Accumulation conditions and controlling factors for the enrichment of shale oil and gas in the Jurassic Qianfoya Formation, Yuanba area, Sichuan Basin
-
摘要: 以四川盆地元坝地区元页3井等重点钻井为例,通过岩心观察和实验分析,评价了该区中侏罗统千佛崖组陆相页岩油气的成藏条件。千佛崖组富有机质泥岩孔隙度高、含油气性好,是主要的储层岩相类型,而灰岩及砂岩夹层物性相对较差;孔隙类型以无机孔为主,占总孔隙的比例约为60%~80%,与海相页岩相比微孔占比降低而大孔含量更高,有利于页岩油气的采出。千佛崖组二段下部的④小层全段以富有机质泥岩为主,泥地比高,孔隙度平均达5.43%,有机碳(TOC)含量平均1.72%,冷冻碎样热解的游离烃含量S1为2.63 mg/g,测试含气量平均1.51 m3/t,含油气性较好,具备陆相页岩油气形成的有利地质条件。通过与其他钻井的对比分析,认为半深湖相沉积是最为有利的沉积相带,为油气富集提供了物质基础,而较高的成熟度和裂缝的发育是油气富集高产的重要条件。Abstract: Taking key wells such as Yuanye 3 in the Yuanba area of the Sichuan Basin as examples, the accumulation conditions of continental shale oil and gas in the Middle Jurassic Qianfoya Formation in this area have been evaluated based on core observation and experimental analysis. The organic-rich mudstone of the Qianfoya Formation has high porosity and good oil and gas content. It is the main reservoir lithofacies type, while the physical properties of limestone and sandstone interlayers are relatively poorer. The pores are mainly inorganic ones, accounting for approximately 60% to 80% of the total porosity. Compared with marine shale, the proportion of micropores is lower and the content of macropores is higher, which is conducive to the production of shale oil and gas. The fourth section of the lower part of the second member of the Qianfoya Formation is dominated by organic-rich mudstone, with a high shale-to-stratum ratio, an average porosity of 5.43%, and an average total organic carbon (TOC) content of 1.72%. The free hydrocarbon content (S1) of frozen sample pyrolysis is 2.63 mg/g, and the average total gas content is 1.51 m3/t, showing a good oil-bearing property and favorable geological conditions for the formation of continental shale oil and gas. Comparative analysis with other wells has indicated that half-deep lacustrine facies is the most favorable sedimentary facies belt, providing basic material for oil and gas enrichment, and high maturity and fracture development is the important condition for oil and gas enrichment.
-
表 1 四川盆地元坝地区元页3井千佛崖组不同小层主要参数对比
Table 1. Statistics of main parameters of thin shale layers in Qianfoya Formation, well Yuanye 3, Yuanba area, Sichuan Basin
小层 地层厚度/m 暗色泥岩厚度/m ω(TOC)/% 含气量/(m3·t-1) 孔隙度/% 冷冻热解S1/(mg·g-1) 冷冻热解S2/(mg·g-1) 黏土/% 石英/% 碳酸盐矿物/% ⑥ 59.58 17.28 0.99 0.63 3.10 0.97 1.21 50.0 36.9 2.9 ⑤ 27.24 8.33 0.62 0.42 3.45 0.11 0.19 46.5 41.0 2.1 ④ 14.18 14.12 1.72 1.51 5.43 2.63 2.77 55.6 33.3 1.5 表 2 四川盆地不同层系页岩气评价参数对比
Table 2. Contrast of evaluation parameters of different formations in Sichuan Basin
项目 元页3井 泰页1井[2] 元坝地区[5-6] 焦页1井[20] 地层 千佛崖组 凉高山组 自流井组大安寨段 五峰组—龙马溪组 沉积相 半深湖 半深湖 半深湖 深水陆棚 埋藏深度/m 3 500 2 500~2 600 3 000~4 000 2 400 优质段岩性 泥岩 泥岩 泥岩夹灰岩 碳质泥页岩 优质段厚度/m 14.1 25.2 约30~40 38 孔隙度/% 5.43 3.52 3.21 4.8 孔隙类型 无机孔、有机孔 无机孔、有机孔 无机孔、有机孔 有机质孔为主 有机质类型 Ⅱ Ⅱ Ⅱ2—Ⅲ Ⅰ、Ⅱ1 优质段TOC/% 1.72 1.56 1.06 3.5 Ro/% 1.25 1.14 1.44~1.83 2.65 现场含气量/(m3·t-1) 1.51 1.81 1.34 2.96 日产量/m3 气1.18×104,油15.6 气7.5×104,油9.8 YB21井测试日产气50.7 ×104 气20.3×104 -
[1] 郭彤楼, 李宇平, 魏志红. 四川盆地元坝地区自流井组页岩气成藏条件[J]. 天然气地球科学, 2011, 22(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201101003.htmGUO Tonglou, LI Yuping, WEI Zhihong. Reservoir-forming conditions of shale gas in Ziliujing formation of Yuanba area in Sichuan Basin[J]. Natural Gas Geoscience, 2011, 22(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201101003.htm [2] 胡东风, 魏志红, 刘若冰, 等. 四川盆地拔山寺向斜泰页1井页岩油气重大突破及意义[J]. 中国石油勘探, 2021, 26(2): 21-32. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202102003.htmHU Dongfeng, WEI Zhihong, LIU Ruobing, et al. Major breakthrough of shale oil and gas in well Taiye 1 in Bashansi Syncline in the Sichuan Basin and its significance[J]. China Petroleum Exploration, 2021, 26(2): 21-32. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202102003.htm [3] 胡宗全, 王濡岳, 刘忠宝, 等. 四川盆地下侏罗统陆相页岩气源储特征及耦合评价[J]. 地学前缘, 2021, 28(1): 261-272. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202101027.htmHU Zongquan, WANG Ruyue, LIU Zhongbao, et al. Source-reservoir characteristics and coupling evaluations for the Lower Jurassic lacustrine shale gas reservoir in the Sichuan Basin[J]. Earth Science Frontiers, 2021, 28(1): 261-272. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202101027.htm [4] 郭旭升, 胡东风, 李宇平, 等. 海相和湖相页岩气富集机理分析与思考: 以四川盆地龙马溪组和自流井组大安寨段为例[J]. 地学前缘, 2016, 23(2): 18-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201602005.htmGUO Xusheng, HU Dongfeng, LI Yuping, et al. Analyses and thoughts on accumulation mechanisms of marine and lacustrine shale gas: a case study in shales of Lonamaxi Formation and Da'anzhai Section of Ziliujing Formation in Sichuan Basin[J]. Earth Science Frontiers, 2016, 32(2): 18-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201602005.htm [5] 魏祥峰, 黄静, 李宇平, 等. 元坝地区大安寨段陆相页岩气富集高产主控因素[J]. 中国地质, 2014, 41(3): 970-981. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201403022.htmWEI Xiangfeng, HUANG Jing, LI Yuping, et al. The main factors controlling the enrichment and high production of Da'anzhai member continental shale gas in Yuanba area[J]. Geology in China, 2014, 41(3): 970-981. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201403022.htm [6] 王庆波, 刘若冰, 魏祥峰, 等. 陆相页岩气成藏地质条件及富集高产主控因素分析: 以元坝地区为例[J]. 断块油气田, 2013, 20(6): 698-703. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201306005.htmWANG Qingbo, LIU Ruobing, WEI Xiangfeng, et al. Geologic condition of shale gas accumulation in continental facies and main controlling factors of enrichment and high production: taking Yuanba District as an example[J]. Fault-Block Oil and Gas Field, 2013, 20(6): 698-703. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201306005.htm [7] 王炜, 刘若冰, 倪凯. 川东北侏罗系千佛崖组页岩气勘探潜力分析[J]. 西安石油大学学报(自然科学版), 2012, 27(6): 36-41. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY201206009.htmWANG Wei, LIU Ruobing, NI Kai. Analysis of the exploration potential of shale gas in Jurassic Qianfoya Formation in northeast Sichuan Basin[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2012, 27(6): 36-41. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY201206009.htm [8] 郭旭升, 胡东风, 段金宝. 中国南方海相油气勘探展望[J]. 石油实验地质, 2020, 42(5): 675-686. doi: 10.11781/sysydz202005675GUO Xusheng, HU Dongfeng, DUAN Jinbao. Marine petroleum exploration in South China[J]. Petroleum Geology & Experiment, 2020, 42(5): 675-686. doi: 10.11781/sysydz202005675 [9] 李廷微, 姜振学, 宋国奇, 等. 陆相和海相页岩储层孔隙结构差异性分析[J]. 油气地质与采收率, 2019, 26(1): 65-71. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901007.htmLI Tingwei, JIANG Zhenxue, SONG Guoqi, et al. Analysis of differences in pore structure between continental and marine shale reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 65-71. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901007.htm [10] 朱彤. 四川盆地陆相页岩油气富集主控因素及类型[J]. 石油实验地质, 2020, 42(3): 345-354 https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202003006.htmZHU Tong. Main controlling factors and types of continental shale oil and gas enrichment in Sichuan Basin[J]. Petroleum Geology & Experiment, 2020, 42(3): 345-354. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202003006.htm [11] 胡见义, 黄第藩. 中国陆相石油地质理论基础[M]. 北京: 石油工业出版社, 1991.HU Jianyi, HUANG Difan. The bases of nonmarine petroleum geology in China[M]. Beijing: Petroleum Industry Press, 1991. [12] CURTIS M E, CARDOTT B J, SONDERGELD C H, et al. Deve-lopment of organic porosity in the Woodford shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012, 103: 26-31. https://www.sciencedirect.com/science/article/pii/S0166516212002005 [13] LÖHR S C, BARUCH E T, HALL P A, et al. Is organic pore development in gas shales influenced by the primary porosity and structure of thermally immature organic matter?[J]. Organic Geochemistry, 2015, 87: 119-132. https://www.sciencedirect.com/science/article/pii/S0146638015001527 [14] ZHANG Wentao, HU Wenxuan, BORJIGIN T, et al. Pore characteristics of different organic matter in black shale: a case study of the Wufeng-Longmaxi Formation in the southeast Sichuan Basin, China[J]. Marine and Petroleum Geology, 2020, 111: 33-43. [15] 腾格尔, 卢龙飞, 俞凌杰, 等. 页岩有机质孔隙形成、保持及其连通性的控制作用[J]. 石油勘探与开发, 2021, 48(4): 687-699. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202104003.htmBORJIGIN Tenger, LU Longfei, YU Lingjie, et al. Formation, preservation and connectivity control of organic pores in shale[J]. Petroleum Exploration and Development, 2021, 48(4): 687-699. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202104003.htm [16] 魏志红. 富有机质页岩有机质孔发育差异性探讨: 以四川盆地五峰组—龙马溪组笔石页岩为例[J]. 成都理工大学学报(自科版), 2015, 42(3): 361-365. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202301016.htmWEI Zhihong. Difference of organic pores in organic matter: a case from graptolite shales of Wufeng Formation-Longmaxi Formation in Sichuan Basin, China[J]. Journal of Chengdu University of technology (Science & Technology Edition), 2015, 42(3): 361-365. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202301016.htm [17] 王玉满, 董大忠, 杨桦, 等. 川南下志留统龙马溪组页岩储集空间定量表征[J]. 中国科学(地球科学), 2014, 44(6): 1348-1356. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201406025.htmWANG Yuman, DONG Dazhong, YANG Hua, et al. Quantitative characterization of reservoir space in the Lower Silurian Longmaxi shale, southern Sichuan, China[J]. Science China(Earth Sciences), 2014, 57(2): 313-322. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201406025.htm [18] 张全林, 邓虎成, 熊亮, 等. 四川盆地龙马溪组页岩储层特征差异性探讨: 以威远与涪陵地区为例[J]. 长江大学学报(自科版), 2016, 13(17): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-CJDL201617001.htmZHANG Quanlin, DENG Hucheng, XIONG Liang, et al. Analysis of shale reservoir difference of Longmaxi Formation in Sichuan Basin: by taking Weiyuan and Fuling areas for example[J]. Journal of Yangtze University (Natural Science Edition), 2016, 13(17): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-CJDL201617001.htm [19] 蒋启贵, 黎茂稳, 钱门辉, 等. 不同赋存状态页岩油定量表征技术与应用研究[J]. 石油实验地质, 2016, 38(6): 842-849. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201606020.htmJIANG Qigui, LI Maowen, QIAN Menhui, et al. Quantitative characterization of shale oil in different occurrence states and its application[J]. Petroleum Geology & Experiment, 2016, 38(6): 842-849. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201606020.htm [20] 郭彤楼, 刘若冰. 复杂构造区高演化程度海相页岩气勘探突破的启示: 以四川盆地东部盆缘JY1井为例[J]. 天然气地球科学, 2013, 24(4): 643-651. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201304000.htmGUO Tonglou, LIU Ruobing. Implications from marine shale gas exploration breakthrough in complicated structural area at high thermal stage: taking Longmaxi Formation in well JY1 as an example[J]. Natural Gas Geoscience, 2013, 24(4): 643-651. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201304000.htm [21] 闫建萍, 张同伟, 李艳芳, 等. 页岩有机质特征对甲烷吸附的影响[J]. 煤炭学报, 2013, 38(5): 805-811. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201305017.htmYAN Janping, ZHANG Tongwei, LI Yanfang, et al. Effect of the organic matter characteristics on methane adsorption in shale[J]. Journal of China Coal Society, 2013, 38(5): 805-811. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201305017.htm [22] MATHIA E J, BOWEN L, THOMAS K M, et al. Evolution of porosity and pore types in organic-rich, calcareous, Lower Toarcian posidonia shale[J]. Marine and Petroleum Geology, 2016, 75: 117-139. [23] 于炳松. 页岩气储层孔隙分类与表征[J]. 地学前缘, 2013, 20(4): 211-220. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201304020.htmYU Bingsong. Classification and characterization of gas shale pore system[J]. Earth Science frontiers, 2013, 20(4): 211-220. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201304020.htm [24] 程鹏, 肖贤明. 很高成熟度富有机质页岩的含气性问题[J]. 煤炭学报, 2013, 38(5): 737-741. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201305004.htmCHENG Peng, XIAO Xianming. Gas content of organic-rich shales with very high maturities[J]. Journal of China Coal Society, 2013, 38(5): 737-741. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201305004.htm