Core testing technology with T2-Pc two-dimensional nuclear magnetic resonance and its application
-
摘要: 作为一种无损、高效、非侵入式的检测手段,核磁共振技术一直在油气岩心分析中发挥着重要作用。但传统核磁共振(NMR)检测结果(T2谱)反映的是岩石孔隙的大小分布特征,孔隙的连通性无法直接被表征。通过对实验流程和数据处理方法的改进,在标准核磁T2谱的基础上,增加毛管压力(Pc)维度,得到T2—Pc二维核磁实验图谱,从另一个视角解决了核磁实验不能反映孔隙连通性的问题。实际应用表明,T2—Pc二维核磁实验不但能够对储层连通性进行直观评价,也可以得到不同生产压差下的束缚水饱和度,从而为油气勘探开发提供更多储层信息。Abstract: As a non-destructive, efficient and non-invasive detection method, nuclear magnetic resonance (NMR) technology has always played an important role in the analysis of oil and gas cores, but the traditional nuclear magnetic resonance detection results (T2 spectrum) only reflect the size distribution characteristics of rock pores, while the connectivity of pores cannot be directly characterized. Through the improvement of experimental procedures and data processing methods of the standard nuclear magnetic T2 spectrum, the capillary pressure dimension is added in to obtain the T2-Pc two-dimensional nuclear magnetic experiment spectrum, which solves the problem that the nuclear magnetic experiment cannot reflect the pore connectivity. Practical application shows that the T2-Pc two-dimensional nuclear magnetic experiment can not only intuitively evaluate reservoir connectivity, but also obtain bound water saturation under different production pressure differentials, thus providing more reservoir information for oil and gas exploration and development.
-
Key words:
- T2 spectrum /
- capillary pressure /
- 2D NMR /
- bound water saturation
-
表 1 某地区砂岩岩心参数
Table 1. Sandstone core porosity and permeability parameters in a field
编号 孔隙度/% 渗透率/(10-3 μm2) 束缚水饱和度/% 1 18.85 5.970 36.13 2 9.63 0.188 45.98 3 9.08 0.603 33.92 -
[1] 王志远, 张烈辉, 谭龙, 等. 砾岩储集层聚合物驱油机理与控制因素实验研究[J]. 油气藏评价与开发, 2020, 10(3): 109-114. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202003017.htmWANG Zhiyuan, ZHANG Liehui, TAN Long, et al. Study on mechanism and controlling factors of polymer flooding in conglomerate reservoir[J]. Reservoir Evaluation and Development, 2020, 10(3): 109-114. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202003017.htm [2] 张明玉, 孔垂显, 齐洪岩, 等. 基于核磁共振实验的火山岩气藏原始含气饱和度分析[J]. 新疆石油地质, 2020, 41(3): 288-294. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202003005.htmZHANG Mingyu, KONG Chuixian, QI Hongyan, et al. Analysis on original gas saturation of volcanic gas reservoir based on NMR experiment[J]. Xinjiang Petroleum Geology, 2020, 41(3): 288-294. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202003005.htm [3] 张全培, 吴文瑞, 刘丽萍, 等. 鄂尔多斯盆地镇北地区延长组超低渗透储层孔隙结构及其分形特征[J]. 油气地质与采收率, 2020, 27(3): 20-31. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202003004.htmZHANG Quanpei, WU Wenrui, LIU Liping, et al. Pore structure and fractal characteristics of ultra-low permeability reservoirs in Yanchang Formation in Zhenbei area, Ordos Basin[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(3): 20-31. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202003004.htm [4] 魏赫鑫, 赖枫鹏, 蒋志宇, 等. 延长致密气储层微观孔隙结构及流体分布特征[J]. 断块油气田, 2020, 27(2): 182-187. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202002010.htmWEI Hexin, LAI Fengpeng, JIANG Zhiyu, et al. Micropore structure and fluid distribution characteristics of Yanchang tight gas reservoir[J]. Fault-Block Oil and Gas Field, 2020, 27(2): 182-187. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202002010.htm [5] 巨明霜, 王秀宇, 余文帅, 等. 基于核磁共振技术的致密储集层静态渗吸规律[J]. 新疆石油地质, 2019, 40(3): 334-339. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201903012.htmJU Mingshuang, WANG Xiuyu, YU Wenshuai, et al. Spontaneous imbibition of tight oil reservoirs based on NMR technology[J]. Xinjiang Petroleum Geology, 2019, 40(3): 334-339. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201903012.htm [6] 马海洋, 夏遵义, 温庆志, 等. 渤海湾盆地沾化凹陷页岩微观孔隙特征实验研究[J]. 石油实验地质, 2019, 41(1): 149-156. doi: 10.11781/sysydz201901149MA Haiyang, XIA Zunyi, WEN Qingzhi, et al. Micro-pore characte-ristics of shale in Zhanhua Sag, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2019, 41(1): 149-156. doi: 10.11781/sysydz201901149 [7] 雷浩, 何建华, 胡振国. 潜江凹陷页岩油藏渗流特征物理模拟及影响因素分析[J]. 特种油气藏, 2019, 26(3): 94-98. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201903017.htmLEI Hao, HE Jianhua, HU Zhenguo. Physical simulation and influencing factor analysis of the flow characteristics in the shale oil reservoir of Qianjiang Depression[J]. Special Oil & Gas Reservoirs, 2019, 26(3): 94-98. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201903017.htm [8] MORRISS C, ROSSINI D, STRALEY C, et al. Core analysis by low-field NMR[J]. The Log Analyst, 1997, 38(2): 84-94. [9] 王振华, 陈刚, 李书恒, 等. 核磁共振岩心实验分析在低孔渗储层评价中的应用[J]. 石油实验地质, 2014, 36(6): 773-779. doi: 10.11781/sysydz201406773WANG Zhenhua, CHEN Gang, LI Shuheng, et al. Application of NMR core experimental analysis in evaluation of low-porosity and low-permeability sandstone reservoirs[J]. Petroleum Geology & Experiment, 2014, 36(6): 773-779. doi: 10.11781/sysydz201406773 [10] 国家能源局. SY/T 6490-2014: 岩样核磁共振参数实验室测量规范[S]. 北京: 石油工业出版社, 2015.National Energy Administration. Specification for core NMR parameter's measurement in laboratory[S]. Beijing: Petroleum Industry Press, 2015. [11] 范卓颖, 侯加根, 邢东辉, 等. 低渗透储层核磁共振实验与测井应用[J]. 中国石油大学学报(自然科学版), 2019, 43(1): 53-59. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201901006.htmFAN Zhuoying, HOU Jiagen, XING Donghui, et al. Core NMR experiments for low permeability reservoir and its field application[J]. Journal of China University of Petroleum (Edition of Natural Science), 2019, 43(1): 53-59. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201901006.htm [12] 王为民, 郭和坤, 叶朝辉. 利用核磁共振可动流体评价低渗透油田开发潜力[J]. 石油学报, 2001, 22(6): 40-44. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200106008.htmWANG Weimin, GUO Hekun, YE Chaohui. The evaluation of development potential in low permeability oilfield by the aid of NMR movable fluid detecting technology[J]. Acta Petrolei Sinica, 2001, 22(6): 40-44. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200106008.htm [13] 姜鹏, 郭和坤, 李海波, 等. 低渗透率砂岩可动流体T2截止值实验研究[J]. 测井技术, 2010, 34(4): 327-330. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201004006.htmJIANG Peng, GUO Hekun, LI Haibo, et al. Experimental study on T2 cutoff in low permeability sandstones[J]. Well Logging Technology, 2010, 34(4): 327-330. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201004006.htm [14] 葛新民, 范宜仁, 邓少贵. 基于实验分析的泥质砂岩T2截止值确定方法研究[J]. 测井技术, 2011, 35(4): 308-313. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201104005.htmGE Xinmin, FAN Yiren, DENG Shaogui. Research on T2 cutoff-value determination method for shaly sand based on experiments[J]. Well Logging Technology, 2011, 35(4): 308-313. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201104005.htm [15] 白松涛, 程道解, 万金彬, 等. 砂岩岩石核磁共振T2谱定量表征[J]. 石油学报, 2016, 37(3): 382-391. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201603011.htmBAI Songtao, CHENG Daojie, WAN Jinbin, et al. Quantitative characterization of sandstone NMR T2 spectrum[J]. Acta Petrolei Sinica, 2016, 37(3): 382-391. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201603011.htm [16] 周尚文, 刘洪林, 闫刚, 等. 中国南方海相页岩储层可动流体及T2截止值核磁共振研究[J]. 石油与天然气地质, 2016, 37(4): 612-616. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201604022.htmZHOU Shangwen, LIU Honglin, YAN gang, et al. NMR research of movable fluid and T2 cutoff of marine shale in South China[J]. Oil & Gas Geology, 2016, 37(4): 612-616. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201604022.htm [17] 万文胜, 杜军社, 佟国彰, 等. 用毛细管压力曲线确定储集层孔隙喉道半径下限[J]. 新疆石油地质, 2006, 27(1): 104-106. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD200601029.htmWAN Wensheng, DU Junshe, TONG Guozhang, et al. Application of capillary pressure to determination of cut-off pore-throat radius in reservoirs[J]. Xinjiang Petroleum Geology, 2006, 27(1): 104-106. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD200601029.htm [18] 李天降, 李子丰, 赵彦超, 等. 核磁共振与压汞法的孔隙结构一致性研究[J]. 天然气工业, 2006, 26(10): 57-59. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200610018.htmLI Tianjiang, LI Zifeng, ZHAO Yanchao, et al. Consistency of pore structures between NMR and mercury intrusion method[J]. Natural Gas Industry, 2006, 26(10): 57-59. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200610018.htm [19] 肖佃师, 卢双舫, 陆正元, 等. 联合核磁共振和恒速压汞方法测定致密砂岩孔喉结构[J]. 石油勘探与开发, 2016, 43(6): 961-970. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201606014.htmXIAO Dianshi, LU Shuangfang, LU Zhengyuan, et al. Combining nuclear magnetic resonance and rate-controlled porosimetry to probe the pore-throat structure of tight sandstones[J]. Petroleum Exploration and Development, 2016, 43(6): 961-970. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201606014.htm [20] 张诗青, 戴诗华, 张晓亮, 等. 核磁共振与半渗透隔板结合确定毛细管压力实验[J]. 新疆石油地质, 2010, 31(6): 647-648. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201006031.htmZHANG Shiqing, DAI Shihua, ZHANG Xiaoliang, et al. Experiment on capillary pressure determination with MNR and semi-permeable plate[J]. Xinjiang Petroleum Geology, 2010, 31(6): 647-648. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201006031.htm [21] 李海波, 朱巨义, 郭和坤. 核磁共振T2谱换算孔隙半径分布方法研究[J]. 波谱学杂志, 2008, 25(2): 273-280. https://www.cnki.com.cn/Article/CJFDTOTAL-PPXZ200802017.htmLI Haibo, ZHU Juyi, GUO Hekun. Methods for calculating pore radius distribution in rock from NMR T2 spectra[J]. Chinese Journal of Magnetic Resonance, 2008, 25(2): 273-280. https://www.cnki.com.cn/Article/CJFDTOTAL-PPXZ200802017.htm [22] 彭川, 何宗斌, 张宫. 核磁共振T2弛豫仿真软件研发及在岩心核磁实验中的应用[J]. 计算机应用与软件, 2019, 36(3): 282-286. https://www.cnki.com.cn/Article/CJFDTOTAL-JYRJ201903051.htmPENG Chuan, HE Zongbin, ZHANG Gong. Development of NMR T2 relaxation simulation software and its application in core NMR experiment[J]. Computer Applications and Software, 2019, 36(3): 282-286. https://www.cnki.com.cn/Article/CJFDTOTAL-JYRJ201903051.htm [23] 李鹏举, 葛成, 孙国平, 等. 基于奇异值分解的核磁共振测井T2谱反演方法的改进[J]. 测井技术, 2010, 34(3): 215-218. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201003005.htmLI Pengju, GE Cheng, SUN Guoping, et al. Improvement of T2 spectrum inversion method with singular value decomposition from NMR data[J]. Well Logging Technology, 2010, 34(3): 215-218. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201003005.htm [24] STRALEY C, MORRISS C E, KENYON W E. NMR in partially saturated rocks: laboratory insights on free fluid index and comparison with borehole logs[C]//Paper CC Presented at SPWLA 32nd Annual Logging Symposium. [S. l. ]: Society of Petrophysicists and Well-log Analysts, 1991: 25.