmDENG Zuyou, WANG Shaochang, JIANG Zhenglong, et al. Breaking pressure of gas cap rocks[J]. Oil & Gas Geology, 2000, 21(2): 136-138. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200002010.htm [9] HILDENBRAND A, SCHLÖMER S, KROOSS B M, et al. Gas breakthrough experiments on pelitic rocks: comparative study with N2, CO2 and CH4[J]. Geofluids, 2004, 4(1): 61-80. [10] 吕延防, 陈章明, 付广, 等. 盖岩排替压力研究[J]. 大庆石油学院学报, 1993, 17(4): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY199304000.htmLÜ Yanfang, CHEN Zhangming, FU Guang, et al. Research on the displacement pressure of caprock[J]. Journal of Daqing Petroleum Institute, 1993, 17(4): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY199304000.htm [11] BUSCH A, AMANN-HILDENBRAND A. Predicting capillarity of mudrocks[J]. Marine and Petroleum Geology, 2013, 45: 208-223. [12] 黄志龙, 郝石生. 盖层突破压力及排替压力的求取方法[J]. 新疆石油地质, 1994, 15(2): 163-166. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD402.011.htmHUANG Zhilong, HAO Shisheng. A method of estamating breakthrough pressure and displacement pressure of caprock[J]. Xinjiang Petroleum Geology, 1994, 15(2): 163-166. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD402.011.htm [13] 张璐, 谢增业, 王志宏, 等. 四川盆地高石梯—磨溪地区震旦系—寒武系气藏盖层特征及封闭能力评价[J]. 天然气地球科学, 2015, 26(5): 796-804. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201505003.htmZHANG Lu, XIE Zengye, WANG Zhihong, et al. Caprock characteristics and sealing ability evaluation of Sinian-Cambrian gas reservoirs in Gaoshiti-Moxi area, Sichuan Basin[J]. Natural Gas Geoscience, 2015, 26(5): 796-804. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201505003.htm [14] 黄海平, 邓宏文. 泥岩盖层的封闭性能及其影响因素[J]. 天然气地球科学, 1995, 6(2): 20-26. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX199502003.htmHUANG Haiping, DENG Hongwen. Sealing performance and influencing factors of mudstone caprock[J]. Natural Gas Geoscience, 1995, 6(2): 20-26. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX199502003.htm [15] 李学田, 张义纲. 天然气盖层质量的影响因素及盖层形成时间的探讨: 以济阳拗陷为例[J]. 石油实验地质, 1992, 14(3): 282-290. doi: 10.11781/sysydz199203282LI Xuetian, ZHANG Yigang. Discussion on the influential factors over the quality of natural-gas caprocks and the time of the caprock formation[J]. Petroleum Geology & Experiment, 1992, 14(3): 282-290. doi: 10.11781/sysydz199203282 [16] 付广, 姜振学. 影响盖层形成和发育的地质因素分析[J]. 天然气地球科学, 1994, 5(5): 6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX199405001.htmFU Guang, JIANG Zhenxue. Analysis of geological factors affect-ing the formation and development of caprock[J]. Natural Gas Geoscience, 1994, 4(5): 6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX199405001.htm [17] 李双建, 沃玉进, 周雁, 等. 影响高演化泥岩盖层封闭性的主控因素分析[J]. 地质学报, 2011, 85(10): 1691-1697. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201110013.htmLI Shuangjian, WO Yujin, ZHOU Yan, et al. Controlling factors affect sealing capability of well-developed muddy cap rock[J]. Acta Geologica Sinica, 2011, 85(10): 1691-1697. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201110013.htm [18] 赵子娟, 李义连, 马鑫, 等. 黏土矿物组合类型对盖层封闭性的影响[J]. 安全与环境工程, 2014, 21(6): 84-91. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201406015.htmZHAO Zijuan, LI Yilian, MA Xin, et al. Influence of assemblage types of clay minerals on the sealing ability of caprock[J]. Safety and Environmental Engineering, 2014, 21(6): 84-91. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201406015.htm [19] ARMITAGE P J, WORDEN R H, FAULKNER D R, et al. Diagenetic and sedimentary controls on porosity in Lower Carboni-ferous fine-grained lithologies, Krechba field, Algeria: a petrolo-gical study of a caprock to a carbon capture site[J]. Marine and Petroleum Geology, 2010, 27(7): 1395-1410. [20] 李世朝. 塔里木盆地寒武系盖层封闭能力评价[D]. 大庆: 东北石油大学, 2018.LI Shizhao. Evaluation of caprock sealing ability of Cambrian in Tarim Basin[D]. Daqing: Northeast Petroleum University, 2018. [21] 赵国英, 阎炜, 陈光进, 等. 甲烷+氮气/水体系高压界面张力的测定与计算[J]. 石油大学学报(自然科学版), 2002, 26(1): 75-82. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX200201021.htmZHAO Guoying, YAN Wei, CHEN Guangjin, et al. Measurement and calculation of high-pressure interfacial tension of methane+nitrogen/water system[J]. Journal of the University of Petroleum, China, 2002, 26(1): 75-82. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX200201021.htm [22] 刘濮毓. 柴北缘西段古近系盖层封闭能力综合评价[D]. 北京: 中国石油大学(北京), 2020: 39-40.LIU Puyu. Comprehensive evaluation of sealing ability of Paleogene caprocks in the western part of the northern margin, Qaidam Basin[D]. Beijing: China University of Petroleum (Beijing), 2020: 39-40. [23] 张连英. 高温作用下泥岩的损伤演化及破裂机理研究[D]. 徐州: 中国矿业大学, 2012.ZHANG Lianying. Research on damage evolution and fracture mechanisms of mudstone under high temperature[D]. Xuzhou: China University of Mining and Technology, 2012. [24] 吕延防, 张绍臣, 王亚明. 盖层封闭能力与盖层厚度的定量关系[J]. 石油学报, 2000, 21(2): 27-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200002005.htmLÜ Yanfang, ZHANG Shaochen, WANG Yaming. Research of quantitative relations between sealing ability and thickness of caprock[J]. Acta Petrolei Sinica, 2000, 21(2): 27-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200002005.htm [25] 张蕾. 盖层物性封闭力学机制新认识[J]. 天然气地球科学, 2010, 21(1): 112-116. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201001015.htmZHANG Lei. Reevaluation of caprock physical sealing mechanic[J]. Natural Gas Geoscience, 2010, 21(1): 112-116. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201001015.htm [26] 付广, 张发强, 吕延防. 厚度在泥岩盖层封盖油气中的作用[J]. 天然气地球科学, 1998, 9(6): 20-25. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX199806002.htmFU Guang, ZHANG Faqiang, LÜ Yanfang. The function of thickness in sealing oil and gas by mudstone caprock[J]. Natural Gas Geoscience, 1998, 9(6): 20-25. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX199806002.htm [27] 俞凌杰, 范明, 刘伟新, 等. 盖层封闭机理研究[J]. 石油实验地质, 2011, 33(1): 91-95. doi: 10.11781/sysydz201101091YU Lingjie, FAN Ming, LIU Weixin, et al. Seal mechanism of cap rocks[J]. Petroleum Geology & Experiment, 2011, 33(1): 91-95. doi: 10.11781/sysydz201101091 [28] 林潼, 王孝明, 张璐, 等. 盖层厚度对天然气封闭能力的实验分析[J]. 天然气地球科学, 2019, 30(3): 322-330. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201903003.htmLIN Tong, WANG Xiaoming, ZHANG Lu, et al. Experimental analysis of the effect of caprock thickness on sealed natural gas[J]. Natural Gas Geoscience, 2019, 30(3): 322-330. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201903003.htm [29] 付晓飞, 吴桐, 吕延防, 等. 油气藏盖层封闭性研究现状及未来发展趋势[J]. 石油与天然气地质, 2018, 39(3): 454-471. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201803005.htmFU Xiaofei, WU Tong, LYU Yanfang, et al. Research status and development trend of the reservoir caprock sealing properties[J]. Oil & Gas Geology, 2018, 39(3): 454-471. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201803005.htm