留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

富有机质样品Re-Os同位素定年实验方法

武鲁亚 金之钧 储著银 刘可禹

武鲁亚, 金之钧, 储著银, 刘可禹. 富有机质样品Re-Os同位素定年实验方法[J]. 石油实验地质, 2021, 43(3): 513-523. doi: 10.11781/sysydz202103513
引用本文: 武鲁亚, 金之钧, 储著银, 刘可禹. 富有机质样品Re-Os同位素定年实验方法[J]. 石油实验地质, 2021, 43(3): 513-523. doi: 10.11781/sysydz202103513
WU Luya, JIN Zhijun, CHU Zhuyin, LIU Keyu. Re-Os isotopic dating procedures for organic-rich samples[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(3): 513-523. doi: 10.11781/sysydz202103513
Citation: WU Luya, JIN Zhijun, CHU Zhuyin, LIU Keyu. Re-Os isotopic dating procedures for organic-rich samples[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(3): 513-523. doi: 10.11781/sysydz202103513

富有机质样品Re-Os同位素定年实验方法

doi: 10.11781/sysydz202103513
基金项目: 

中国科学院战略性先导科技专项A类项目 XDA14010401

中国石油大学(华东)自主创新科研计划 17CX06032

详细信息
    作者简介:

    武鲁亚(1993-), 女, 博士研究生, 从事地球化学和油气成藏年代学研究。E-mail: b16010016@s.upc.edu.cn

    通讯作者:

    刘可禹(1963-), 男, 教授, 从事沉积学与石油地质学等研究。E-mail: liukeyu@upc.edu.cn

  • 中图分类号: TE135

Re-Os isotopic dating procedures for organic-rich samples

  • 摘要: 近年来,铼—锇(Re-Os)同位素体系在确定含油气系统烃源岩沉积年龄、烃类生成、运移、后期调整改造年龄(古油藏热裂解、硫酸盐热化学还原反应等)以及油源示踪方面取得了一系列成果。但是,富有机质样品的Re-Os同位素体系存在元素丰度低、赋存形式复杂、同位素体系封闭性影响因素以及Os同位素组成均一机制不清等诸多难题,进而导致其构建的等时线年龄误差相对较大。通过测年样品筛选、富有机质样品化学前处理、实验流程空白控制以及国际参考标样监控等4个方面,对现有的富有机质样品的Re-Os同位素分析测试全流程进行了总结与完善,可为拟开展含油气系统Re-Os定年工作的研究人员提高数据质量,构建理想的Re-Os等时线。

     

  • 图  1  国外典型含油气系统原油样品Re-Os同位素等时线

    a.英国Shetland群岛原油(原始数据引自文献[11]);b.美国Bighorn盆地Phosphoria原油(原始数据引自文献[12])

    Figure  1.  Re-Os isochrons of crude oil samples from two typical petroleum systems abroad

    图  2  意大利Ragusa盆地Gela-1井原油样品Re-Os同位素等时线

    a.Noto和Sciacca组的全油和沥青质组分;b.Streppenosa组原油可溶组分(马青烯)(原始数据引自文献[16])

    Figure  2.  Re-Os isochrons of crude oil from well Gela-1 in Ragusa Basin, Italy

    图  3  富有机质样品Re-Os同位素分析完整实验流程

    Figure  3.  Procedure for determining Re-Os concentrations and isotopic compositions of organic-rich samples

    图  4  不同实验测定的NIST8505原油标样的Re含量(a)、Os含量(b),187Re/188Os(c)和187Os/188Os比值(d)

    图a和图b中灰色虚线为不同实验室测定数据的平均值;图中红色实线为实验室间平均值,红色虚线表示其各自的2σ标准偏差原始数据引自文献[16, 28, 35, 45, 54-55]。

    Figure  4.  Concentrations of Re (a) and Os (b) and isotopic compositions (c-d) of crude oil standard sample NIST8505 analyzed by three different laboratories

    表  1  国内外Re-Os实验室常用溶样方法比较

    Table  1.   Comparison of commonly used sample digestion methods for Re-Os isotopic analysis

    溶样方法 优点 缺点/局限性
    酸溶法(HBr,HCl-乙醇) 可避免产生挥发性的OsO4,本底低 样品溶解不完全,回收率低
    碱熔法 可完全溶解难熔相 实验本底高,消解过程中难达到同位素交换平衡
    硫化镍火试金法 溶样量大,可有效避免Os的“块金效应” Re的数据可信度较低,Os本底高,溶样过程中存在Os的损失
    Carius管溶样法 密闭体系,样品近完全溶解,易达到同位素交换平衡,本底低 对于一些难溶矿物不能完全溶解,易爆炸
    高温高压反应釜法 完全、快速消解样品,本底低,安全性高 实验装置较为昂贵,溶样管重复利用
    注:表中数据据文献[29-35]整理。
    下载: 导出CSV

    表  2  近几年国内外主要Re-Os实验室全流程Re-Os本底水平对比

    Table  2.   Total analytical blanks of major Re-Os laboratories reported recently

    Re-Os同位素实验室 溶样方法 Re本底水平/pg Os本底水平/pg 187Os/188Os 数据来源
    科罗拉多州立大学 HPA-S逆王水溶样 16.3±16.2 0.102±0.066 0.53±0.31 [16]
    Carius管逆王水溶样 3.7±4.7 0.34±0.226 0.251±0.02 [16]
    HPA-S硝酸溶样 0.98±0.18 0.167±0.024 0.31±0.04 [16]
    杜伦大学 Carius管逆王水溶样 1.63±0.67 0.065±0.013 0.23±0.02 [17]
    Carius管硫酸氧化铬溶样 16.8±0.4 0.4±0.1 0.25±0.21 [21]
    中科院地质与地球物理研究所 Carius管逆王水溶样 7±0.62 0.25±0.12 [41]
    中科院广州地球化学研究所 Carius管逆王水溶样 8.8±3.2 0.28±0.2 0.259±0.038 [48]
    Carius管硫酸氧化铬溶样 0.75±0.32 0.33±0.29 0.206±0.025 [50]
    Carius管H2O2-HNO3溶样 8±3 0.8±0.2 0.128 9± 0.004 8 [50]
    国家地质实验测试中心 Carius管HNO3-HCl-H2O2溶样 2 0.1 [49]
    科廷大学 Carius管逆王水溶样 17 0.54 0.137 ± 0.028 [51]
    下载: 导出CSV
  • [1] CHILINGARIAN G V, GUREVICH A E. The petroleum system: from source to trap[J]. Journal of Petroleum Science and Engineering, 1996, 14(3/4): 258-260.
    [2] PARNELL J. Dating and duration of fluid flow and fluid-rock interaction[M]. London: Geological Society Special Publication, 1998.
    [3] 刘文汇, 王杰, 陶成, 等. 中国海相层系油气成藏年代学[J]. 天然气地球科学, 2013, 24(2): 199-209. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201302002.htm

    LIU Wenhui, WANG Jie, TAO Cheng, et al. The geochronology of petroleum accumulation of China marine sequence[J]. Natural Gas Geoscience, 2013, 24(2): 199-209. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201302002.htm
    [4] 王华建, 张水昌, 王晓梅. 如何实现油气成藏期的精确定年[J]. 天然气地球科学, 2013, 24(2): 210-217. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201302003.htm

    WANG Huajian, ZHANG Shuichang, WANG Xiaomei. How to achieve the precise dating of hydrocarbon accumulation[J]. Natural Gas Geoscience, 2013, 24(2): 210-217. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201302003.htm
    [5] COHEN A S, COE A L, BARTLETT J M, et al. Precise Re-Os ages of organic-rich mudrocks and the Os isotope composition of Jurassic seawater[J]. Earth and Planetary Science Letters, 1999, 167(3/4): 159-173.
    [6] SELBY D, CREASER R A. Direct radiometric dating of hydrocarbon deposits using Rhenium-Osmium isotopes[J]. Science, 2005, 308(5726): 1293-1295. doi: 10.1126/science.1111081
    [7] SELBY D, CREASER R A, FOWLER M G. Re-Os elemental and isotopic systematics in crude oils[J]. Geochimica et Cosmochimica Acta, 2007, 71(2): 378-386. doi: 10.1016/j.gca.2006.09.005
    [8] FINLAY A J, SELBY D, OSBORNE M J. Re-Os geochronology and fingerprinting of United Kingdom Atlantic margin oil: temporal implications for regional petroleum systems[J]. Geology, 2011, 39(5): 475-478. doi: 10.1130/G31781.1
    [9] LILLIS P G, SELBY D. Evaluation of the Rhenium-Osmium geochronometer in the Phosphoria petroleum system, Bighorn Basin of Wyoming and Montana, USA[J]. Geochimica et Cosmochimica Acta, 2013, 118: 312-330. doi: 10.1016/j.gca.2013.04.021
    [10] GE Xiang, SHEN Chuanbo, SELBY D, et al. Apatite fission-track and Re-Os geochronology of the Xuefeng uplift, China: temporal implications for dry gas associated hydrocarbon systems[J]. Geology, 2016, 44(6): 491-494. doi: 10.1130/G37666.1
    [11] FINLAY A J, SELBY D, OSBORNE M J. Petroleum source rock identification of United Kingdom Atlantic margin oil fields and the western Canadian oil sands using Platinum, Palladium, Osmium and Rhenium: implications for global petroleum systems[J]. Earth and Planetary Science Letters, 2012, 313-314: 95-104. doi: 10.1016/j.epsl.2011.11.003
    [12] LIU Junjie, SELBY D, OBERMAJER M, et al. Rhenium-Osmium geochronology and oil-source correlation of the Duvernay petroleum system, western Canada sedimentary basin: implications for the applicationof the Rhenium-Osmium geochronometer to petroleum systems[J]. AAPG Bulletin, 2018, 102(8): 1627-1657. doi: 10.1306/12081717105
    [13] 李真, 王选策, 刘可禹, 等. 油气藏铼-锇同位素定年的进展与挑战[J]. 石油学报, 2017, 38(3): 297-306. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201703006.htm

    LI Zhen, WANG Xuance, LIU Keyu, et al. Rhenium-Osmium geochronology in dating petroleum systems: progress and challenges[J]. Acta Petrolei Sinica, 2017, 38(3): 297-306. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201703006.htm
    [14] 沈传波, 葛翔, 白秀娟. 四川盆地震旦-寒武系油气成藏的Re-Os年代学约束[J]. 地球科学, 2019, 44(3): 713-726. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201903003.htm

    SHEN Chuanbo, GE Xiang, BAI Xiujuan. Re-Os geochronology constraints on the Neoproterozoic-Cambrian hydrocarbon accumulation in the Sichuan Basin[J]. Editorial Committee of Earth Science(Journal of China University of Geosciences), 2019, 44(3): 713-726. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201903003.htm
    [15] 赛彦明, 田辉, 李杰, 等. 含油气系统Re-Os定年及Re-Os元素和同位素体系研究新进展[J]. 天然气地球科学, 2020, 31(7): 939-951. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202007007.htm

    SAI Yanming, TIAN Hua, LI Jie, et al. Recent research progre-sses on Re-Os geochronology and Re-Os elemental and isotopic systematics in petroleum systems[J]. Natural Gas Geoscience, 2020, 31(7): 939-951. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202007007.htm
    [16] GEORGIEV S V, STEIN H J, HANNAH J L, et al. Re-Os dating of maltenes and asphaltenes within single samples of crude oil[J]. Geochimica et Cosmochimica Acta, 2016, 179: 53-75. doi: 10.1016/j.gca.2016.01.016
    [17] LIU Junjie, SELBY D, ZHOU Honggang, et al. Further evaluation of the Re-Os systematics of crude oil: implications for Re-Os geochronology of petroleum systems[J]. Chemical Geology, 2019, 513: 1-22. doi: 10.1016/j.chemgeo.2019.03.004
    [18] HANNAH J L, BEKKER A, STEIN H J, et al. Primitive Os and 2316 Ma age for marine shale: implications for Paleoproterozoic glacial events and the rise of atmospheric oxygen[J]. Earth and Planetary Science Letters, 2004, 225(1/2): 43-52.
    [19] KENDALL S B, CREASER R A, ROSS G M, et al. Constraints on the timing of Marinoan "Snowball Earth" glaciation by 187Re-187Os dating of a Neoproterozoic, post-glacial black shale in western Canada[J]. Earth and Planetary Science Letters, 2004, 222(3/4): 729-740.
    [20] SELBY D, CREASER R A, DEWING K, et al. Evaluation of bitumen as a 187Re-187Os geochronometer for hydrocarbon maturation and migration: a test case from the Polaris MVT deposit, Canada[J]. Earth and Planetary Science Letters, 2005, 235(1/2): 1-15.
    [21] ROONEY A D, SELBY D, LEWAN M D, et al. Evaluating Re-Os systematics in organic-rich sedimentary rocks in response to petroleum generation using hydrous pyrolysis experiments[J]. Geochimica et Cosmochimica Acta, 2012, 77: 275-291. doi: 10.1016/j.gca.2011.11.006
    [22] CUMMING V M, SELBY D, LILLIS P G, et al. Re-Os geochronology and Os isotope fingerprinting of petroleum sourced from a type Ⅰ lacustrine kerogen: insights from the natural Green River petroleum system in the Uinta Basin and hydrous pyrolysis experiments[J]. Geochimica et Cosmochimica Acta, 2014, 138: 32-56. doi: 10.1016/j.gca.2014.04.016
    [23] JAFFE L A, PEUCKER-EHRENBRINK B, PETSCH S T. Mobility of rhenium, platinum group elements and organic carbon during black shale weathering[J]. Earth and Planetary Science Letters, 2002, 198(3/4): 339-353.
    [24] PEUCKER-EHRENBRINK B, HANNIGAN R. Effects of black shale weathering on the mobility of rhenium and platinum group elements[J]. Geology, 2000, 28(5): 475-478. doi: 10.1130/0091-7613(2000)28<475:EOBSWO>2.0.CO;2
    [25] RAVIZZA G, TUREKIAN K K, HAY B J. The geochemistry of rhenium and osmium in recent sediments from the Black Sea[J]. Geochimica et Cosmochimica Acta, 1991, 55(12): 3741-3752. doi: 10.1016/0016-7037(91)90072-D
    [26] 沈传波, SELBY D, 梅廉夫, 等. 油气成藏定年的Re-Os同位素方法应用研究[J]. 矿物岩石, 2011, 31(4): 87-93. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201104015.htm

    SHEN Chuanbo, SELBY D, MEI Lianfu, et al. Advances in the study of Re-Os geochronology and tracing of hydrocarbon generation and accumulation[J]. Journal of Mineralogy and Petrology, 2011, 31(4): 87-93. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201104015.htm
    [27] GE Xiang, SHEN Chuanbo, SELBY D, et al. Neoproterozoic-Cambrian petroleum system evolution of the Micang Shan uplift, northern Sichuan Basin, China: insights from pyrobitumen rhenium-osmium geochronology and apatite fission-track analysis[J]. AAPG Bulletin, 2018, 102(8): 1429-1453. doi: 10.1306/1107171616617170
    [28] LIU Junjie, SELBY D. A matrix-matched reference material for validating petroleum Re-Os measurements[J]. Geostandards and Geoanalytical Research, 2018, 42(1): 97-113. doi: 10.1111/ggr.12193
    [29] WALKER R J. Low-blank chemical separation of rhenium and osmium from gram quantities of silicate rock for measurement by resonance ionization mass spectrometry[J]. Analytical Chemistry, 1988, 60(11): 1231-1234. doi: 10.1021/ac00162a026
    [30] MORGAN J W, WALKER R J. Isotopic determinations of rhenium and osmium in meteorites by using fusion, distillation and ion-exchange separations[J]. Analytica Chimica Acta, 1989, 222(1): 291-300. doi: 10.1016/S0003-2670(00)81904-2
    [31] HOFFMAN E L, NALDRETT A J, VAN LOON J C, et al. The determination of all the platinum group elements and gold in rocks and ore by neutron activation analysis after preconcentration by a nickel sulphide fire-assay technique on large samples[J]. Analytica Chimica Acta, 1978, 102: 157-166. doi: 10.1016/S0003-2670(01)93469-5
    [32] SHIREY S B, WALKER R J. Carius tube digestion for low-blank rhenium-osmium analysis[J]. Analytical Chemistry, 1995, 67(13): 2136-2141. doi: 10.1021/ac00109a036
    [33] MEISEL T, MOSER J, FELLNER N, et al. Simplified method for the determination of Ru, Pd, Re, Os, Ir and Pt in chromitites and other geological materials by isotope dilution ICP-MS and acid digestion[J]. Analyst, 2001, 126(3): 322-328. doi: 10.1039/b007575m
    [34] SELBY D, CREASER R A. Re-Os geochronology of organic rich sediments: an evaluation of organic matter analysis methods[J]. Chemical Geology, 2003, 200(3/4): 225-240.
    [35] SEN I S, PEUCKER-EHRENBRINK B. Determination of osmium concentrations and 187Os/188Os of crude oils and source rocks by coupling high-pressure, high-temperature digestion with sparging OsO4 into a multicollector inductively coupled plasma mass spectrometer[J]. Analytical Chemistry, 2014, 86(6): 2982-2988. doi: 10.1021/ac403413y
    [36] 刘华, 屈文俊, 王英滨, 等. 用三氧化铬-硫酸溶剂对黑色页岩铼-锇定年方法初探[J]. 岩矿测试, 2008, 27(4): 245-249. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200804004.htm

    LIU Hua, QU Wenjun, WANG Yingbin, et al. Primary study on Re-Os isotopic dating of black shale using CrO3H2SO4-carius tube-inductively coupled plasma mass spectrometry system[J]. Rock and Mineral Analysis, 2008, 27(4): 245-249. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200804004.htm
    [37] CREASER R A, PAPANASTASSIOU D A, WASSERBURG G J, et al. Negative thermal ion mass spectrometry of osmium, rhenium and iridium[J]. Geochimica et Cosmochimica Acta, 1991, 55(1): 397-401. doi: 10.1016/0016-7037(91)90427-7
    [38] BIRCK J L, BARMAN M R, CAPMAS F. Re-Os isotopic mea-surements at the femtomole level in natural samples[J]. Geostandards Newsletter, 1997, 21(1): 19-27. doi: 10.1111/j.1751-908X.1997.tb00528.x
    [39] SELBY D, CREASER R A. Re-Os geochronology and systematics in molybdenite from the endako porphyry molybdenum deposit, British Columbia, Canada[J]. Economic Geology, 2001, 96(1): 197-204. doi: 10.2113/gsecongeo.96.1.197
    [40] ZIMMERMAN A, STEIN H J, MORGAN J. W, et al. Re-Os geochronology of the El Salvador porphyry Cu-Mo deposit, Chile: tracking analytical improvements in accuracy and precision over the past decade[J]. Geochimica et Cosmochimica Acta, 2014, 131: 13-32. doi: 10.1016/j.gca.2014.01.016
    [41] CHU Zhuyin, YAN Yan, CHEN Zhi, et al. A comprehensive method for precise determination of Re, Os, Ir, Ru, Pt, Pd concentrations and Os isotopic compositions in geological samples[J]. Geostandards and Geoanalytical Research, 2015, 39(2): 151-169. doi: 10.1111/j.1751-908X.2014.00283.x
    [42] REISBERG L, MEISEL T. The Re-Os isotopic system: a review of analytical techniques[J]. Geostandards and Geoanalytical Research, 2002, 26(3): 249-267. doi: 10.1111/j.1751-908X.2002.tb00633.x
    [43] 杜安道, 屈文俊, 李超, 等. 铼-锇同位素定年方法及分析测试技术的进展[J]. 岩矿测试, 2009, 28(3): 288-304. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200903027.htm

    DU Andao, QU Wenjun, LI Chao, et al. A review on the development of Re-Os isotopic dating methods and techniques[J]. Rock and Mineral Analysis, 2009, 28(3): 288-304. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200903027.htm
    [44] GEORGIEV S V, ZIMMERMAN A, YANG Gang, et al. Comparison of chemical procedures for Re-isotopic measurements by N-NTIMS[J]. Chemical Geology, 2018, 483: 151-161. doi: 10.1016/j.chemgeo.2018.03.006
    [45] HURTIG N C, GEORGIEV S V, STEIN H J, et al. Re-Os systematics in petroleum during water-oil interaction: the effects of oil che-mistry[J]. Geochimica et Cosmochimica Acta, 2019, 247: 142-161. doi: 10.1016/j.gca.2018.12.021
    [46] MOSER J, WEGSCHEIDER W, MEISEL T, et al. An uncertainty budget for trace analysis by isotope-dilution ICP-MS with proper consideration of correlation[J]. Analytical and Bioanalytical Chemistry, 2003, 377(1): 97-110. doi: 10.1007/s00216-003-2028-5
    [47] MEISEL T, HORAN M F. Analytical methods for the highly siderophile elements[J]. Reviews in Mineralogy and Geochemistry, 2016, 81(1): 89-106. doi: 10.2138/rmg.2016.81.02
    [48] LI Jie, JIANG Xiaoying, Xu Jifeng, et al. Determination of platinum-group elements and Re-Os isotopes using ID-ICP-MS and N-TIMS from a single digestion after two-stage column separation[J]. Geostandards and Geoanalytical Research, 2014, 38(1): 37-50. doi: 10.1111/j.1751-908X.2013.00242.x
    [49] 李超, 裴浩翔, 王登红, 等. 山东孔辛头铜钼矿成矿时代及物质来源: 来自黄铜矿、辉钼矿Re-Os同位素证据[J]. 地质学报, 2016, 90(2): 240-249. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201602004.htm

    LI Chao, PEI Haoxiang, WANG Denghong, et al. Age and source constraints for Kongxintou Copper-Molybdenum deposit Shandong from Re-Os isotope in Molybdenite and Chalcopyrite[J]. Acta Geologica Sinica, 2016, 90(2): 240-249. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201602004.htm
    [50] YIN Lu, LI Jie, TIAN Hui, et al. Rhenium-osmium and molybdenum isotope systematics of black shales from the Lower Cambrian Niutitang Formation, SW China: evidence of a well oxygenated ocean at ca. 520 Ma[J]. Chemical Geology, 2018, 499: 26-42. doi: 10.1016/j.chemgeo.2018.08.016
    [51] BARROTE V, TESSALINA S, McNAUGHTON N, et al. 4D history of the nimbus VHMS ore deposit in the Yilgarn Craton, western Australia[J]. Precambrian Research, 2020, 337.
    [52] YANG Gang, ZIMMERMAN A, STEIN H, et al. Pretreatment of nitric acid with hydrogen peroxide reduces total procedural Os blank to femtogram levels[J]. Analytical Chemistry, 2015, 87(14): 7017-7021. doi: 10.1021/acs.analchem.5b01751
    [53] MEISEL T, REISBERG L, MOSER J, et al. Re-Os systematics of UB-N, a serpentinized peridotite reference material[J]. Chemical Geology, 2003, 201(1/2): 161-179.
    [54] HURTIG N C, GEORGIEV S V, ZIMMERMAN A, et al. Re-Os geochronology for the NIST RM 8505 crude oil: the importance of analytical protocol and uncertainty[J]. Chemical Geology, 2020, 539.
    [55] DIMARZIO J M, GEORGIEV S V, STEIN H J, et al. Residency of rhenium and osmium in a heavy crude oil[J]. Geochimica et Cosmochimica Acta, 2018, 220: 180-200.
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  944
  • HTML全文浏览量:  201
  • PDF下载量:  143
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-30
  • 修回日期:  2021-04-16
  • 刊出日期:  2021-05-28

目录

    /

    返回文章
    返回