Maturity limit of sweet spot area for continental matrix type shale oil: a case study of lower Es3 and upper Es4 sub-members in Dongying Sag, Bohai Bay Basin
-
摘要: 陆相基质型页岩油有望成为我国页岩油增储上产的主力页岩油类型。鉴于成熟度是控制基质型页岩油甜点区分布的重要因素,在分析我国典型陆相不同有机质类型富有机质泥页岩实测镜质体反射率Ro值抑制程度基础上,以渤海湾盆地东营凹陷沙三下-沙四上亚段为例,探讨了陆相基质型页岩油甜点区成熟度界限。陆相富有机质泥页岩的有机质类型越好,其实测镜质体反射率Ro值抑制程度越显著。东营凹陷的洼陷区沙三下亚段富有机质泥页岩现今真实成熟度(等效镜质体反射率EqVRo)主要介于0.69%~1.05%,沙四上亚段富有机质泥页岩EqVRo值则主要介于0.74%~1.20%;综合地质与工程甜点条件的剖析,东营凹陷沙三下、沙四上亚段富有机质泥页岩基质型页岩油甜点区的现今真实成熟度EqVRo值为0.74%~1.20%,4个洼陷的深洼区均具有良好的基质型页岩油商业开发前景。Abstract: The matrix type shale oil will become the main contributer for increasing shale oil reserves and production in China. Maturity is an important factor for the controlling to the distribution of sweet spot area for matrix type shale oil. The vitrinite reflectance suppression ranges of continental organic rich shale with different organic matter type were analyzed, and the maturity limit of sweet spot area for continental matrix type shale oil was discussed taking the lower Es3 (third member of Shahejie Formation) and upper Es4 (fourth member of Shahejie Formation) sub-members of the Dongying Sag as a case study. The vitrinite reflectance suppression ranges of continental organic rich shale are positively correlated to organic matter types. The actual maturity (EqVRo) of organic matter rich shale of the lower Es3 in subsags of Dongying Sag was mainly at the range of 0.69%-1.05%, and that of the upper Es4 is mainly at the range of 0.74%-1.20%. Combining with the analysis of geological and engineering sweet spot conditions, the EqVRo of organic matter rich shale of both two sub-members range 0.74%-1.20%. The deeper areas of four sub-sags in the Dongying Sag all have favorable prospecting of commercial development for matrix type shale oil in the lower Es3 and upper Es4 sub-members.
-
表 1 我国典型陆相富有机质泥页岩镜质体反射率Ro、FAMM分析等效镜质体反射率EqVRo分析结果对比
Table 1. Contrast of vitrinite reflectance(Ro) and equivalent vitrinite reflectance(EqVRo) from Fluorescence Alteration of Multiple Macerals (FAMM) analysis of typical continental organic rich shale in China
井号 深度/m 岩性 有机质类型 Ro/% EqVRo/% (EqVRo-Ro)/% 备注 井号 深度/m 岩性 有机质类型 Ro/% EqVRo/% (EqVRo-Ro)/% 备注 L225 2 240.5 泥岩 Ⅱ1 0.41 0.61 0.20 东营凹陷 T73 3 377.0 泥岩 Ⅱ1 0.64 0.82 0.18 东营凹陷 L242 2 433.3 泥岩 Ⅱ1 0.54 0.71 0.17 T73 3 403.0 泥岩 Ⅱ1 0.67 0.86 0.19 L108 2 479.0 页岩 Ⅰ 0.36 0.68 0.32 Y182 2 506.0 泥岩 Ⅱ2 0.53 0.68 0.15 Y93 2 562.4 泥岩 Ⅱ1 0.43 0.62 0.19 W7 2 630.0 页岩 Ⅰ 0.40 0.76 0.36 B11 2 593.0 泥岩 Ⅱ1 0.6 0.75 0.15 W35 2 172.0 页岩 Ⅰ 0.30 0.65 0.35 N5 2 598.0 泥岩 Ⅰ 0.48 0.77 0.29 W128 3 731.0 页岩 Ⅰ 0.78 1.08 0.30 C371 2 757.8 页岩 Ⅱ1 0.55 0.78 0.23 X17 3 372.0 页岩 Ⅱ1 1.05 1.29 0.20 泌阳凹陷 B417 2 844.0 泥岩 Ⅰ 0.42 0.73 0.31 B334 2 506.5 泥岩 Ⅰ 0.49 0.80 0.32 Y93 2 865.16 页岩 Ⅰ 0.42 0.73 0.31 B334 3 008.4 泥岩 Ⅱ1 0.76 1.10 0.29 L242 2 921.8 泥岩 Ⅱ1 0.57 0.73 0.16 B96 1 706.4 泥岩 Ⅱ1 0.43 0.62 0.17 H88 3 050.0 泥岩 Ⅱ1 0.54 0.73 0.19 B115 2 665.8 泥岩 Ⅰ 0.52 0.82 0.35 N33 3 133.0 泥岩 Ⅱ1 0.53 0.77 0.24 B216 2 803.4 泥岩 Ⅱ2 0.73 0.87 0.13 Y921 3 159.06 泥岩 Ⅱ1 0.58 0.79 0.21 B194 2 088.0 泥岩 Ⅱ1 0.50 0.76 0.26 Y891 3 187.6 泥岩 Ⅱ1 0.52 0.80 0.28 B296 2 414.3 泥岩 Ⅱ1 0.50 0.76 0.21 W54 3 241.4 页岩 Ⅰ 0.5 0.81 0.31 B296 3 180.8 泥岩 Ⅰ 0.61 0.99 0.39 S122 3 402.2 泥岩 Ⅱ1 0.63 0.85 0.22 Y1 1 502.3 泥岩 Ⅱ1 0.38 0.69 0.26 W57 3 423.22 页岩 Ⅰ 0.6 0.92 0.32 B143 2 546.0 页岩 Ⅱ1 0.52 0.80 0.27 FS1 3 686.6 泥岩 Ⅱ1 0.67 0.94 0.27 B143 2 891.9 泥岩 Ⅰ 0.61 0.92 0.30 W78 3 732.57 页岩 Ⅱ1 0.61 0.83 0.22 B144 2 492.4 泥岩 Ⅱ1 0.43 0.67 0.22 L64 3 795.0 泥岩 Ⅱ1 0.68 0.97 0.29 B69 2 082.4 泥岩 Ⅱ1 0.50 0.76 0.25 W78 3 905.2 页岩 Ⅱ2 0.85 0.98 0.13 W37 1 337.8 泥岩 Ⅱ2 0.49 0.59 0.08 L225 2 024.2 泥岩 Ⅲ 0.52 0.54 0.02 B123 974.3 泥岩 Ⅱ2 0.46 0.58 0.10 N38 2 790.0 泥岩 Ⅲ 0.62 0.65 0.03 B138 1 083.6 泥岩 Ⅱ1 0.39 0.62 0.19 L38 2 805.0 泥岩 Ⅱ1 0.49 0.66 0.17 B215 1 532.6 泥岩 Ⅱ1 0.39 0.66 0.24 L38 3 046.0 泥岩 Ⅱ1 0.54 0.74 0.20 B215 2 111.8 泥岩 Ⅰ 0.44 0.78 0.34 L38 3 188.0 泥岩 Ⅱ1 0.58 0.79 0.21 766.98 泥岩 Ⅱ2 0.64 0.74 0.10 松辽盆地 L38 3 253.0 泥岩 Ⅱ1 0.64 0.82 0.18 1 305.6 泥岩 Ⅱ1 0.72 0.89 0.17 L38 3 310.0 泥岩 Ⅰ 0.53 0.85 0.32 1 929.9 泥岩 Ⅱ2 0.81 0.89 0.08 T73 2 497.0 泥岩 Ⅱ2 0.47 0.6 0.13 1 446.1 泥岩 Ⅱ1 0.78 0.96 0.18 T73 2 893.0 泥岩 Ⅱ1 0.46 0.68 0.22 1 969.4 泥岩 Ⅲ 1.10 1.10 0.00 T73 2 994.0 泥岩 Ⅰ 0.50 0.80 0.30 1 641.5 泥岩 Ⅱ2 0.91 1.07 0.16 表 2 渤海湾盆地东营凹陷各洼陷区沙三下—沙四上亚段富有机质泥页岩现今主要埋藏深度
Table 2. Main burial depth of organic rich shale in lower Es3 and upper Es4 sub-members in sub-sags of Dongying Sag, Bohai Bay Basin
富有机质泥页岩层位 现今主要埋藏深度/m 利津洼陷 民丰洼陷 牛庄洼陷 博兴洼陷 沙三下亚段顶 3 000~3 600 3 000~3 200 2 800~3 400 2 800~3 200 沙三下亚段底或沙四上亚段顶 3 200~3 900 3 200~3 500 3 000~3 600 3 000~3 400 沙四上亚段底 3 500~4 200 3 500~3 800 3 000~3 900 3 200~3 700 表 3 渤海湾盆地东营凹陷沙三下、沙四上亚段富有机质泥页岩全岩矿物组成
Table 3. Mineral components of whole rocks of organic rich shale of lower Es3 and upper Es4 sub-members in sub-sags of Dongying Sag, Bohai Bay Basin
% 层位 黏土矿物 石英 长石 方解石 白云石 黄铁矿 菱铁矿 样品数/个 沙三下亚段 8.0~54.0/26.0 6.0~50.0/29.1 0~35.0/4.2 1.0~68.0/34.1 0~72.0/3.9 0~13.0/2.5 0~3.0/0.3 230 沙四上亚段 3.0~73.0/24.0 0~66.0/28.5 0~42.0/4.9 0~89.0/33.9 0~87.0/7.8 0~14.0/2.3 0~12.0/0.3 890 注:表中数据据文献[26];意义为最小值~最大值/平均值。 -
[1] 周庆凡, 杨国丰. 致密油与页岩油的概念与应用[J]. 石油与天然气地质, 2012, 33(4): 541-544. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201204009.htmZHOU Qingfan, YANG Guofeng. Definition and application of tight oil and shale oil terms[J]. Oil & Gas Geology, 2012, 33(4): 541-544. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201204009.htm [2] 邹才能, 朱如凯, 白斌, 等. 致密油与页岩油内涵、特征、潜力及挑战[J]. 矿物岩石地球化学通报, 2015, 34(1): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201501002.htmZOU Caineng, ZHU Rukai, BAI Bin, et al. Significance, geologic characteristics, resource potential and future challenges of tight oil and shale oil[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(1): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201501002.htm [3] 付锁堂, 金之钧, 付金华, 等. 鄂尔多斯盆地延长组7段从致密油到页岩油认识的转变及勘探开发意义[J]. 石油学报, 2021, 42(5): 561-569. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202105001.htmFU Suotang, JIN Zhijun, FU Jinhua, et al. Transformation of understanding from tight oil to shale oil in the member 7 of Yanchang Formation in Ordos Basin and its significance of exploration and development[J]. Acta Petrolei Sinica, 2021, 42(5): 561-569. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202105001.htm [4] JARVIE D M. Shale resource systems for oil and gas: part 2-shale-oil resource systems[M]//BREYET J. Shale reservoirs: giant resources for the 21st century. Houston: AAPG, 2012: 89-119. [5] 金之钧, 白振瑞, 高波, 等. 中国迎来页岩油气革命了吗?[J]. 石油与天然气地质, 2019, 40(3): 451-458. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903002.htmJIN Zhijun, BAI Zhenrui, GAO Bo, et al. Has China ushered in the shale oil and gas revolution?[J]. Oil & Gas Geology, 2019, 40(3): 451-458. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903002.htm [6] 国家市场监督管理总局, 国家标准化管理委员会. 页岩油地质评价方法: GB/T 38718-2020[S]. 北京: 中国标准出版社, 2020.State Administration of Market Supervision and Administration, State Standardization Administration Commission. Geological evaluating methods for shale oil: GB/T 38718—2020[S]. Beijing: Standards Press of China, 2020. [7] 王茂林, 程鹏, 田辉, 等. 页岩油储层评价指标体系[J]. 地球化学, 2017, 46(2): 178-190. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201702007.htmWANG Maolin, CHENG Peng, TIAN Hui, et al. Evaluation index system of shale oil reservoirs[J]. Geochimica, 2017, 46(2): 178-190. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201702007.htm [8] 张金川, 林腊梅, 李玉喜, 等. 页岩油分类与评价[J]. 地学前缘, 2012, 19(5): 322-331. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201205032.htmZHANG Jinchuan, LIN Lamei, LI Yuxi, et al. Classification and evaluation of shale oil[J]. Earth Science Frontiers, 2012, 19(5): 322-331. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201205032.htm [9] 白国平, 邱海华, 邓舟舟, 等. 美国页岩油资源分布特征与主控因素研究[J]. 石油实验地质, 2020, 42(4): 524-532. doi: 10.11781/sysydz202004524BAI Guoping, QIU Haihua, DENG Zhouzhou, et al. Distribution and main controls for shale oil resources in USA[J]. Petroleum Geology & Experiment, 2020, 42(4): 524-532. doi: 10.11781/sysydz202004524 [10] 崔宝文, 陈春瑞, 林旭东, 等. 松辽盆地古龙页岩油甜点特征及分布[J]. 大庆石油地质与开发, 2020, 39(3): 45-55. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202003005.htmCUI Baowen, CHEN Chunrui, LIN Xudong, et al. Characteristics and distribution of sweet spots in Gulong shale oil reserviors of Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(3): 45-55. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202003005.htm [11] 孙龙德, 刘合, 何文渊, 等. 大庆古龙页岩油重大科学问题与研究路径探析[J]. 石油勘探与开发, 2021, 48(3): 453-463. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202103002.htmSUN Longde, LIU He, HE Wenyuan, et al. An analysis of major scientific problems and research paths of Gulong shale oil in Daqing Oilfield, NE China[J]. Petroleum Exploration and Development, 2021, 48(3): 453-463. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202103002.htm [12] 赵贤正, 周立宏, 蒲秀刚, 等. 断陷湖盆湖相页岩油形成有利条件及富集特征: 以渤海湾盆地沧东凹陷孔店组二段为例[J]. 石油学报, 2019, 40(9): 1013-1029. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201909001.htmZHAO Xianzheng, ZHOU Lihong, PU Xiugang, et al. Favorable formation conditions and enrichment characteristics of lacustrine facies shale oil in faulted lake basin: a case study of member 2 of Kongdian Formation in Cangdong Sag, Bohai Bay Basin[J]. Acta Petrolei Sinica, 2019, 40(9): 1013-1029. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201909001.htm [13] 韩文中, 赵贤正, 金凤鸣, 等. 沧东凹陷孔二段湖相页岩油甜点评价与勘探实践[J]. 石油勘探与开发, 2021, 48(4): 777-786. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202104012.htmHAN Wenzhong, ZHAO Xianzheng, JIN Fengming, et al. Sweet spots evaluation and exploration of lacustrine shale oil of the 2nd member of Paleogene Kongdian Formation in Cangdong Sag, Dagang Oilfield, China[J]. Petroleum Exploration and Development, 2021, 48(4): 777-786. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202104012.htm [14] 王勇, 张顺. 细粒沉积体系类型及特征: 以济阳坳陷沙四上—沙三下亚段为例[J]. 地质论评, 2021, 67(S1): 135-136. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2021S1062.htmWANG Yong, ZHANG Shun. Types and characteristics of lacustrine shale fine-grained depositional system: a case study of Upper Es4 and Lower Es3 Member in Jiyang Depression[J]. Geological Review, 2021, 67(S1): 135-136. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2021S1062.htm [15] 杨智, 侯连华, 陶士振, 等. 致密油与页岩油形成条件与"甜点区评价"[J]. 石油勘探与开发, 2015, 42(5): 555-565. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201505002.htmYANG Zhi, HOU Lianhua, TAO Shizhen, et al. Formation conditions and "sweet spot" evaluation of tight oil and shale oil[J]. Petroleum Exploration and Development, 2015, 42(5): 555-565. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201505002.htm [16] 邹才能, 杨智, 崔景伟, 等. 页岩油形成机制、地质特征及发展对策[J]. 石油勘探与开发, 2013, 40(1): 14-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201301003.htmZOU Caineng, YANG Zhi, CUI Jingwei, et al. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China[J]. Petroleum Exploration and Deve-lopment, 2013, 40(1): 14-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201301003.htm [17] 卢双舫, 黄文彪, 陈方文, 等. 页岩油气资源分级评价标准探讨[J]. 石油勘探与开发, 2012, 39(2): 249-256. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201202018.htmLU Shuangfang, HUANG Wenbiao, CHEN Fangwen, et al. Classification and evaluation criteria of shale oil and gas resources: discussion and application[J]. Petroleum Exploration and Development, 2012, 39(2): 249-256. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201202018.htm [18] 李志明, 郑伦举, 蒋启贵, 等. 湖相富有机质泥质白云岩生排烃模拟及其对页岩油勘探的启示[J]. 地球科学, 2018, 43(2): 566-576. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201802017.htmLI Zhiming, ZHENG Lunju, JIANG Qigui, et al. Simulation of hydrocarbon generation and expulsion for lacustrine organic-rich argillaceous dolomite and its implications for shale oil exploration[J]. Earth Science, 2018, 43(2): 566-576. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201802017.htm [19] 李志明, 徐二社, 秦建中, 等. 烃源岩评价中的若干问题[J]. 西安石油大学学报(自然科学版), 2010, 25(6): 8-12. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY201006004.htmLI Zhiming, XU Ershe, QIN Jianzhong, et al. Some problems on the evaluation of source rock[J]. Journal of Xi'an Shiyou University (Natural Science), 2010, 25(6): 8-12. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY201006004.htm [20] 李志明, 秦建中, 廖宗廷, 等. FAMM技术及其应用进展[J]. 石油实验地质, 2005, 27(3): 307-311. doi: 10.11781/sysydz200503307LI Zhiming, QIN Jianzhong, LIAO Zongting, et al. FAMM technique and its application progress[J]. Petroleum Geology & Experiment, 2005, 27(3): 307-311. doi: 10.11781/sysydz200503307 [21] WILKINS R W T, WILMSHURST J R, RUSSELL N J, et al. Fluorescence alteration and the suppression of vitrinite reflectance[J]. Organic Geochemistry, 1992, 18(5): 629-640. https://www.sciencedirect.com/science/article/pii/014663809290088F [22] WILKINS R W T, WILMSHURST J R, HLADKY G, et al. Should fluorescence alteration replace vitrinite reflectance as a major tool for thermal maturity determination in oil exploration?[J]. Organic Geochemistry, 1995, 22(1): 191-209. [23] HAO Fang, CHEN Jianyu. The cause and mechanism of vitrinite reflectance anomalies[J]. Journal of Petroleum Geology, 1992, 15(4): 419-434. [24] LO H B. Correction criteria for the suppression of vitrinite reflectance in hydrogen-rich kerogens: preliminary guidelines[J]. Organic Geochemistry, 1993, 20(6): 653-657. https://www.sciencedirect.com/science/article/pii/014663809390051C [25] 朱光有, 金强. 东营凹陷两套优质烃源岩层地质地球化学特征研究[J]. 沉积学报, 2003, 21(3): 506-512. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200303021.htmZHU Guangyou, JIN Qiang. Geochemical characteristics of two sets of excellent source rocks in Dongying Depression[J]. Acta Sedimentologica Sinica, 2003, 21(3): 506-512. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200303021.htm [26] 张林晔, 李钜源, 李政, 等. 陆相盆地页岩油气地质研究与实践[M]. 北京: 石油工业出版社, 2017.ZHANG Linye, LI Juyuan, LI Zheng, et al. Study and practice on continental shale oil and gas geology[M]. Beijing: Petroleum Industry Press, 2017. [27] 黎茂稳, 马晓潇, 蒋启贵, 等. 北美海相页岩油形成条件、富集特征与启示[J]. 油气地质与采收率, 2019, 26(1): 13-28. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901002.htmLI Maowen, MA Xiaoxiao, JIANG Qigui, et al. Enlightenment from formation conditions and enrichment characteristics of marine shale oil in North America[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 13-28. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901002.htm [28] KATZ B, LIN Fang. Lacustrine basin unconventional resource plays: key differences[J]. Marine and Petroleum Geology, 2014, 56: 255-265. [29] 李志明, 钱门辉, 黎茂稳, 等. 盐间页岩油形成有利条件与地质甜点评价关键参数: 以潜江凹陷潜江组潜34-10韵律为例[J]. 石油实验地质, 2020, 42(4): 513-523 https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202004006.htmLI Zhiming, QIAN Menhui, LI Maowen, et al. Favorable conditions of inter-salt shale oil formation and key parameters for geological sweet spots evaluation: a case study of Eq34-10 rhythm of Qianjiang Formation in Qianjiang Sag, Jianghan Basin[J]. Petroleum Geology & Experiment, 2020, 42(4): 513-523. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202004006.htm [30] 孙焕泉. 济阳坳陷页岩油勘探实践与认识[J]. 中国石油勘探, 2017, 22(4): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201704001.htmSUN Huanquan. Exploration practice and cognitions of shale oil in Jiyang Depression[J]. China Petroleum Exploration, 2017, 22(4): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201704001.htm [31] 张顺. 济阳坳陷页岩油富集要素及地质甜点类型划分[J]. 科学技术与工程, 2021, 21(2): 504-511. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202102013.htmZHANG Shun. Shale oil enrichment elements and geological dessert types in Jiyang Depression[J]. Science Technology and Engineering, 2021, 21(2): 504-511. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202102013.htm [32] 包友书, 张林晔, 李钜源, 等. 济阳坳陷古近系超高压成因探讨[J]. 新疆石油地质, 2012, 33(1): 17-21. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201201004.htmBAO Youshu, ZHANG Linye, LI Juyuan, et al. Approach to Paleogene overpressure origin in Jiyang Depression[J]. Xinjiang Petroleum Geology, 2012, 33(1): 17-21. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201201004.htm [33] 包友书, 张林晔, 张金功, 等. 渤海湾盆地东营凹陷古近系页岩油可动性影响因素[J]. 石油与天然气地质, 2016, 37(34): 408-414. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201603015.htmBAO Youshu, ZHANG Linye, ZHANG Jingong, et al. Factors influencing mobility of Paleogene shale oil in Dongying Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2016, 37(34): 408-414. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201603015.htm [34] 赵波, 陈二丁. 胜利油田页岩油水平井樊页平1井钻井技术[J]. 石油钻探技术, 2021, 49(4): 53-58. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT202104009.htmZHAO Bo, CHEN Erding. Drilling technologies for horizontal shale oil well Fan Yeping 1 in the Shengli Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(4): 53-58. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT202104009.htm