留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

西非下刚果—刚果扇盆地A区块中新统深水水道体系沉积特征及演化

陈华 林畅松 张忠民 张德民 朱奕璇 吴高奎 李茗 徐海 郭荣涛

陈华, 林畅松, 张忠民, 张德民, 朱奕璇, 吴高奎, 李茗, 徐海, 郭荣涛. 西非下刚果—刚果扇盆地A区块中新统深水水道体系沉积特征及演化[J]. 石油实验地质, 2021, 43(3): 476-486. doi: 10.11781/sysydz202103476
引用本文: 陈华, 林畅松, 张忠民, 张德民, 朱奕璇, 吴高奎, 李茗, 徐海, 郭荣涛. 西非下刚果—刚果扇盆地A区块中新统深水水道体系沉积特征及演化[J]. 石油实验地质, 2021, 43(3): 476-486. doi: 10.11781/sysydz202103476
CHEN Hua, LIN Changsong, ZHANG Zhongmin, ZHANG Demin, ZHU Yixuan, WU Gaokui, LI Ming, XU Hai, GUO Rongtao. Depositional characteristics and evolution of Miocene deep-water channel systems in block A of Lower Congo-Congo Fan Basin, West Africa[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(3): 476-486. doi: 10.11781/sysydz202103476
Citation: CHEN Hua, LIN Changsong, ZHANG Zhongmin, ZHANG Demin, ZHU Yixuan, WU Gaokui, LI Ming, XU Hai, GUO Rongtao. Depositional characteristics and evolution of Miocene deep-water channel systems in block A of Lower Congo-Congo Fan Basin, West Africa[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(3): 476-486. doi: 10.11781/sysydz202103476

西非下刚果—刚果扇盆地A区块中新统深水水道体系沉积特征及演化

doi: 10.11781/sysydz202103476
基金项目: 

国家自然科学基金 91328201

国家自然科学基金 41902119

国家科技重大专项 2016ZX05004-002

详细信息
    作者简介:

    陈华(1990-), 女, 博士研究生, 从事沉积学和层序地层学研究。E-mail: Chenhua0630@163.com

    通讯作者:

    林畅松(1958-), 男, 教授, 博士生导师, 从事沉积盆地分析研究。E-mail: lincs58@163.com

  • 中图分类号: TE121.3

Depositional characteristics and evolution of Miocene deep-water channel systems in block A of Lower Congo-Congo Fan Basin, West Africa

  • 摘要: 深水水道体系沉积演化特征及其控制因素研究是揭示大陆边缘“源—汇”过程和取得深水油气勘探突破的关键。下刚果—刚果扇盆地中新统发育有大型深水水道沉积,基于A区块的地震、测井、岩心等资料,利用地震属性分析等手段,阐述了中新统层序地层格架内深水水道体系的沉积特征、演化规律并讨论了其控制因素。区内中新统可划分为4个三级层序(SQ1-SQ4),大体对应于下中新统、中中新统下段、中中新统上段及上中新统。深水水道体系岩性上以砂岩为主,沉积单元包括水道、天然堤—溢岸、末端朵体和块体搬运沉积等。SQ1以发育弱受限—不受限的加积型水道或末端朵体为主,SQ2主要发育弱受限的侵蚀型—加积型水道,SQ3以受限侵蚀型水道的发育为主导,SQ4多见孤立侵蚀型过路水道。构造隆升与剥蚀、冰期气候以及海平面变化等因素,为深水水道的发育提供了充足物源并可能导致了该地区古地貌的坡度变化,从而影响了重力流作用的强弱并控制了深水水道体系的发育和演化,盐构造活动对深水水道的发育具有重要的改向、限制、封堵、迁移或破坏作用。

     

  • 图  1  下刚果—刚果扇盆地构造单元划分及研究区A区块位置

    Figure  1.  Tectonic units of Lower Congo-Congo Fan Basin and location of block A

    图  2  下刚果—刚果扇盆地A区块中新统综合柱状图

    Figure  2.  Stratigraphic column of Miocene in block A, Lower Congo-Congo Fan Basin

    图  3  下刚果—刚果扇盆地A区块中新统层序地层划分

    Figure  3.  Sequence stratigraphic division of Miocene in block A, Lower Congo-Congo Fan Basin

    图  4  下刚果—刚果扇盆地A区块中新统深水水道沉积地震剖面特征

    TC.重力流水道;TS.浊积席状砂;SDF.泥石流垮塌;PM.深海泥岩;IV.下切谷

    Figure  4.  Seismic profile of deep-water channel systems of Miocene in block A, Lower Congo-Congo Fan Basin

    图  5  下刚果—刚果扇盆地A区块中新统深水水道沉积岩性特征

    a.单旋回底部泥砾(mc),砾石分选磨圆差,呈悬浮状;b.单旋回中部细—中砂岩,局部含泥质碎屑;c.单旋回上部泥岩和粉砂岩互层,下部可见变形层(df)和砂岩侵入体(inj),向上泥质含量增多;d.可见鲍马序列Tb-Tc-Te段,Tb-Tc段,上部发育泥砾层(mc)

    Figure  5.  Lithologic characteristics of deep-water channel deposits of Miocene in block A, Lower Congo-Congo Fan Basin

    图  6  下刚果—刚果扇盆地A区块中新统重力流沉积构造特征

    a.细砂岩内泄水构造(dw,红色箭头所示);b.泄水构造(dw,红色箭头所示)和倾斜碟状构造(ds,蓝色箭头所示),此外底部可见倾斜泥砾侵入体(inj,黑色箭头所示);c.生物扰动构造(bt,黄色箭头所示) 和负载构造(ls,橙色箭头所示),还可见砂岩侵入体(inj,黑色箭头所示),纹层状泥岩(lm),鲍马序列a段(Ta)

    Figure  6.  Gravity-flow sedimentary structures of Miocene in block A, Lower Congo-Congo Fan Basin

    图  7  下刚果—刚果扇盆地A区块单一水道沉积特征及岩心照片

    Figure  7.  Sedimentary characteristics and core photographs of single channel in block A, Lower Congo-Congo Fan Basin

    图  8  下刚果—刚果扇盆地A区块中新统各三级层序(SQ1-SQ4)深水道体系发育和演化特征的RMS地震属性解释

    IC.过路侵蚀型孤立水道; RC.受限侵蚀型复合水道; WRC.弱受限侵蚀—加积型水道; SL.弱受限—不受限加积型水道/末端朵体; AC.废弃水道; S.岩体

    Figure  8.  Interpretation of root mean square (RMS) amplitude seismic slice at the base of SQ1-SQ4, showing the development and evolution characteristics of the Miocene deep-water channel systems in block A, Lower Congo-Congo Fan Basin

  • [1] LIN C, LIU J, ERIKSSON K, et al. Late Ordovician, deep-water gravity-flow deposits, palaeogeography and tectonic setting, Tarim Basin, Northwest China[J]. Basin Research, 2014, 26(2): 297-319. doi: 10.1111/bre.12028
    [2] 骆帅兵, 张莉, 雷振宇, 等. 陆坡盆地体系深水重力流形成机制、沉积模式及应用实例探讨[J]. 石油实验地质, 2017, 39(6): 747-754. doi: 10.11781/sysydz201706747

    LUO Shuaibing, ZHANG Li, LEI Zhenyu, et al. Formation mechanism, sedimentary model and typical example of a deep-water gravity flow in continental slope-basin systems[J]. Petroleum Geology & Experiment, 2017, 39(6): 747-754. doi: 10.11781/sysydz201706747
    [3] 李全, 吴伟, 康洪全, 等. 西非下刚果盆地深水水道沉积特征及控制因素[J]. 石油与天然气地质, 2019, 40(4): 917-929. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201904020.htm

    LI Quan, WU Wei, KANG Hongquan, et al. Characteristics and controlling factors of deep-water channel sedimentation in Lower Congo Basin, West Africa[J]. Oil & Gas Geology, 2019, 40(4): 917-929. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201904020.htm
    [4] 王允洪, 黄建军, 刘婷婷, 等. 坎波斯盆地X油田Marlim组深水扇弯曲水道形态表征及其时空演化[J]. 特种油气藏, 2020, 27(2): 57-62. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202002009.htm

    WANG Yunhong, HUANG Jianjun, LIU Tingting, et al. Morphological characterization and spatiotemporal evolution of deep-water fan curved channel in the Marlim Formation of X Oilfield in Campos[J]. Special Oil & Gas Reservoirs, 2020, 27(2): 57-62. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202002009.htm
    [5] 李建平, 廖计华, 方勇. 基于露头和岩心的深水重力流沉积新认识及其油气地质意义[J]. 油气地质与采收率, 2020, 27(6): 30-37. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202006005.htm

    LI Jianping, LIAO Jihua, FANG Yong. New understanding of deep-water gravity flow deposition and its significance in petroleum geo-logy based on outcrops and cores[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(6): 30-37. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202006005.htm
    [6] FAN Aiping, YANG Renchao, VAN LOON A J T, et al. Classification of gravity-flow deposits and their significance for unconventional petroleum exploration, with a case study from the Triassic Yanchang Formation (southern Ordos Basin, China)[J]. Journal of Asian Earth Sciences, 2018, 161: 57-73. doi: 10.1016/j.jseaes.2018.04.038
    [7] YUAN Jing, YU Guoding, SONG Mingshui, et al. Depositional characteristics and reservoir potential of Paleogene sediment gravity flow deposits on a faulted slope of the Zhanhua Sag, Bohai Bay Basin, China[J]. Journal of Asian Earth Sciences, 2019, 177: 89-106. doi: 10.1016/j.jseaes.2019.03.006
    [8] 陈亮, 庞雄, 韩晋阳, 等. 珠江口盆地白云深水区构造-岩性油气藏特征及成藏模式[J]. 特种油气藏, 2019, 26(1): 30-36. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201901006.htm

    CHEN Liang, PANG Xiong, HAN Jinyang, et al. Structural-lithologic hydrocarbon reservoir characterization and accumulation patterns in the Baiyun deep-water area of the Pearl River Mouth Basin[J]. Special Oil & Gas Reservoirs, 2019, 26(1): 30-36. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201901006.htm
    [9] 刘军, 庞雄, 颜承志, 等. 南海北部陆坡白云深水区浅层深水水道沉积[J]. 石油实验地质, 2011, 33(3): 255-259. doi: 10.11781/sysydz201103255

    LIU Jun, PANG Xiong, YAN Chengzhi, et al. Shallow deepwater channels in Baiyun deepwater region of northern continental slope, South China Sea[J]. Petroleum Geology & Experiment, 2011, 33(3): 255-259. doi: 10.11781/sysydz201103255
    [10] GONG Chenglin, WANG Yingmin, STEEL R J, et al. Flow processes and sedimentation in unidirectionally migrating deep-water channels: from a three-dimensional seismic perspective[J]. Sedi-mentology, 2016, 63(3): 645-661.
    [11] 赵培荣, 高波, 郭战峰, 等. 四川盆地上二叠统海陆过渡相和深水陆棚相页岩气的勘探潜力[J]. 石油实验地质, 2020, 42(3): 335-344. doi: 10.11781/sysydz202003335

    ZHAO Peirong, GAO Bo, GUO Zhanfeng, et al. Exploration potential of marine-continental transitional and deep-water shelf shale gas in Upper Permian, Sichuan Basin[J]. Petroleum Geology & Experiment, 2020, 42(3): 335-344. doi: 10.11781/sysydz202003335
    [12] 许晓明, 杨松岭, 尹川, 等. 澳洲北卡那封盆地深水区三叠系异常体识别[J]. 石油实验地质, 2019, 41(5): 717-723. doi: 10.11781/sysydz201905717

    XU Xiaoming, YANG Songling, YIN Chuan, et al. Identification of a Triassic anomaly in deep water of northern Carnarvon Basin, Australia[J]. Petroleum Geology & Experiment, 2019, 41(5): 717-723. doi: 10.11781/sysydz201905717
    [13] FERRY J N, PARIZE O, MULDER T, et al. Sedimentary architecture and growth pattern of turbidite systems in distal part of a median fan; example of the Upper Miocene sedimentary sequence of the Lower Congo Basin[J]. Geodinamica Acta, 2005, 18(2): 145-152. doi: 10.3166/ga.18.145-152
    [14] 张笑, 王振奇, 李士涛, 等. 下刚果盆地深水沉积中新统层序划分及其控制因素[J]. 海洋地质前沿, 2011, 27(10): 27-33. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201110005.htm

    ZHANG Xiao, WANG Zhenqi, LI Shitao, et al. Sequence strati-graphy of the deepwater Miocene in the Lower Congo Basin and its controlling factors[J]. Marine Geology Letters, 2011, 27(10): 27-33. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201110005.htm
    [15] 王振奇, 肖洁, 龙长俊, 等. 下刚果盆地A区块中新统深水水道沉积特征[J]. 海洋地质前沿, 2013, 29(3): 5-12. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201303003.htm

    WANG Zhenqi, XIAO Jie, LONG Changjun, et al. Depositional characteristics of Miocene deepwater channel deposits in block A of Lower Congo Basin[J]. Marine Geology Frontiers, 2013, 29(3): 5-12. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201303003.htm
    [16] 蔡露露, 刘春成, 吕明, 等. 西非下刚果盆地深水水道发育特征及沉积储层预测[J]. 中国海上油气, 2016, 28(2): 60-70. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201602007.htm

    CAI Lulu, LIU Chuncheng, LV Ming, et al. The development characteristics of deep water channel and sedimentary reservoir prediction in Lower Congo Basin, West Africa[J]. China Offshore Oil and Gas, 2016, 28(2): 60-70. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201602007.htm
    [17] JACKSON M P A, CRAMEZ C, FONCK J M, et al. Role of subaerial volcanic rocks and mantle plumes in creation of South Atlantic margins: implications for salt tectonics and source rocks[J]. Marine and Petroleum Geology, 2000, 17(4): 477-498.
    [18] BRUN J P, FORT X. Compressional salt tectonics (Angolan margin)[J]. Tectonophysics, 2004, 382: 129-150.
    [19] 李华, 王英民, 徐强, 等. 南海北部珠江口盆地重力流与等深流交互作用沉积特征、过程及沉积模式[J]. 地质学报, 2014, 88(6): 1120-1129. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201406013.htm

    LI Hua, WANG Yingmin, XU Qiang, et al. Interactions between down-slope and along-slope processes on the northern slope of South China Sea: products, processes, and depositional model[J]. Acta Geologica Sinica, 2014, 88(6): 1120-1129. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201406013.htm
    [20] 陈华, 林畅松, 张忠民, 等. 下刚果-刚果扇盆地中新统层序地层格架内重力流沉积体系特征、演化及其控制因素[J]. 石油勘探与开发, 2021, 48(1): 127-138. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202101013.htm

    CHEN Hua, LIN Changsong, ZHANG Zhongmin, et al. Evolution and controlling factors of the gravity flow deposits in the Miocene sequence stratigraphic framework, the Lower Congo-Congo Fan Basin, West Africa[J]. Petroleum Exploration and Development, 2021, 48(1): 127-138. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202101013.htm
    [21] SÉRANNE M, ANKA Z. South Atlantic continental margins of Africa: a comparison of the tectonic vs climate interplay on the evolution of equatorial west Africa and SW Africa margins[J]. Journal of African Earth Sciences, 2005, 43(1/3): 283-300.
    [22] LAVIER L L, STECKLER M S, BRIGAUD F. Climatic and tectonic control on the Cenozoic evolution of the West African margin[J]. Marine Geology, 2001, 178(1/4): 63-80.
    [23] LAVIER L L, STECKLER M S, BRIGAUD F. An improved method for reconstructing the stratigraphy and bathymetry of continental margins: application to the Cenozoic tectonic and sedimentary history of the Congo margin[J]. AAPG Bulletin, 2000, 84(7): 923-939.
    [24] ZACHOS J, PAGANI M, SLOAN L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to Present[J]. Science, 2001, 292(5517): 686-693.
    [25] WESTERHOLD T, MARWAN N, DRURY A J, et al. An astronomically dated record of Earth's climate and its predictability over the last 66 million years[J]. Science, 2020, 369(6509): 1383-1387.
    [26] MILLER K G, KOMINZ M A, BROWNING J V, et al. The Phanerozoic record of global sea-level change[J]. Science, 2005, 310(5752): 1293-1298.
    [27] MILLER K G, SCHMELZ W J, BROWNING J V, et al. Ancient sea level as key to the future[J]. Oceanography, 2020, 33(2): 32-41.
    [28] Séranne M, ABEIGNE C R N. Oligocene to Holocene sediment drifts and bottom currents on the slope of Gabon continental margin (West Africa): consequences for sedimentation and southeast Atlantic upwelling[J]. Sedimentary Geology, 1999, 128(3/4): 179-199.
    [29] MILLER K G, BROWNING J V, SCHMELZ W J, et al. Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records[J]. Science Advances, 2020, 6(20): eaaz1346.
    [30] 孙自明, 何治亮. 裂谷与被动陆缘叠合盆地的盐构造与油气成藏: 以西非下刚果-刚果扇盆地和宽扎盆地为例[J]. 石油实验地质, 2016, 38(3): 287-292. doi: 10.11781/sysydz201603287

    SUN Ziming, HE Zhiliang. Salt tectonics and its relationship to hydrocarbon accumulation in salt basins with a lower rifted section and an upper continental marginal section: a case study of the Lower Congo-Congo Fan basins and the Kwanza Basin in West Africa[J]. Petroleum Geology & Experiment, 2016, 38(3): 287-292. doi: 10.11781/sysydz201603287
    [31] 陈亮, 赵千慧, 王英民, 等. 盐构造与深水水道的交互作用: 以下刚果盆地为例[J]. 沉积学报, 2017, 35(6): 1197-1204. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201706011.htm

    CHEN Liang, ZHAO Qianhui, WANG Yingmin, et al. Interactions between submarine channels and salt structures: examples from the Lower Congo Basin[J]. Acta Sedimentologica Sinica, 2017, 35(6): 1197-1204. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201706011.htm
    [32] ROWAN M G, WEIMER P. Salt-sediment interaction, northern Green Canyon and Ewing bank (offshore Louisiana), northern gulf of Mexico[J]. AAPG Bulletin, 1998, 82(5B): 1055-1082.
    [33] MAYALL M, LONERGAN L, BOWMAN A, et al. The response of turbidite slope channels to growth-induced seabed topography[J]. AAPG Bulletin, 2010, 94(7): 1011-1030.
  • 加载中
图(8)
计量
  • 文章访问数:  890
  • HTML全文浏览量:  222
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-27
  • 修回日期:  2021-04-02
  • 刊出日期:  2021-05-28

目录

    /

    返回文章
    返回