Occurrence states and potential influencing factors of shale oil in the Permian Fengcheng Formation of Mahu Sag, Junggar Basin
-
摘要: 综合应用地质、钻井、X衍射矿物成分分析、氩离子抛光-场发射扫描电镜-X射线能谱实验、高压压汞、岩石热解与岩心二维核磁共振实验,开展准噶尔盆地玛湖凹陷二叠系风城组页岩油赋存特征及其影响因素的研究。玛湖凹陷风城组页岩油主要存在薄膜状吸附油与充填状游离油2种赋存方式,岩相类型、岩石矿物组分与储集空间类型是页岩油赋存状态的主控因素。玛湖凹陷风城组发育4种岩相类型,分别为云质页岩相、砂质页岩-含云粉砂岩相、含碱矿白云岩-泥质粉砂岩相、硅化白云岩-云质粉砂岩相,不同岩相类型的矿物组分、储集空间类型、孔喉结构分布与页岩油微观赋存状态存在较大的差异。对比分析不同岩相类型可知,石英含量、黄铁矿含量、有机质含量与热解烃含量(S2)存在正相关关系,长石含量、白云石含量与游离烃含量(S1)呈弱正相关关系。游离油主要分布于中孔、大孔为主的次生溶蚀孔、残留粒间孔中,吸附油集中分布于中孔、中小孔为主的有机质孔、晶间孔与矿物颗粒表面。不同岩相类型的矿物组分与孔喉结构共同影响了风城组页岩油的微观赋存状态。Abstract: Taking the Permian Fengcheng Formation of the Mahu Sag of the Junggar Basin as an example, a systematic study of shale oil was carried out for the occurrence states and potential influencing factors by integrating various data including cores, well logging, X-ray diffraction, argon ion polishing and field emission-scanning electron microscopy (FE-SEM) observations, high-pressure mercury injection (HPMI), rock pyrolysis, and two-dimensional nuclear magnetic resonance (NMR) experiments. The shale oil of the Fengcheng Formation in the Mahu Sag mainly has two modes of occurrence: film-like adsorbed oil and infilled free oil. The main constrains for shale oil occurrence state include lithofacies association, mineral composition and reservoir space. Four lithofacies associations namely dolomitic shale, sandy shale-dolomitic siltstone, dolomite rock containing alkaline mineral-argillaceous siltstone, and siliceous dolomite rock-dolomitic siltstone were recognized in the shale reservoirs of the Fengcheng Formation. The mineral composition, reservoir space, micro-pore structure and shale oil occurrence states of different lithofacies appeared to be quite different. The contents of quartz, pyrite and organic matter were positively correlated with thermal cracking hydrocarbon (S2), and the contents of feldspar and dolomite showed a weak positive correlation with free hydrocarbon (S1). The free oil was mainly stored in mesopores and large pores, such as secondary dissolution pores and residual intergranular pores. The absorbed oil was mainly stored in mesopores and small pores, such as organic pores, intercrystallite pores and the surface of mineral particles. The mineral composition and pore-throat structure were dominant factors controlling the occurrence state of shale oil.
-
Key words:
- shale oil /
- occurrence state /
- litho-facies type /
- pore-throat structure /
- mineral composition /
- Fengcheng Formation /
- Mahu Sag /
- Junggar Basin
-
图 3 准噶尔盆地玛湖凹陷风城组矿物组分类型
a.云质粉砂岩,MY1井,4 613.94 m,石英、长石颗粒定向排列;b.云质页岩,F5井,3 197.13 m,白云石、方解石矿物颗粒发育;c.云质粉砂岩,FN3井,3 959.47 m,石英、长石矿物颗粒紧密接触;d.云质页岩,FN3井,3 959.47 m,方解石、白云石矿物颗粒发育(方解石被染成红色);e.FN1井,4 234.95 m,铁白云石胶结(铁白云石被染成蓝色);f.Wu35井,3 425.11 m,蜂窝状伊蒙混层发育;g.毛发状伊利石充填孔隙,AK1井,5 664.15 m;,h.石英次生增长,FN2井,4 102.2 m;i.构造裂缝被石英脉体充填,F26井,3 295.97 m;,j.硅硼钠石矿物,MY1井,4 719.6 m;k.碳钠钙石与硅硼钠石矿物,MY1井,4 719.6 m;l.纯碱,FN5井,4 069.7 m
Figure 3. Mineral types of Fengcheng Formation in Mahu Sag, Junggar Basin
图 5 准噶尔盆地玛湖凹陷风城组页岩层段有机质孔类型
a.云质页岩,MY1井,4 592.28 m,固体干酪根有机质,可见有机质粒内微孔;b.云质页岩,MY1井,4 589.97 m,固体干酪根有机质,可见有机质与成岩矿物的粒间孔;c.云质页岩,MY1井,4 674.34 m,有机质孔,孔隙相连形成复杂形状的大孔;d.云质页岩,MY1井,4 707.04 m,有机质内部发育溶蚀孔隙;e.云质页岩,MY1井,4 674.81 m,矿物颗粒被有机质充填,有机质孔发育;f.砂质页岩,MY1井,4 592.28 m,自生石英晶间孔被有机质充填;g.云质页岩,MY1井,4 589.97 m,黄铁矿晶间孔被有机质充填;h.云质页岩,MY1井,4 591.68 m,矿物颗粒粒间孔与微裂缝被有机质充填;i.云质页岩,MY1井,4 592.28 m,微裂缝被有机质充填;j.固体干酪根能谱图,MY1井,4 592.28 m;k.固体干酪根能谱图,MY1井,4 674.34 m
Figure 5. Organic pore types of Fengcheng Formation in Mahu Sag, Junggar Basin
图 6 准噶尔盆地玛湖凹陷风城组储集层无机孔类型
a.砂质页岩,MY1井,4 693.1 m,钾长石粒间溶孔发育;b.云质页岩,MY1井,4 707.1 m,黄铁矿晶间孔发育;c.云质粉砂岩,MY1井,4 590.5 m,钠长石粒间溶孔发育;d.含云粉砂岩,MY1井,4 634.37 m,钠长石粒间溶孔发育;e.硅化白云岩,MY1井,4 590.5 m,白云石粒间孔发育;f.云质页岩,MY1井,4 674.8 m,白云石粒间孔发育;g.黄铁矿能谱图,MY1井,4 707.1 m;h.钠长石能谱图,MY1井,4 590.5 m;i.铁白云石能谱图,MY1井,4 590.5 m
Figure 6. Inorganic pores of Fengcheng Formation in Mahu Sag, Junggar Basin
表 1 准噶尔盆地玛湖凹陷风城组51块岩心样品X射线衍射与烃源岩热解参数
Table 1. X-ray diffraction and source rock pyrolysis data from 51 core samples of Fengcheng Formation, Mahu Sag, Junggar Basin
深度/m 岩相类型 矿物含量/% S1/(mg·g-1) S2/(mg·g-1) TOC/% 石英 钾长石 钠长石 方解石 白云石 铁方解石 黄铁矿 黏土 4 591.98 云质页岩相 27.70 5.60 16.20 3.40 29.70 6.90 8.40 0.27 1.34 0.67 4 693.12 云质页岩相 32.20 9.70 24.50 15.80 6.10 8.10 0.36 0.75 0.40 4 706.50 云质页岩相 31.60 3.60 9.50 1.60 41.00 3.10 6.00 0.15 0.84 0.38 4 707.67 云质页岩相 13.70 7.00 17.40 2.60 40.70 6.10 6.60 1.13 4.35 1.28 4 725.05 云质页岩相 41.00 6.00 13.00 5.00 28.00 1.00 1.61 1.60 4 738.55 含碱矿白云岩—泥质粉砂岩相 29.00 15.00 29.00 12.00 4.00 3.00 1.05 0.50 4 743.13 含碱矿白云岩—泥质粉砂岩相 13.00 13.00 27.00 12.00 18.00 6.00 3.00 0.60 3.94 4 746.54 含碱矿白云岩—泥质粉砂岩相 46.00 6.00 15.00 23.00 3.00 2.16 1.68 4 753.42 含碱矿白云岩—泥质粉砂岩相 51.00 5.00 11.00 10.00 14.00 1.00 1.70 2.55 4 762.81 硅化白云岩—云质粉砂岩相 29.00 19.00 29.00 10.00 3.00 1.00 1.16 1.87 4 768.09 云质页岩相 40.00 14.00 12.00 6.00 15.00 4.00 1.00 3.07 4.51 4 786.77 砂质页岩—含云粉砂岩相 34.00 10.00 11.00 5.00 25.00 4.00 2.00 3.67 33.30 4 786.21 云质页岩相 24.00 17.00 32.00 6.00 6.00 3.00 1.00 1.87 1.99 4 794.35 砂质页岩—含云粉砂岩相 32.00 14.00 23.00 16.00 4.00 1.00 0.92 0.82 4 800.00 砂质页岩—含云粉砂岩相 27.00 15.00 10.00 33.00 3.00 4.00 0.21 0.63 4 809.75 硅化白云岩—云质粉砂岩相 64.00 6.00 3.00 20.00 1.00 0.77 0.75 4 817.94 硅化白云岩—云质粉砂岩相 54.00 6.00 13.00 19.00 2.00 0.51 0.80 4 823.69 硅化白云岩—云质粉砂岩相 35.00 7.00 15.00 3.00 31.00 2.00 0.22 1.16 4 837.61 云质页岩相 52.00 9.00 5.00 25.00 3.00 0.15 0.87 4 845.55 云质页岩相 31.00 12.00 6.00 6.00 31.00 3.00 4.00 0.52 1.29 4 590.07 云质页岩相 44.00 6.00 14.00 23.00 4.00 0.43 1.10 0.38 4 595.61 云质页岩相 15.00 23.00 3.00 1.00 0.10 0.36 0.29 4 612.31 砂质页岩—含云粉砂岩相 15.00 24.00 27.00 2.00 14.00 5.00 3.00 0.35 0.84 0.35 4 633.85 云质页岩相 48.00 37.00 5.00 1.00 0.22 0.37 0.18 4 649.44 云质页岩相 19.00 11.00 31.00 9.00 16.00 3.00 2.00 7.85 7.51 4 665.91 云质页岩相 24.00 10.00 28.00 3.00 23.00 3.00 2.00 2.93 3.34 4 669.63 云质页岩相 15.00 14.00 37.00 21.00 5.00 1.00 3.23 2.09 4 685.52 云质页岩相 27.00 7.00 23.00 6.00 19.00 5.00 3.00 0.87 2.57 4 690.82 云质页岩相 39.00 24.00 16.00 3.00 6.00 2.00 0.19 1.16 0.47 4 700.76 云质页岩相 43.00 6.00 12.00 29.00 3.00 4 706.88 云质页岩相 15.00 25.00 28.00 3.00 15.00 5.00 2.00 0.27 2.64 0.87 4 589.97 云质页岩相 33.40 1.20 4.70 37.70 12.90 0.70 9.40 4 590.31 云质页岩相 21.70 1.50 5.20 6.80 52.80 1.10 10.90 1.30 3.00 0.96 4 590.50 云质页岩相 56.90 3.30 6.10 2.50 19.20 12.00 0.15 0.84 0.38 4 591.07 云质页岩相 70.60 2.60 4.50 22.30 0.19 1.16 0.47 4 591.68 云质页岩相 52.40 2.40 6.30 3.20 29.60 6.10 1.57 1.60 4 592.28 砂质页岩—含云粉砂岩相 75.70 3.80 1.60 15.70 3.20 4 633.52 砂质页岩—含云粉砂岩相 67.60 6.80 10.60 1.90 2.00 1.13 4.35 1.28 4 634.11 砂质页岩—含云粉砂岩相 67.80 6.00 18.40 1.40 6.40 4 634.57 云质页岩相 56.60 7.20 18.20 1.70 13.40 2.90 0.60 2.36 0.61 4 674.34 砂质页岩—含云粉砂岩相 44.70 5.10 29.40 15.70 5.10 0.25 2.42 0.80 4 674.63 砂质页岩—含云粉砂岩相 53.40 1.40 9.10 34.00 2.10 4 674.81 云质页岩相 35.30 1.60 9.80 4.00 46.30 3.00 0.13 0.43 0.23 4 693.38 砂质页岩—含云粉砂岩相 26.40 8.50 13.10 18.80 24.50 2.40 6.30 4 694.12 云质页岩相 44.00 4.90 6.30 2.50 26.30 4.10 11.90 1.30 3.00 0.96 4 706.45 云质页岩相 54.20 1.90 5.40 2.50 32.70 3.30 0.15 0.84 0.38 4 706.94 云质页岩相 65.30 2.60 5.60 2.70 21.10 2.70 0.19 1.16 0.47 4 707.04 含碱矿白云岩—泥质粉砂岩相 18.70 7.90 20.40 4.60 33.0 1.60 5.70 1.57 1.60 4 707.74 硅化白云岩—云质粉砂岩相 24.60 8.20 25.60 6.40 19.70 4.60 10.90 4 705.25 硅化白云岩—云质粉砂岩相 2.10 3.10 13.60 31.40 48.30 1.50 1.13 4.35 1.28 4 705.81 云质页岩相 29.30 2.40 15.90 11.10 37.50 3.80 0.25 2.42 0.80 -
[1] 邹才能, 朱如凯, 白斌, 等. 致密油与页岩油内涵、特征、潜力及挑战[J]. 矿物岩石地球化学通报, 2015, 34(1): 3-17. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201501002.htmZOU Caineng, ZHU Rukai, BAI Bin, et al. Significance, geologic characteristics, resource potential and future challenges of tight oil and shale oil[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(1): 3-17. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201501002.htm [2] 贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 2012, 39(2): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201202002.htmJIA Chengzao, ZHENG Min, ZHANG Yongfeng. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development, 2012, 39(2): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201202002.htm [3] 邹才能, 杨智, 崔景伟, 等. 页岩油形成机制、地质特征及发展对策[J]. 石油勘探与开发, 2013, 40(1): 14-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201301003.htmZOU Caineng, YANG Zhi, CUI Jingwei, et al. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China[J]. Petroleum Exploration and Development, 2013, 40(1): 14-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201301003.htm [4] CAO Hairen, ZOU Yanrong, LEI Yan, et al. Shale oil assessment for the Songliao Basin, Northeastern China, using oil generation-sorption method[J]. Energy & Fuels, 2017, 31(5): 4826-4842. doi: 10.1021/acs.energyfuels.7b00098 [5] LIANG Chao, CAO Yingchang, JIANG Zaixing, et al. Shale oil potential of lacustrine black shale in the Eocene Dongying Depression: implications for geochemistry and reservoir characteristics[J]. AAPG Bulletin, 2017, 101(11): 1835-1858. doi: 10.1306/01251715249 [6] CHEN Guohui, LU Shuangfang, ZHANG Junfang, et al. Estimation of enriched shale oil resource potential in E2s4L of Damintun Sag in Bohai Bay Basin, China[J]. Energy & Fuels, 2017, 31(4): 3635-3642. [7] CUI Jingwei, LI Sen, MAO Zhiguo. Oil-bearing heterogeneity and threshold of tight sandstone reservoirs: a case study on Triassic Chang 7 member, Ordos Basin[J]. Marine and Petro-leum Geo-logy, 2019, 104: 180-189. doi: 10.1016/j.marpetgeo.2019.03.028 [8] LAI Jin, WANG Guiwen, RAN Ye, et al. Impact of diagenesis on the reservoir quality of tight oil sandstones: the case of Upper Triassic Yanchang Formation Chang 7 oil layers in Ordos Basin, China[J]. Journal of Petroleum Science and Engineering, 2016, 145: 54-65. doi: 10.1016/j.petrol.2016.03.009 [9] SUN Ningliang, ZHONG Jianhua, HAO Bing, et al. Sedimentological and diagenetic control on the reservoir quality of deep-lacustrine sedimentary gravity flow sand reservoirs of the Upper Triassic Yanchang Formation in southern Ordos Basin, China[J]. Marine and Petroleum Geology, 2020, 112: 104050. doi: 10.1016/j.marpetgeo.2019.104050 [10] JIANG Shu, CHEN Lei, WU Yue, et al. Hybrid plays of Upper Triassic Chang7 lacustrine source rock interval of Yanchang Formation, Ordos Basin, China[J]. Journal of Petroleum Science and Engineering, 2017, 159: 182-196. doi: 10.1016/j.petrol.2017.09.033 [11] LI Xin, JIANG Zhenxue, SONG Yan, et al. Porosity evolution mechanisms of marine shales at over-maturity stage: insight from comparable analysis between Lower Cambrian and Lower Silurian inside and at the margin of the Sichuan Basin, South China[J]. Interpretation, 2018, 6(3): T739-T757. doi: 10.1190/INT-2017-0221.1 [12] WANG Xiao, HE Sheng, GUO Xiaowen, et al. The resource evaluation of Jurassic shale in north Fuling area, eastern Sichuan Basin, China[J]. Energy & Fuels, 2018, 32(2): 1213-1222. [13] ZHANG Guoyin, WANG Zhizhang, GUO Xuguang, et al. Characteristics of lacustrine dolomitic rock reservoir and accumulation of tight oil in the Permian Fengcheng Formation, the western slope of the Mahu Sag, Junggar Basin, NW China[J]. Journal of Asian Earth Sciences, 2019, 178: 64-80. doi: 10.1016/j.jseaes.2019.01.002 [14] LUO Qingyong, GONG Lei, QU Yansheng, et al. The tight oil potential of the Lucaogou Formation from the southern Junggar Basin, China[J]. Fuel, 2018, 234: 858-871. doi: 10.1016/j.fuel.2018.07.002 [15] 黎茂稳, 金之钧, 董明哲, 等. 陆相页岩形成演化与页岩油富集机理研究进展[J]. 石油实验地质, 2020, 42(4): 489-505. doi: 10.11781/sysydz202004489LI Maowen, JIN Zhijun, DONG Mingzhe, et al. Advances in the basic study of lacustrine shale evolution and shale oil accumulation[J]. Petroleum Geology & Experiment, 2020, 42(4): 489-505. doi: 10.11781/sysydz202004489 [16] 宋明水. 济阳坳陷页岩油勘探实践与现状[J]. 油气地质与采收率, 2019, 26(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901001.htmSONG Mingshui. Practice and current status of shale oil exploration in Jiyang Depression[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901001.htm [17] 付锁堂, 姚泾利, 李士祥, 等. 鄂尔多斯盆地中生界延长组陆相页岩油富集特征与资源潜力[J]. 石油实验地质, 2020, 42(5): 698-710. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202005009.htmFU Suotang, YAO Jingli, LI Shixiang, et al. Enrichment characteristics and resource potential of continental shale oil in Mesozoic Yanchang Formation, Ordos Basin[J]. Petroleum Geology & Experiment, 2020, 42(5): 698-710. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202005009.htm [18] 王小军, 杨智峰, 郭旭光, 等. 准噶尔盆地吉木萨尔凹陷页岩油勘探实践与展望[J]. 新疆石油地质, 2019, 40(4): 402-413. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201904003.htmWANG Xiaojun, YANG Zhifeng, GUO Xuguang, et al. Practices and prospects of shale oil exploration in Jimsar Sag of Junggar Basin[J]. Xinjiang Petroleum Geology, 2019, 40(4): 402-413. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201904003.htm [19] 李浩, 陆建林, 王保华, 等. 渤海湾盆地东濮凹陷陆相页岩油可动性影响因素与资源潜力[J]. 石油实验地质, 2020, 42(4): 632-638. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202004020.htmLI Hao, LU Jianlin, WANG Baohua, et al. Controlling factors of continental shale oil mobility and resource potential in Dongpu Sag, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2020, 42(4): 632-638. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202004020.htm [20] 冯国奇, 李吉君, 刘洁文, 等. 泌阳凹陷页岩油富集及可动性探讨[J]. 石油与天然气地质, 2019, 40(6): 1236-1246. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201906008.htmFENG Guoqi, LI Jijun, LIU Jiewen, et al. Discussion on the enrichment and mobility of continental shale oil in Biyang Depression[J]. Oil & Gas Geology, 2019, 40(6): 1236-1246. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201906008.htm [21] 支东明, 唐勇, 杨智峰, 等. 准噶尔盆地吉木萨尔凹陷陆相页岩油地质特征与聚集机理[J]. 石油与天然气地质, 2019, 40(3): 524-434. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903009.htmZHI Dongming, TANG Yong, YANG Zhifeng, et al. Geological characteristics and accumulation mechanism of continental shale oil in Jimusaer Sag, Junggar Basin[J]. Oil & Gas Geology, 2019, 40(3): 524-534. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903009.htm [22] LI Zheng, ZOU Yanrong, XU Xingyou, et al. Adsorption of mudstone source rock for shale oil: experiments, model and a case study[J]. Organic Geochemistry, 2016, 92: 55-62. https://www.sciencedirect.com/science/article/pii/S0146638015002417 [23] 蒋启贵, 黎茂稳, 钱门辉, 等. 不同赋存状态页岩油定量表征技术与应用研究[J]. 石油实验地质, 2016, 38(6): 842-849. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201606020.htmJIANG Qigui, LI Maowen, QIAN Menhui, et al. Quantitative characterization of shale oil in different occurrence states and its application[J]. Petroleum Geology & Experiment, 2016, 38(6): 842-849. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201606020.htm [24] LI Pan, SUN Wei, WU Bolin, et al. Occurrence characteristics and main controlling factors of movable fluids in Chang 81 reservoir, Maling Oilfield, Ordos Basin, China[J]. Journal of Petroleum Exploration and Production Technology, 2019, 9(1): 17-29. doi: 10.1007/s13202-018-0471-2 [25] GAO Hui, LI Huazhou. Determination of movable fluid percentage and movable fluid porosity in ultra-low permeability sandstone using nuclear magnetic resonance (NMR) technique[J]. Journal of Petroleum Science and Engineering, 2015, 133: 258-267. https://www.sciencedirect.com/science/article/pii/S0920410515300279 [26] LI Jinbu, HUANG Wenbiao, LU Shuangfang, et al. Nuclear magnetic resonance T1-T2 map division method for hydrogen-bearing components in continental shale[J]. Energy & Fuels, 2018, 32(9): 9043-9054. [27] ZHANG Pengfei, LU Shuangfang, LI Junqian, et al. 1D and 2D Nuclear Magnetic Resonance (NMR) relaxation behaviors of protons in clay, kerogen and oil-bearing shale rocks[J]. Marine and Petroleum Geology, 2020, 114: 104210. [28] LI Jinbu, JIANG Chunqing, Wang Min, et al. Adsorbed and free hydrocarbons in unconventional shale reservoir: a new insight from NMR T1-T2 maps[J]. Marine and Petroleum Geology, 2020, 116: 104311. [29] FLEURY M, ROMERO-SARMIENTO M. Characterization of shales using T1-T2 NMR maps[J]. Journal of Petroleum Science and Engineering, 2016, 137: 55-62. https://www.sciencedirect.com/science/article/pii/S0920410515301728 [30] KORB J P, NICOT B, JOLIVET I. Dynamics and wettability of petroleum fluids in shale oil probed by 2D T1-T2 and fast field cycling NMR relaxation[J]. Microporous and Mesoporous Materials, 2018, 269: 7-11. [31] MEHANA M, EL-MONIER I. Shale characteristics impact on Nuclear Magnetic Resonance (NMR) fluid typing methods and correlations[J]. Petroleum, 2016, 2(2): 138-147. https://www.sciencedirect.com/science/article/pii/S2405656116000110 [32] CUI Jiangfeng, CHENG Long. A theoretical study of the occurrence state of shale oil based on the pore sizes of mixed Gaussian distribution[J]. Fuel, 2017, 206: 564-571. https://www.sciencedirect.com/science/article/pii/S0016236117307470 [33] WANG Sen, FENG Qihong, ZHA Ming, et al. Molecular dynamics simulation of liquid alkane occurrence state in pores and slits of shale organic matter[J]. Petroleum Exploration and Development, 2015, 42(6): 844-851. https://www.sciencedirect.com/science/article/pii/S1876380415300811 [34] TIAN Shansi, XUE Haitao, LU Shuangfang, et al. Molecular simulation of oil mixture adsorption character in shale system[J]. Journal of Nanoscience and Nanotechnology, 2017, 17(9): 6198-6209. [35] SU Siyuan, JIANG Zhenxue, SHAN Xuanlong, et al. The effects of shale pore structure and mineral components on shale oil accumulation in the Zhanhua Sag, Jiyang Depression, Bohai Bay Basin, China[J]. Journal of Petroleum Science and Engineering, 2018, 165: 365-374. [36] 王民, 马睿, 李进步, 等. 济阳坳陷古近系沙河街组湖相页岩油赋存机理[J]. 石油勘探与开发, 2019, 46(4): 789-802. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201904020.htmWANG Min, MA Rui, LI Jinbu, et al. Occurrence mechanism of lacustrine shale oil in the Paleogene Shahejie Formation of Jiyang Depression, Bohai Bay Basin, China[J]. Petroleum Exploration & Development, 2019, 46(4): 789-802. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201904020.htm [37] 张志杰, 袁选俊, 汪梦诗, 等. 准噶尔盆地玛湖凹陷二叠系风城组碱湖沉积特征与古环境演化[J]. 石油勘探与开发, 2018, 45(6): 972-984. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201806006.htmZHANG Zhijie, YUAN Xuanjun, WANG Mengshi, et al. Alkaline-lacustrine deposition and Paleoenvironmental evolution in Permian Fengcheng Formation at the Mahu Sag, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45(6): 972-984. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201806006.htm [38] 胡涛, 庞雄奇, 于飒, 等. 准噶尔盆地风城地区风城组烃源岩生排烃特征及致密油资源潜力[J]. 中南大学学报(自然科学版), 2017, 48(2): 427-439. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201702022.htmHU Tao, PANG Xiongqi, YU Sa, et al. Hydrocarbon generation and expulsion characteristics of P1f source rocks and tight oil accumulation potential of Fengcheng area on northwest margin of Junggar Basin, Northwest China[J]. Journal of Central South University (Science and Technology), 2017, 48(2): 427-439. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201702022.htm [39] 支东明, 唐勇, 何文军, 等. 准噶尔盆地玛湖凹陷风城组常规—非常规油气有序共生与全油气系统成藏模式[J]. 石油勘探与开发, 2021, 48(1): 38-51. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202101006.htmZHI Dongming, TANG Yong, HE Wenjun, et al. Orderly coexistence and accumulation models of conventional and unconventional hydrocarbons in Lower Permian Fengcheng Formation, Mahu Sag, Junggar Basin[J]. Petroleum Exploration and Deve-lopment, 2021, 48(1): 38-51. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202101006.htm [40] 朱世发, 刘欣, 马勋, 等. 准噶尔盆地下二叠统风城组致密碎屑岩储层发育特征[J]. 高校地质学报, 2015, 21(3): 461-470. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201503010.htmZHU Shifa, LIU Xin, MA Xun, et al. The development characteristics of tight clastic reservoirs in the Lower Permian Fengcheng Formation in Wu-Xia area of the Junggar Basin[J]. Geological Journal of China Universities, 2015, 21(3): 461-470. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201503010.htm [41] 王力宝, 厚刚福, 卞保力, 等. 现代碱湖对玛湖凹陷风城组沉积环境的启示[J]. 沉积学报, 2020, 38(5): 911-922. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202005002.htmWANG Libao, HOU Gangfu, BIAN Baoli, et al. The role of modern alkaline lakes in explaining the sedimentary environment of the Fengcheng Formation, Mahu Depression[J]. Acta Sedimentologica Sinica, 2020, 38(5): 911-922. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202005002.htm [42] XI Kelai, CAO Yingchang, LIU Keyu, et al. Authigenic minerals related to wettability and their impacts on oil accumulation in tight sandstone reservoirs: an example from the Lower Cretaceous Quantou Formation in the southern Songliao Basin, China[J]. Journal of Asian Earth Sciences, 2019, 178: 173-192. [43] LI Jinbu, LU Shuangfang, CHEN Guohui, et al. A new method for measuring shale porosity with low-field nuclear magnetic resonance considering non-fluid signals[J]. Marine and Petro-leum Geology, 2019, 102: 535-543.