A calculation method for the efficiency of hydrocarbon expulsion based on parameter-diagram of source rock pyrolysis
-
摘要: 排烃效率是研究排烃作用的关键地质参数,准确计算烃源岩排烃效率对常规和非常规油气资源评价都有重要意义。在原始生烃潜力恢复法基础上,介绍了一种热解图版法。该方法是利用氢指数与最大热解峰温关系划分有机质类型的经典图版,将有机质类型分界线和成熟度趋势线均匀插值网格化,然后将样品的氢指数和最大热解峰温数据投点于图版中,沿着类型线向左追踪至与Ro为0.2%的成熟度线交点作为生烃指数的原始值,从而计算出排烃效率。通过南襄盆地泌阳凹陷泌页1井66个烃源岩实测数据,研究了排烃效率与烃源岩有机质丰度、类型、成熟度(ATM)特性以及页岩油富集程度的关系。结果表明,与人为赋值法相比,热解图版法获得的排烃效率与有机质ATM特性更具规律性,与页岩油富集程度的吻合度较高,而且计算过程与结果不会出现负值和排烃效率大于100%的现象。该方法计算的烃源岩内部排烃效率合理可行,可作为原始生烃潜力恢复法计算排烃效率的补充。Abstract: The efficiency of hydrocarbon expulsion acts as a key geological factor for the study of hydrocarbon expulsion of conventional oil and gas, also, it indicates the enrichment degree of unconventional oil and/or gas. Based on the method of recovering the original hydrocarbon generation potential, a method according to pyrolysis chart was proposed in this paper. A classic diagram for classifying organic matter types based on hydrogen index (IH) and maximum pyrolysis peak temperature (Tmax) was introduced in this study. The dividing line of organic matter type and the maturity trend line were evenly interpolated and gridded. The IH and Tmax data were plotted into the chart, and then traced to the left along the type line to the intersection point of maturity line Ro=0.2% as the original value of hydrocarbon generation index, thus, the hydrocarbon expulsion efficiency can be calculated. Based on the results of 66 source rock samples from the well BYHF1 of Biyang Sag, the relationship between hydrocarbon expulsion efficiency and characteristics of organic matter (ATM) was studied. In addition, the correlation between hydrocarbon expulsion efficiency and shale oil enrichment degree was studied. The results indicated that the hydrocarbon expulsion efficiency and ATM characteristics of organic matter obtained by the pyrolysis chart method were more regular than those obtained by the artificial assignment method, and it had a higher consistency with the enrichment degree of shale oil (OSI). The calculation process and results will not to be negative value or hydrocarbon expulsion efficiency greater than 100%. Therefore, it is reasonable and feasible to calculate hydrocarbon expulsion efficiency by the pyrolysis chart method, which is a complement to the original hydrocarbon generation potential recovery method.
-
表 1 南襄盆地泌阳凹陷泌页1井烃源岩内部排烃效率
Table 1. Internal expulsion efficiency of source rock of well BYHF 1, Biyang Sag, Nanxiang Basin
样品序号 Tmax /℃ 现今IH/(mg·g-1) 残烃指数/(mg·g-1) 干酪根类型 人为赋值法 热解图版法 原始IH/(mg·g-1) 生烃指数/(mg·g-1) 排烃指数/(mg·g-1) 排烃效率/% 原始IH/(mg·g-1) 排烃指数/(mg·g-1) 生烃指数/(mg·g-1) 排烃效率/% BY01 451 613.91 20.86 Ⅰ 750 136.09 115.24 84.67 980.21 345.45 366.30 94.31 BY02 447 649.88 20.57 Ⅰ 750 100.12 79.55 79.46 928.43 257.98 278.55 92.62 BY03 446 634.17 15.60 Ⅰ 750 115.83 100.23 86.53 908.79 259.02 274.62 94.32 BY04 447 610.65 11.95 Ⅰ 750 139.35 127.40 91.43 914.70 292.10 304.05 96.07 BY05 450 615.41 12.37 Ⅰ 750 134.59 122.22 90.81 962.27 334.49 346.86 96.43 BY06 451 626.97 14.76 Ⅰ 750 123.03 108.27 88.00 983.38 341.65 356.41 95.86 BY07 449 654.26 18.94 Ⅰ 750 95.74 76.81 80.22 955.80 282.61 301.54 93.72 BY08 449 687.53 15.76 Ⅰ 750 62.47 46.71 74.76 965.55 262.26 278.02 94.33 BY09 446 609.86 15.02 Ⅰ 750 140.14 125.12 89.28 898.58 273.70 288.72 94.80 BY10 446 643.69 20.07 Ⅰ 750 106.31 86.23 81.12 911.45 247.68 267.76 92.50 BY11 446 615.31 19.39 Ⅰ 750 134.69 115.31 85.61 901.06 266.37 285.75 93.22 BY12 449 621.45 19.20 Ⅰ 750 128.55 109.35 85.06 947.08 306.43 325.63 94.10 BY13 439 415.28 31.94 Ⅱ1 550 134.72 102.78 76.29 527.82 80.60 112.54 71.62 BY14 446 488.05 56.60 Ⅱ1 550 61.95 5.35 8.63 778.31 233.66 290.26 80.50 BY15 444 489.37 34.55 Ⅱ1 550 60.63 26.08 43.01 719.99 196.07 230.62 85.02 BY16 443 430.77 36.54 Ⅱ1 550 119.23 82.69 69.35 583.09 115.78 152.32 76.01 BY17 447 536.78 23.37 Ⅱ1 550 13.22 -10.15 -76.81 874.95 314.80 338.17 93.09 BY18 445 514.55 27.99 Ⅱ1 550 35.45 7.46 21.05 791.38 248.84 276.83 89.89 BY19 441 423.67 87.92 Ⅱ1 550 126.33 38.41 30.40 559.61 48.02 135.94 35.32 BY20 445 506.07 52.50 Ⅱ1 550 43.93 -8.57 -19.51 777.98 219.41 271.91 80.69 BY21 444 516.11 54.03 Ⅱ1 550 33.89 -20.14 -59.44 767.53 197.39 251.42 78.51 BY22 445 511.03 46.90 Ⅱ1 550 38.97 -7.93 -20.35 787.47 229.54 276.44 83.04 BY23 444 406.36 38.56 Ⅱ1 550 143.64 105.08 73.16 570.51 125.59 164.15 76.51 BY24 447 491.60 27.48 Ⅱ1 550 58.40 30.92 52.94 823.78 304.70 332.18 91.73 BY25 446 525.64 23.85 Ⅱ1 550 24.36 0.51 2.11 835.27 285.78 309.63 92.30 BY26 446 403.73 27.80 Ⅱ1 550 146.27 118.47 81.00 591.73 160.20 188.00 85.21 BY27 445 525.94 19.45 Ⅱ1 550 24.06 4.61 19.15 812.16 266.77 286.22 93.20 BY28 440 409.88 46.91 Ⅱ1 550 140.12 93.21 66.52 532.09 75.30 122.21 61.61 BY29 440 493.86 32.13 Ⅱ1 550 56.14 24.01 42.77 633.71 107.72 139.85 77.02 BY30 447 405.28 19.11 Ⅱ1 550 144.72 125.61 86.80 612.26 187.87 206.98 90.77 BY31 448 477.57 26.84 Ⅱ1 550 72.43 45.59 62.94 835.32 330.91 357.75 92.50 BY32 449 528.51 17.54 Ⅱ1 550 21.49 3.95 18.37 911.99 365.94 383.48 95.43 BY33 444 525.46 35.28 Ⅱ1 550 24.54 -10.74 -43.75 780.43 219.69 254.97 86.16 BY34 448 517.12 44.18 Ⅱ1 550 32.88 -11.30 -34.37 844.55 283.25 327.43 86.51 BY35 444 573.28 22.22 Ⅱ1 550 -23.28 -45.50 195.45 841.38 245.88 268.10 91.71 BY36 446 515.14 46.02 Ⅱ1 550 34.86 -11.16 -32.00 824.53 263.37 309.39 85.13 BY37 446 450.57 53.99 Ⅱ1 550 99.43 45.44 45.70 694.33 189.77 243.76 77.85 BY38 448 479.37 32.17 Ⅱ1 550 70.63 38.46 54.46 836.78 325.24 357.41 91.00 BY39 447 532.62 18.20 Ⅱ1 550 17.38 -0.83 -4.76 873.20 322.37 340.58 94.66 BY40 452 537.30 14.32 Ⅱ1 550 12.70 -1.62 -12.77 984.84 433.22 447.54 96.80 BY41 447 436.51 36.93 Ⅱ1 550 113.49 76.56 67.46 693.93 220.49 257.42 85.65 BY42 447 448.44 29.69 Ⅱ1 550 101.56 71.88 70.77 728.26 250.14 279.82 89.39 BY43 446 524.23 16.64 Ⅱ1 550 25.77 9.13 35.44 834.67 293.80 310.44 94.64 BY44 445 466.67 36.11 Ⅱ1 550 83.33 47.22 56.67 700.39 197.61 233.72 84.55 BY45 449 401.39 46.88 Ⅱ1 550 148.61 101.74 68.46 688.17 239.91 286.78 83.65 BY46 447 529.76 20.95 Ⅱ1 550 20.24 -0.71 -3.53 869.78 319.07 340.02 93.84 BY47 446 458.92 20.96 Ⅱ1 550 91.08 70.11 76.98 714.95 235.06 256.03 91.81 BY48 446 438.37 83.72 Ⅱ1 550 111.63 27.91 25.00 655.83 133.74 217.46 61.50 BY49 445 507.99 26.04 Ⅱ1 550 42.01 15.97 38.02 781.52 247.49 273.53 90.48 BY50 444 492.31 17.63 Ⅱ1 550 57.69 40.06 69.44 726.79 216.85 234.48 92.48 BY51 447 580.90 10.67 Ⅱ1 550 -30.90 -41.57 134.55 902.47 310.90 321.57 96.68 BY52 438 353.33 40.00 Ⅱ2 350 -3.33 -43.33 1 300.00 449.11 55.78 95.78 58.24 BY53 438 253.13 43.75 Ⅱ2 350 96.88 53.13 54.84 325.40 28.53 72.28 39.47 BY54 438 278.87 64.79 Ⅱ2 350 71.13 6.34 8.91 353.35 9.69 74.48 13.01 BY55 445 395.35 44.96 Ⅱ2 350 -45.35 -90.31 199.15 570.27 129.96 174.92 74.30 BY56 444 202.59 31.03 Ⅱ2 350 147.41 116.38 78.95 305.04 71.42 102.45 69.71 BY57 443 373.30 38.64 Ⅱ2 350 -23.30 -61.93 265.85 527.28 115.35 153.98 74.91 BY58 439 276.28 41.03 Ⅱ2 350 73.72 32.69 44.35 378.16 60.85 101.88 59.73 BY59 438 358.33 33.33 Ⅱ2 350 -8.33 -41.67 500.00 453.55 61.88 95.22 64.99 BY60 446 216.96 34.82 Ⅱ2 350 133.04 98.21 73.83 351.03 99.24 134.07 74.03 BY61 447 389.72 50.47 Ⅱ2 350 -39.72 -90.19 227.06 591.69 151.50 201.97 75.01 BY62 443 300.62 39.13 Ⅱ2 350 49.38 10.25 20.75 432.36 92.61 131.74 70.30 BY63 442 246.95 51.22 Ⅱ2 350 103.05 51.83 50.30 348.83 50.66 101.88 49.73 BY64 445 358.97 70.33 Ⅱ2 350 -8.97 -79.30 883.67 538.17 108.87 179.20 60.75 BY65 446 372.67 27.91 Ⅱ2 350 -22.67 -50.58 223.08 562.00 161.42 189.33 85.26 BY66 446 379.79 104.26 Ⅱ2 350 -29.79 -134.04 450.00 568.35 84.31 188.56 44.71 注:人为赋值法中的原始IH为人为赋值数据,参考文献[19]获得;热解图版法中的原始IH为图版赋值数据,由图版(图 1)查得。 -
[1] 马卫, 李剑, 王东良, 等. 烃源岩排烃效率及其影响因素[J]. 天然气地球科学, 2016, 27(9): 1742-1751. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201609020.htmMA Wei, LI Jian, WANG Dongliang, et al. Hydrocarbon expulsion efficiency of source rocks and its influencing factors[J]. Natural Gas Geoscience, 2016, 27(9): 1742-1751. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201609020.htm [2] 张世华. 川西坳陷须三-须四段含油气系统生排烃过程与主要成藏期关系[J]. 成都理工大学学报(自然科学版), 2006, 33(3): 252-255. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG200603005.htmZHANG Shihua. Relation between the main accumulation stage and the process of generation and expulsion of hydrocarbon in T3x3-T3x4 petroleum system of Upper Triassic in the West Sichuan Depression, China[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2006, 33(3): 252-255. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG200603005.htm [3] 马行陟, 庞雄奇, 孟庆洋, 等. 辽东湾地区深层烃源岩排烃特征及资源潜力[J]. 石油与天然气地质, 2011, 32(2): 251-258. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201102016.htmMA Xingzhi, PANG Xiongqi, MENG Qingyang, et al. Hydrocarbon expulsion characteristics and resource potential of deep source rocks in the Liaodong Bay[J]. Oil & Gas Geology, 2011, 32(2): 251-258. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201102016.htm [4] 郭继刚, 庞雄奇, 刘丹丹, 等. 库车坳陷中、下侏罗统煤系烃源岩排烃特征及资源潜力评价[J]. 天然气地球科学, 2012, 23(2): 327-334. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201202019.htmGUO Jigang, PANG Xiongqi, LIU Dandan, et al. Hydrocarbon expulsion for Middle-Lower Jurassic coal measures and evaluation of potential resource in Kuqa Depression[J]. Natural Gas Geoscience, 2012, 23(2): 327-334. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201202019.htm [5] 胡朝伟, 胡广, 张玺华, 等. 川西北地区茅口组上部黑色岩系的层位、沉积环境及生烃潜力评价[J]. 石油实验地质, 2020, 42(2): 202-214. doi: 10.11781/sysydz202002202HU Chaowei, HU Guang, ZHANG Xihua, et al. Sedimentary environment, hydrocarbon potential and development of black rocks in Upper Maokou Formation, northwestern Sichuan[J]. Petroleum Geology & Experiment, 2020, 42(2): 202-214. doi: 10.11781/sysydz202002202 [6] 赵雪娇, 王震亮, 范昌育, 等. 鄂尔多斯盆地陇东地区长7段烃源岩排烃机制及成藏意义[J]. 油气地质与采收率, 2012, 19(1): 35-38. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201201014.htmZHAO Xuejiao, WANG Zhenliang, FAN Changyu, et al. Hydrocarbon expulsion dynamic conditions and accumulation significance of petroleum of source rocks in Longdong area, Ordos Basin[J]. Petroleum Geology and Recovery Efficiency, 2012, 19(1): 35-38. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201201014.htm [7] 田善思. 排烃效率研究方法及松辽盆地烃源岩排烃效率[D]. 大庆: 东北石油大学, 2013.TIAN Shansi. The expulsion efficiency research methods and the Songliao Basin hydrocarbon source rock expulsion efficiency[D]. Daqing: Northeast Petroleum University, 2013. [8] 李吉君, 吴慧, 卢双舫, 等. 鄂尔多斯盆地长9烃源岩发育与排烃效率[J]. 吉林大学学报(地球科学版), 2012, 42(S1): 26-32. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ2012S1005.htmLI Jijun, WU Hui, LU Shuangfang, et al. Development and hydrocarbon expulsion efficiency of source rock in 9th member of Yanchang Formation, Ordos Basin[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(S1): 26-32. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ2012S1005.htm [9] 郭继刚, 李建华, 庞雄奇, 等. 准噶尔盆地南缘侏罗系烃源岩排烃效率研究[J]. 现代地质, 2013, 27(5): 1081-1088. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201305010.htmGUO Jigang, LI Jianhua, PANG Xiongqi, et al. Study on expulsion efficiency of hydrocarbon for the Jurassic source rock in the southern margin of Junggar Basin[J]. Geoscience, 2013, 27(5): 1081-1088. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201305010.htm [10] 陈瑞银, 王汇彤, 陈建平, 等. 实验方法评价松辽盆地烃源岩的生排烃效率[J]. 天然气地球科学, 2015, 26(5): 915-921. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201505015.htmCHEN Ruiyin, WANG Huitong, CHEN Jianping, et al. An experimental method to evaluate the hydrocarbon generation and expulsion efficiency in the Songliao Basin[J]. Natural Gas Geoscience, 2015, 26(5): 915-921. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201505015.htm [11] 王媛, 汪少勇, 李建忠, 等. 辽西雷家地区沙四段中-低熟烃源岩排烃效率与致密油-页岩油勘探前景[J]. 石油与天然气地质, 2019, 40(4): 810-821. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201904012.htmWANG Yuan, WANG Shaoyong, LI Jianzhong, et al. The hydrocarbon expulsion efficiency of medium-low mature source rocks and tight-shale oil potential in the Es4, Leijia area in West Depression, Liaohe Basin[J]. Oil & Gas Geology, 2019, 40(4): 810-821. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201904012.htm [12] 黄振凯, 刘全有, 黎茂稳, 等. 鄂尔多斯盆地长7段泥页岩层系排烃效率及其含油性[J]. 石油与天然气地质, 2018, 39(3): 513-521. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201803009.htmHUANG Zhenkai, LIU Quanyou, LI Maowen, et al. Hydrocarbon expulsion efficiency and oil-bearing property of the shale system in Chang 7 Member, Ordos Basin[J]. Oil & Gas Geology, 2018, 39(3): 513-521. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201803009.htm [13] 腾格尔, 陶成, 胡广, 等. 排烃效率对页岩气形成与富集的影响[J]. 石油实验地质, 2020, 42(3): 325-334. doi: 10.11781/sysydz202003325BORJIGIN Tenger, TAO Cheng, HU Guang, et al. Effect of hydrocarbon expulsion efficiency on shale gas formation and enrichment[J]. Petroleum Geology & Experiment, 2020, 42(3): 325-334. doi: 10.11781/sysydz202003325 [14] 薛海涛, 田善思, 卢双舫, 等. 页岩油资源定量评价中关键参数的选取与校正: 以松辽盆地北部青山口组为例[J]. 矿物岩石地球化学通报, 2015, 34(1): 70-78. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201501012.htmXUE Haitao, TIAN Shansi, LU Shuangfang, et al. Selection and verification of key parameters in the quantitative evaluation of shale oil: a case study at the Qingshankou Formation, northern Songliao Basin[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(1): 70-78. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201501012.htm [15] 刘庆, 张林晔, 王茹, 等. 湖相烃源岩原始有机质恢复与生排烃效率定量研究: 以东营凹陷古近系沙河街组四段优质烃源岩为例[J]. 地质论评, 2014, 60(4): 877-883. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201404020.htmLIU Qing, ZHANG Linye, WANG Ru, et al. Recovery of original organic matter content and quantitatively study of generation and expulsion efficiency for lacustrine hydrocarbon source rocks: a case study of the excellent source rocks of the Palaeocene E2-3s4, Dongying Sag[J]. Geological Review, 2014, 60(4): 877-883. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201404020.htm [16] 陈冬霞, 黄小惠, 李林涛, 等. 川西坳陷上三叠统烃源岩排烃特征与排烃史[J]. 天然气工业, 2010, 30(5): 41-45. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201005012.htmCHEN Dongxia, HUANG Xiaohui, LI Lintao, et al. Characteristics and history of hydrocarbon expulsion of the Upper Tertiary source rocks in the Western Sichuan Depression[J]. Natural Gas Industry, 2010, 30(5): 41-45. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201005012.htm [17] 邬立言. 生油岩热解快速定量评价[M]. 北京: 科学出版社, 1986.WU Liyan. Rapid quantitative evaluation of source rock pyrolysis[M]. Beijing: Science Press, 1986. [18] JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems: the Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499. [19] 陈建平, 孙永革, 钟宁宁, 等. 地质条件下湖相烃源岩生排烃效率与模式[J]. 地质学报, 2014, 88(11): 2005-2032. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201411001.htmCHEN Jianping, SUN Yongge, ZHONG Ningning, et al. The efficiency and model of petroleum expulsion from the lacustrine source rocks within geological frame[J]. Acta Geologica Sinica, 2014, 88(11): 2005-2032. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201411001.htm [20] CHEN Zhuoheng, JIANG Chunqing. A data driven model for studying kerogen kinetics with application examples from Canadian sedimen-tary basins[J]. Marine and Petroleum Geology, 2015, 67: 795-803. [21] CHEN Zhuoheng, JIANG Chunqing, LAVOIE D, et al. Model-assisted Rock-Eval data interpretation for source rock evaluation: examples from producing and potential shale gas resource plays[J]. International Journal of Coal Geology, 2016, 165: 290-302. [22] 郭秋麟, 米敬奎, 王建, 等. 改进的烃源岩生烃潜力模型及关键参数模板[J]. 中国石油勘探, 2019, 24(5): 661-669. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201905013.htmGUO Qiulin, MI Jingkui, WANG Jian, et al. An improved hydrocarbon generation model of source rocks and key parameter templates[J]. China Petroleum Exploration, 2019, 24(5): 661-669. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201905013.htm [23] LEYTHAEUSER D, SCHAEFER R G, RADKE M. On the primary migration of petroleum[C]//Proceedings of the 12th World Petroleum Congress. Houston, Texas: Wiley, 1987: 227-236. [24] ESPITALIÉ J, MARQUIS F, BARSONY I. Geochemical logging[M]//VOORHEES K J. Analytical pyrolysis: techniques and applications. Boston: Butterworth-Heinemann, 1984: 276-304. [25] 侯读杰, 冯子辉. 油气地球化学[M]. 北京: 石油工业出版社, 2011: 176-177.HOU Dujie, FENG Zihui. Petroleum organic geochemistry[M]. Beijing: Petroleum Industry Press, 2011: 176-177. [26] 郎东升, 金成志, 郭冀义, 等. 储层流体的热解及气相色谱评价技术[M]. 北京: 石油工业出版社, 1999: 169-171.LANG Dongsheng, JIN Chengzhi, GUO Jiyi, et al. Pyrolysis and gas chromatographic evaluation of reservoir fluids[M]. Beijing: Petroleum Industry Press, 1999: 169-171. [27] DOW W G. Kerogen studies and geological interpretation[J]. Journal of Geochemical Exploration, 1977, 7: 79-99. [28] 何生, 王青玲. 关于用镜质体反射率恢复地层剥蚀厚度的问题讨论[J]. 地质论评, 1989, 35(2): 119-126. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP198902002.htmHE Sheng, WANG Qingling. The eroded thickness reconstructed by vitrinite reflectance[J]. Geological Review, 1989, 35(2): 119-126. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP198902002.htm [29] 李伟. 恢复地层剥蚀厚度方法综述[J]. 中国海上油气(地质), 1996, 10(3): 167-171. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199603006.htmLI Wei. Summary of reconstruction of strata denudation thickness[J]. China Offshore Oil and Gas(Geology), 1996, 10(3): 167-171. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199603006.htm [30] 孔伟思, 方石, 袁魏, 等. 镜质体反射率的研究现状[J]. 当代化工, 2015, 44(5): 1020-1028. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHH201505047.htmKONG Weisi, FANG Shi, YUAN Wei, et al. Research status of vitrinite rreflectivity[J]. Contemporary Chemical Industry, 2015, 44(5): 1020-1028. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHH201505047.htm [31] JARVIE D M. Extended abstract-shale resource systems for oil and gas[M]//BREYER J A. Shale reservoirs-Giant resources for the 21st century. Tulsa, USA: AAPG, 2012: 1-3. [32] JARVIE D M. Shale resource systems for oil and gas: Part 2-Shale-oil resource systems[M]//BREYER J A. Shale reservoirs-Giant resources for the 21st century. Tulsa, USA: AAPG, 2012: 89-119. [33] 林会喜, 宋明水, 王圣柱, 等. 叠合盆地复杂构造带页岩油资源评价: 以准噶尔盆地东南缘博格达地区中二叠统芦草沟组为例[J]. 油气地质与采收率, 2020, 27(2): 7-17. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202002003.htmLIN Huixi, SONG Mingshui, WANG Shengzhu, et al. Shale oil resource evaluation in complex structural belt of superimposed basin: a case study of Middle Permian Lucaogou Formation in Bogda area, southeast margin of Junggar Basin[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(2): 7-17. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202002003.htm