Characteristics of oil and gas generation, expelling and retention of coaly source rock
-
摘要: 针对煤系地层烃源岩的油气生成、排出与滞留能力的有效性问题,选取不同沉积环境、不同时代煤岩及其夹层中的碳质泥岩和泥岩,开展了在成岩作用下的高温高压半开放—半封闭体系模拟实验,建立了相应的演化模式。结果表明,不同沉积环境下,Ⅱ2型煤系烃源岩在生油窗内具有一定的排油能力,也具备较强的烃气生成能力,既可以作为油源岩,也是高效气源岩;而Ⅲ型煤系烃源岩在生油窗内主要以滞留油为主,基本不具备排油能力,主要以排出烃气为主,仅能作为气源岩。生烃转化率主要受控于有机质类型,排烃能力还受控于岩性与丰度,按单位质量岩石而论,煤岩远高于其夹层中的碳质泥岩与泥岩。煤岩在全演化阶段,无论是低阶煤还是高阶煤均具有较强的生成烃气能力和较高的滞留油气能力,都具有煤层气开发潜力。Abstract: To understand the effectiveness of hydrocarbon generation, expelling and retention capacities of coaly source rocks, carbonaceous mudstones and mudstones in coal layers and interlayers of different sedimentary environments and ages were selected to carry out the simulation experiments with a semi-open system operated at high tempera-ture and high pressure, and a corresponding model of evolution was established. With different depositional environments, the type Ⅱ2 coaly source rocks expelled oil in the oil generation window with gas generated. Therefore, they worked as source rocks for both of oil and gas. However, for the coaly source rocks of type Ⅲ kerogen, the generated oil was mainly retained during the oil generation window and basically did not expel. As a result, this type of source rock was regarded as source rocks of gas only. The conversion rate of hydrocarbon generation was mainly controlled by the type of organic matter, while the ability to expel hydrocarbons was controlled by lithology and organic matter abundance. For each unit mass of rock, coal rocks has much higher conversion rates than the carbonaceous mudstones and mudstones in their interlayers. In the full evolution stage of coal rock, both low-rank and high-rank coals had strong ability for hydrocarbon gas generation and oil-and-gas retention, which showed a good potential for coal bearing methane development.
-
表 1 样品基本地球化学参数
Table 1. Basic geochemical parameters of samples
样品号 岩性 层位 剖面 ω(TOC)/% 沥青“A”/% (S1+S2)/(mg·g-1) IH/(mg·g-1) 干酪根类型 Ro/% H煤 煤 C-P 黑岱沟煤矿 59.77 0.86 78.79 114 Ⅲ 0.56 W煤 煤 E 五图煤矿 50.76 0.67 131.75 259 Ⅱ2 0.47 Z碳泥 碳质泥岩 C-P 黑岱沟煤矿 23.29 0.12 18.39 79 Ⅲ 0.63 Z粉泥 黑色粉砂质泥岩 T 五图煤矿 2.22 0.17 6.89 254 Ⅱ2 0.52 表 2 煤系烃源岩生排烃模拟实验边界条件
Table 2. Boundary conditions of simulation experiment for hydrocarbon generation and expelling of coaly source rocks
模拟埋深/m 模拟温度/℃ 上覆静岩压力/MPa 流体压力/MPa 排烃压差/MPa H煤 W煤 Z碳泥 Z粉泥 H煤 W煤 Z碳泥 Z粉泥 H煤 W煤 Z碳泥 Z粉泥 1 100 200 26 13 2 1 350 225 32 16 3 1 650 250 40 40 40 20 20 20 3 3 3 1 800 265 43 22 4 1 900 275 46 46 23 23 4 4 2 150 300 52 52 52 52 26 26 26 26 4 4 4 4 2 350 315 56 28 5 2 400 320 58 58 29 29 5 5 2 500 330 60 30 5 2 600 340 62 62 31 31 5 5 2 700 350 65 65 32 32 5 5 2 850 360 68 34 6 2 950 370 71 35 6 3 000 375 72 36 6 3 050 380 73 73 37 37 6 6 3 150 390 76 38 6 3 250 400 78 78 78 39 39 39 7 7 7 3 400 415 82 41 7 3 450 420 83 83 41 41 7 7 3 600 430 86 43 7 3 800 450 91 91 46 46 8 8 3 900 460 94 47 8 4 350 500 104 104 104 52 52 52 9 9 9 -
[1] 张水昌, 朱光有. 中国沉积盆地大中型气田分布与天然气成因[J]. 中国科学(D辑地球科学), 2007, 37(S2): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2007S2001.htmZHANG Shuichang, ZHU Guangyou. Distribution of large and medium-sized gas fields in sedimentary basins of China and the genesis of natural gas[J]. Science in China(Series D Earth Sciences), 2007, 37(S2): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2007S2001.htm [2] 张有生, 任东明, 肖新建, 等. 当前能源供求形势及政策建议[J]. 宏观经济管理, 2014(5): 58-63. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJG201405023.htmZHANG Yousheng, REN Dongming, XIAO Xinjian, et al. Current energy supply and demand situation and policy suggestions[J]. Macroeconomic Management, 2014(5): 58-63. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJG201405023.htm [3] 李进步, 李娅, 张吉, 等. 苏里格气田西南部致密砂岩气藏资源评价方法及评价参数的影响因素[J]. 石油与天然气地质, 2020, 41(4): 730-743. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202004008.htmLI Jinbu, LI Ya, ZHANG Ji, et al. Resource evaluation method and influence factors of its parameters for tight sand gas reservoir in southwestern Sulige gas field[J]. Oil & Gas Geology, 2020, 41(4): 730-743. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202004008.htm [4] 刘莹, 刘海燕, 杨海长, 等. 琼东南盆地古近纪成煤沉积体系类型及特征[J]. 石油与天然气地质, 2019, 40(1): 142-151. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201901015.htmLIU Ying, LIU Haiyan, YANG Haizhang, et al. Types and characte-ristics of Paleogene coal-forming sedimentary systems in Qiongdongnan Basin[J]. Oil & Gas Geology, 2019, 40(1): 142-151. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201901015.htm [5] 陈磊, 田景春, 文怀军, 等. 柴达木盆地北缘鱼卡煤田侏罗系煤层气特征及含气性评价[J]. 石油实验地质, 2019, 41(2): 215-221. doi: 10.11781/sysydz201902215CHEN Lei, TIAN Jingchun, WEN Huaijun, et al. Jurassic coal bed methane characteristics and gas-bearing property evaluation in Iqe Coalfield, northern Qaidam Basin[J]. Petroleum Geology & Experiment, 2019, 41(2): 215-221. doi: 10.11781/sysydz201902215 [6] 周德华, 李倩文, 蔡勋育, 等. 黔西地区红果区块煤层气资源评价与勘探潜力分析[J]. 油气藏评价与开发, 2020, 10(4): 12-16. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202004003.htmZHOU Dehua, LI Qianwen, CAI Xunyu, et al. Resource assessment and exploration potential analysis of CBM in Hongguo Block, western Guizhou[J]. Reservoir Evaluation and Development, 2020, 10(4): 12-16. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202004003.htm [7] 黄第藩, 秦匡宗, 王铁冠, 等. 煤成油的形成和成烃机理[M]. 北京: 石油工业出版社, 1995.HUANG Difan, QIN Kuangzong, WANG Tieguang, et al. The formation of coal-derived oil and the mechanism of hydrocarbon generation[M]. Beijing: Petroleum Industry Press, 1995. [8] 席伟军. 和什托洛盖盆地低熟煤系烃源岩生烃潜力及勘探前景分析[J]. 非常规油气, 2014, 1(1): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-FCYQ201401006.htmXI Weijun. Hydrocarbon generation potential and exploration prospect analysis of Jurassic immature source rocks in the Heshentuoluogai Basin[J]. Unconventional Oil & Gas, 2014, 1(1): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-FCYQ201401006.htm [9] 王秀红, 金强, 王力, 等. 济阳坳陷孤北地区C-P煤岩生气史及潜力分析[J]. 新疆石油天然气, 2014, 10(1): 23-26. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSY201401006.htmWANG Xiuhong, JIN Qiang, WANG Li, et al. C-P coal gas generation history and potential analysis in Gubei area, Jiyang Depression[J]. Xinjiang Oil and Gas, 2014, 10(1): 23-26. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSY201401006.htm [10] ZHU X J, CHEN J F, LI W, et al. Hydrocarbon generation potential of Paleogene coals and organic rich mudstones in Xihu Sag, East China Sea Shelf Basin, offshore eastern China[J]. Journal of Petroleum Science and Engineering, 2020, 184: 106450. doi: 10.1016/j.petrol.2019.106450 [11] 郑伦举, 秦建中, 何生, 等. 地层孔隙热压生排烃模拟实验初步研究[J]. 石油实验地质, 2009, 31(3): 296-302. doi: 10.11781/sysydz200903296ZHENG Lunju, QIN Jianzhong, HE Sheng, et al. Preliminary study of formation porosity thermocompression simulation experiment of hydrocarbon generation and expulsion[J]. Petroleum Geology & Experiment, 2009, 31(3): 296-302. doi: 10.11781/sysydz200903296 [12] 徐陈杰, 叶加仁, 刘金水, 等. 东海西湖凹陷平湖组Ⅲ型干酪根暗色泥岩生排烃模拟[J]. 石油与天然气地质, 2020, 41(2): 359-366. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202002013.htmXU Chenjie, YE Jiaren, LIU Jinshui, et al. Simulation of hydrocarbon generation and expulsion for the dark mudstone with type-Ⅲ kerogen in the Pinghu Formation of Xihu Sag in East China Sea Shelf Basin[J]. Oil and Gas Geology, 2020, 41(2): 359-366. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202002013.htm [13] 马中良, 郑伦举, 李志明. 烃源岩有限空间温压共控生排烃模拟实验研究[J]. 沉积学报, 2012, 30(5): 955-963. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201205021.htmMA Zhongliang, ZHENG Lunju, LI Zhiming. The thermocompression simulation experiment of source rock hydrocarbon generation and expulsion in formation porosity[J]. Acta Sedimentologica Sinica, 2012, 30(5): 955-963. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201205021.htm [14] 李志明, 郑伦举, 马中良, 等. 烃源岩有限空间油气生排模拟及其意义[J]. 石油实验地质, 2011, 33(5): 447-451. doi: 10.11781/sysydz201105447LI Zhiming, ZHENG Lunju, MA Zhongliang, et al. Simulation of source rock for hydrocarbon generation and expulsion in finite space and its significance[J]. Petroleum Geology & Experiment, 2011, 33(5): 447-451. doi: 10.11781/sysydz201105447 [15] 赵晗, 马中良, 郑伦举, 等. 有限空间温压共控热模拟油气产物地球化学特征[J]. 天然气地球科学, 2020, 31(1): 73-83. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202001007.htmZHAO Han, MA Zhongliang, ZHENG Lunju, et al. Geochemical characteristics of hydrocarbon products under thermal simulation of temperature and pressure co-control in finite space[J]. Natural Gas Geoscience, 2020, 31(1): 73-83. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202001007.htm [16] 郑伦举, 王强, 秦建中, 等. 海相古油藏及可溶有机质再生烃气能力研究[J]. 石油实验地质, 2008, 30(4): 390-395. doi: 10.11781/sysydz200804390ZHENH Lunju, WANG Qiang, QIN Jianzhong, et al. Hydrocarbon-regeneration capability of marine paleo-reservoir and soluble organic matter[J]. Petroleum Geology & Experiment, 2008, 30(4): 390-395. doi: 10.11781/sysydz200804390 [17] 杜东兴, 孙芮, 李莺歌, 等. CO2-油-水体系的相平衡特性研究[J]. 工程热物理学报, 2018, 39(1): 185-192. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201801031.htmDU Dongxing, SUN Rui, LI Yingge, et al. Phase equilibrium characteristics of CO2-oil-water system[J]. Journal of Engineering Thermophysics, 2018, 39(1): 185-192. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201801031.htm [18] 腾格尔, 陶成, 胡广, 等. 排烃效率对页岩气形成与富集的影响[J]. 石油实验地质, 2020, 42(3): 325-334. doi: 10.11781/sysydz202003325BORJIGIN Tenger, TAO Cheng, HU Guang, et al. Effect of hydrocarbon expulsion efficiency on shale gas formation and enrichment[J]. Petroleum Geology & Experiment, 2020, 42(3): 325-334. doi: 10.11781/sysydz202003325 [19] 王勃, 李景明, 张义, 等. 中国低煤阶煤层气地质特征[J]. 石油勘探与开发, 2009, 36(1): 30-34. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200901005.htmWANG Bo, LI Jingming, ZHANG Yi, et al. Geological characteristics of low rank coalbed methane, China[J]. Petroleum Exploration and Development, 2009, 36(1): 30-34. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200901005.htm [20] 李五忠, 田文广, 孙斌, 等. 低煤阶煤层气成藏与勘探开发简述[C]//煤层气勘探开发理论与实践. 北京: 石油工业出版社, 2007.LI Wuzhong, TIAN Wenguang, SUN Bin, et al. Brief introduction of low-rank coalbed methane reservoir formation and exploration and development[C]//Coalbed Methane Exploration and Development Theory and Practice. Beijing: Petroleum Industry Press, 2007. [21] 吴聿元, 陈贞龙. 延川南深部煤层气勘探开发面临的挑战和对策[J]. 油气藏评价与开发, 2020, 10(4): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202004001.htmWU Yuyuan, CHEN Zhenlong. Challenges and countermeasures for exploration and development of deep CBM of South Yanchuan[J]. Reservoir Evaluation and Development, 2020, 10(4): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202004001.htm [22] 吴斌, 周龙刚, 潘新志, 等. 新疆三塘湖盆地低煤阶煤层气成因探讨[J]. 特种油气藏, 2020, 27(1): 47-54. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202001007.htmWU Bin, ZHOU Longgang, PAN Xinzhi, etg al. Discussion on genesis low coal rank coalbed methane in Santanghu Basin of Xinjiang Province[J]. Special Oil & Gas Reserviors, 2020, 27(1): 47-54. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202001007.htm [23] 闫霞, 温声明, 聂志宏, 等. 影响煤层气开发效果的地质因素再认识[J]. 断块油气田, 2020, 27(3): 375-380. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202003023.htmYAN Xia, WEN Shengming, NIE Zhihong, et al. Re-recognition of geological factors affecting coalbed methane development effect[J]. Fault-Block Oil and Gas Field, 2020, 27(3): 375-380. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202003023.htm [24] 张雷, 郝帅, 张伟, 等. 中低煤阶煤层气储量复算及认识: 以鄂尔多斯盆地东缘保德煤层气田为例[J]. 石油实验地质, 2020, 42(1): 147-155. doi: 10.11781/sysydz202001147ZHANG Lei, HAO Shuai, ZHANG Wei, et al. Recalculation and understanding of middle and low rank coalbed methane reserves: a case study of Baode Coalbed Methane Field on the eastern edge of Ordos Basin[J]. Petroleum Geology & Experiment, 2020, 42(1): 147-155. doi: 10.11781/sysydz202001147 [25] 王单华, 姜杉钰, 贾宏伟, 等. 海拉尔盆地旧桥凹陷低煤阶煤层气资源潜力分析[J]. 特种油气藏, 2019, 26(2): 65-70. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201902011.htmWANG Danhua, JIANG Shanyu, JIA Hongwei, et al. Resource potential analysis of low rank coalbed methane in Jiuqiao Sag of Hailar Basin[J]. Special Oil & Gas Reservoirs, 2019, 26(2): 65-70. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201902011.htm [26] 刘群, 袁选俊, 林森虎, 等. 湖相泥岩、页岩的沉积环境和特征对比: 以鄂尔多斯盆地延长组7段为例[J]. 石油与天然气地质, 2018, 39(3): 531-540. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201803011.htmLIU Qun, YUAN Xuanjun, LIN Senhu, et al. Depositional environment and characteristic comparison between lacustrine mudstone and shale: a case study from the Chang 7 Member of the Yanchang Formation, Ordos Basin[J]. Oil & Gas Geology, 2018, 39(3): 531-540. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201803011.htm [27] LI C, YUAN Q, ZHANG M. Generative potential of Carboniferous-Permian coal-bearing source rocks in Ordos Basin[J]. Open Journal of Yangtze Oil and Gas, 2017, 2: 260-272. [28] 李志明, 芮晓庆, 徐二社, 等. 典型Ⅱ2-Ⅲ过渡型褐煤近地质条件下生排油模拟研究[J]. 煤炭学报, 2017, 42(1): 249-256. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201701034.htmLI Zhiming, RUI Xiaoqing, XU Ershe, et al. Simulation of hydrocarbon generation and expulsion for brown coal with transitional organic matter type Ⅱ2-Ⅲ under near geological conditions[J]. Journal of China Coal Society, 2017, 42(1): 249-256. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201701034.htm [29] 帅燕华, 张水昌, 陈建平. 煤和煤系泥岩生油能力再评价[J]. 地球化学, 2009, 38(6): 583-590. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200906011.htmSHUAI Yanhua, ZHANG Shuichang, CHEN Jianping. Comparison of the oil potential of coal and coaly mudstone[J]. Geochi-mica, 2009, 38(6): 583-590. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200906011.htm [30] 马中良, 郑伦举, 赵中熙, 等. 烃源岩孔隙流体介质对石油初次运移的影响[J]. 石油实验地质, 2015, 37(1): 97-101. doi: 10.11781/sysydz201501097MA Zhongliang, ZHENG Lunju, ZHAO Zhongxi, et al. Effect of fluid medium in source rock porosity on oil primary migration[J]. Petroleum Geology & Experiment, 2015, 37(1): 97-101. doi: 10.11781/sysydz201501097 [31] 李友川, 席小应. 东海盆地西湖凹陷平湖组煤系烃源岩生烃潜力研究[C]//第十二届全国有机地球化学学术会议. 成都: [s. n. ], 2009: 40-41.LI Youchuan, XI Xiaoying. Hydrocarbon generation potential of coal-measure source rocks in the Pinghu Formation in Xihu Sag, East China Sea Basin[C]//National Conference on Organic Geochemistry. Chengdu: [s. n. ], 2009: 40-41. [32] 陈敬轶, 王飞宇, 刘晓. 东海平湖油气田烃源岩特征与油气生成[J]. 地质科技情报, 2010, 29(6): 80-83. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201006013.htmCHEN Jingyi, WANG Feiyu, LIU Xiao. Characteristics of source rocks and hydrocarbon generation in Pinghu Field, East China Sea[J]. Geological Science and Technology Information, 2010, 29(6): 80-83. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201006013.htm [33] 晋香兰, 张慧. 鄂尔多斯盆地东北部侏罗纪煤系烃源岩的分布特征[J]. 中国煤炭地质, 2010, 22(1): 15-19. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT201001005.htmJIN Xianglan, ZHANG Hui. Distributing features of Jurassic coal measures hydrocarbon source rock in northeastern Ordos Basin[J]. Coal Geology of China, 2010, 22(1): 15-19. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT201001005.htm [34] ZHOU Shaoping. Hydrocarbon generation potential of the Upper Palaeozoic coal measure source rocks in Su11 block[J]. IOP Conference Series: Earth and Environmental Science, 2018, 170(2): 022041. [35] 郝彬, 赵文智, 胡素云, 等. 川中地区寒武系龙王庙组沥青成因与油气成藏史[J]. 石油学报, 2017, 38(8): 863-875. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201708002.htmHAO Bin, ZHAO Wenzhi, HU Suyun, et al. Bitumen genesis and hydrocarbon accumulation history of the cambrian Longwangmiao Formation in central Sichuan Basin[J]. Acta Petrolei Sinica, 2017, 38(8): 863-875. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201708002.htm