Sedimentary environment and organic matter enrichment of the Lower Cambrian Niutitang Formation shale, western Hunan Province, China
-
摘要: 下寒武统牛蹄塘组是我国中上扬子地区发育的一套极为重要的海相页岩层系。为进一步明确我国南方下寒武统牛蹄塘组页岩有机质的富集环境与条件,以湘西沅陵地区牛蹄塘组页岩为研究对象,开展了岩石学、有机地球化学和元素地球化学分析等系统研究。结果表明:牛蹄塘组富有机质页岩沉积期处于干冷型气候向暖湿型气候转换期,从沉积早期到晚期其生物生产力水平、水体还原程度和热液作用强度表现为低-高-中高的变化趋势。湘西地区牛蹄塘组页岩有机质的富集并非受控于单一因素,而是古气候、生物生产力、水体氧化-还原性质、沉积速率和热液活动等多个要素相互配置与耦合的结果。牛蹄塘组页岩沉积早期水体较浅,整体处于偏氧化环境,初级生产力水平较低,不利于有机质富集;沉积中期早寒武世发生的大规模海侵使水体加深,伴生的上升洋流携带大量营养盐类进入表层水体,促使藻类大量勃发,同时底层水体缺氧和硫化的环境使有机质大量保存;晚期尽管水体氧化程度有所增加,但受华南持续拉张作用的影响,大陆边缘较强的热液活动提供了丰富的营养物质,生产力仍保持较高水平;且具有相对较高的沉积速率,从而使有机质得以快速埋藏、保存和富集。Abstract: The Lower Cambrian Niutitang Formation shale is an extremely crucial marine source rock developed at the mid-upper Yangtze block of China. To clarify the paleoenvironment and conditions which are responsible for organic matter enrichment of the Niutitang Formation shale in South China, a systematic study of petrology, organic geoche-mistry and elemental geochemistry was carried out by focusing on the Niutitang Formation shale in Yuanling, western Hunan Province. Results showed that the paleoclimate was transforming from dry-cold to warm-wet during deposition of Niutitang Formation. The level of biological productivity, the redox properties of water and the intensity of hydrothermal activity showed a consistent trend of low-high-medium-high from the early to the late stage of deposition. Rather than being controlled by a single factor, the enrichment of organic matter in the Niutitang Formation shale was the result of the mutual configuration and coupling of multiple factors such as paleoclimate, biological productivity, water redox properties, deposition rate and hydrothermal activity. The water was shallow and oxic with a low-level of productivity in the course of deposition of the lower Niutitang Formation, which was not conducive to the enrichment of organic matter. A large-scale of Early Cambrian transgression occurred during deposition of the medium Niutitang Formation, and the associated upwelling carried extensive substances such as nutrients and sulfates entered the surface water, which promoted the blooming of algae. The anoxic-euxinic environment at the bottom water was conducive to the preservation of organic matter. Although the degree of water oxidation increased during deposition of the upper Niutitang Formation, the strong hydrothermal activity triggered by the continuous extension of South China provided rich nutrients, which kept a high-level biological productivity. Meanwhile, the relatively high deposition rate led to organic matter insufficiently degraded, resulting in rapid burial, preservation and enrichment.
-
图 1 中国南方扬子地台震旦纪—寒武纪过渡期古地理
据参考文献[16]修改。
Figure 1. Paleogeographic map of the Yangtze block in South China during Ediacaran-Cambrian transition
图 2 湘西地区借母溪剖面下寒武统牛蹄塘组富有机质页岩(样品号JMC-10)电镜照片
a.借母溪剖面牛蹄塘组富硅页岩显微结构;b.富硅质页岩中石英颗粒与有机质(条状和絮状)和片状黏土矿物伴生;c.富有机质页岩中的自形—半自形石英和片状黏土矿物显微结构;d.富有机质页岩中的草莓状黄铁矿;e.富硅页岩中条状有机质,孔隙不发育;f.石英颗粒粒间孔隙中絮状有机质,发育微孔
Q代表石英;Py代表黄铁矿;Lit代表黏土矿物;OM代表有机质Figure 2. Electron microscopic images of organic-rich shale in Lower Cambrian Niutitang Formation, Jiemuxi profile, western Hunan Province
表 1 湘西地区借母溪剖面牛蹄塘组样品TOC和主量元素含量
Table 1. TOC and major element contents of Niutitang Formation samples in western Hunan Province
样品号 层段 深度/m 岩性 ω(TOC)/% 主量元素含量/% CIA Al2O3 CaO Fe2O3 K2O MgO Na2O TiO2 JMX-45 上段 0.7 黑色硅质页岩 5.41 7.49 0.05 9.07 1.91 0.65 0.81 0.43 68.1 JMX-44 2.5 黑色硅质页岩 4.86 8.51 0.04 4.78 1.89 1.36 0.87 0.39 70.5 JMX-43 3.7 黑色硅质页岩 5.95 8.56 0.15 4.34 2.07 1.00 0.94 0.43 67.7 JMX-42 5.7 黑色硅质页岩 7.90 7.91 0.03 1.47 2.20 0.63 0.67 0.46 69.0 JMX-41 7.3 黑色硅质页岩 7.41 6.36 0.10 0.65 1.84 0.47 0.41 0.45 69.0 JMX-40 9.3 黑色硅质页岩 9.40 8.67 0.03 1.61 2.47 0.84 0.71 0.46 69.0 JMX-39 10.5 黑色硅质页岩 7.03 8.16 0.07 3.92 2.34 0.75 0.80 0.41 67.3 JMX-38 12.1 黑色硅质页岩 5.27 7.44 0.26 1.77 2.33 0.50 0.71 0.45 65.3 JMX-37 中段 13.7 黑色中—厚层粉砂岩 4.21 7.22 0.61 0.57 2.31 0.47 0.85 0.40 59.0 JMX-36 15.8 黑色中—厚层粉砂岩 5.51 8.83 0.09 2.71 2.75 0.74 0.71 0.47 67.2 JMX-35 17.8 黑色中—厚层粉砂岩 7.41 7.74 0.02 0.61 1.02 0.27 0.30 0.18 65.3 JMX-34 19.8 黑色薄层状粉砂岩 9.08 6.82 0.08 0.57 2.20 0.48 0.81 0.46 63.9 JMX-33 21.8 黑色中层状泥质粉砂岩 5.52 7.03 0.04 2.72 1.43 1.28 0.17 0.23 78.7 JMX-32 23.3 黑色中层状泥质粉砂岩 9.37 4.59 0.14 0.84 1.43 0.48 0.41 0.27 64.8 JMX-31 25.3 黑色泥质粉砂岩 12.86 4.71 0.18 0.67 1.97 0.29 0.46 0.62 59.4 JMX-30 26.0 黑色薄层炭质粉砂岩 9.54 6.41 0.06 1.52 2.43 0.29 0.96 0.52 59.8 JMX-29 27.5 黑色薄层硅质泥岩 8.88 7.31 0.10 5.92 2.61 0.28 1.27 0.45 58.9 JMX-28 29.5 黑色薄层硅质泥岩 9.30 7.07 0.33 4.22 2.41 0.36 1.26 0.44 57.2 JMX-27 31.5 黑色厚层块状硅质泥岩 7.01 7.41 0.29 6.69 2.39 0.51 1.32 0.43 58.3 JMX-26 33.5 黑色厚层块状硅质岩 6.62 9.65 5.47 4.76 2.99 0.85 1.48 0.57 60.2 JMX-25 34.8 黑色硅质页岩 10.45 11.49 0.06 4.93 3.84 0.90 1.42 0.82 63.5 JMX-24 35.8 黑色硅质页岩 9.52 7.06 0.26 4.17 1.87 2.20 1.06 0.42 62.5 JMX-23 37.8 黑色硅质页岩 10.51 4.58 0.20 2.68 1.38 0.69 0.65 0.22 61.0 JMX-22 39.3 黑色硅质页岩 8.95 4.19 0.23 6.35 1.32 0.51 0.61 0.23 59.6 JMX-21 41.3 黑色硅质页岩 9.34 7.24 0.18 1.75 2.22 0.69 0.96 0.40 62.6 JMX-20 43.3 黑色硅质页岩 12.45 5.13 0.19 2.88 1.77 0.38 0.70 0.31 60.1 JMX-19 45.3 黑色硅质页岩 14.44 5.12 0.22 3.21 1.20 2.26 0.60 0.29 65.6 JMX-18 47.3 黑色中层状硅质岩 11.19 4.60 0.33 4.42 1.18 0.85 0.75 0.26 59.5 JMX-17 48.8 黑色块状硅质岩 10.14 7.70 0.18 2.64 1.85 0.80 0.88 0.36 67.1 JMX-16 49.8 黑色块状硅质岩 9.43 7.49 0.29 2.15 1.98 1.01 0.96 0.38 63.7 JMX-15 51.5 黑色块状硅质岩 9.69 6.55 1.04 2.41 1.73 1.21 0.65 0.33 57.6 JMX-14 52.7 黑色硅质页岩 1.91 43.61 1.35 0.08 2.27 0.04 0.04 JMX-13 54.3 黑色硅质页岩 11.72 5.78 0.27 2.25 1.60 0.69 0.46 0.31 66.0 JMX-12 56.3 黑色硅质页岩 10.59 7.30 1.03 2.84 1.87 0.92 0.80 0.35 58.3 JMX-11 58.3 黑色硅质页岩 11.70 8.86 0.18 4.58 2.63 1.18 0.66 0.44 67.5 JMX-10 59.9 黑色硅质页岩 12.01 0.13 1.63 0.47 0.31 0.04 0.07 JMX-9 61.1 黑色硅质页岩 9.63 10.78 0.38 5.32 3.38 1.10 0.70 0.50 66.2 JMX-8 下段 62.1 黑色硅质页岩 2.53 13.28 0.14 6.58 4.52 1.87 0.43 0.73 69.4 JMX-7 64.2 黑色硅质页岩 0.72 13.61 0.66 8.30 4.27 2.09 0.95 0.86 64.8 JMX-6 65.8 黑色硅质页岩 1.16 12.23 1.17 7.00 3.30 2.66 1.21 0.79 61.3 JMX-5 67.2 黑色硅质页岩 2.24 11.59 0.18 6.42 3.51 2.07 0.90 0.83 67.3 JMX-4 68.8 黑色硅质页岩 1.79 11.73 0.36 8.03 3.50 2.55 0.87 0.81 66.7 表 2 湘西地区借母溪剖面牛蹄塘组页岩微量元素含量
Table 2. Trace element contents of Niutitang Formation samples in western Hunan Province
样品号 微量元素含量/10-6 U/Th V/Cr Ni/Co Ba Co Cr Cu Ni Sr V Zr Mo Sc Th Hf U JMX-45 1 959.1 5.54 69.0 49.5 41.4 50.0 118.1 82.9 32.3 7.51 6.94 2.20 8.7 1.25 1.71 7.48 JMX-44 4 360.6 9.61 74.5 96.2 79.0 67.9 138.3 76.6 41.9 9.58 8.65 2.11 16.0 1.85 1.86 8.22 JMX-43 2 372.3 7.40 77.8 67.7 46.9 70.4 152.3 88.2 39.4 9.33 9.43 2.36 14.2 1.51 1.96 6.34 JMX-42 3 401.1 2.72 75.4 17.1 20.5 43.6 244.5 95.1 64.6 7.44 7.84 2.56 19.4 2.47 3.24 7.54 JMX-41 3 801.0 1.15 57.1 8.8 13.2 28.9 186.5 96.7 64.8 6.22 8.65 2.60 17.6 2.04 3.27 11.54 JMX-40 6 731.7 0.59 64.6 23.5 8.3 47.3 156.4 95.7 28.3 7.71 9.08 2.55 15.0 1.65 2.42 14.01 JMX-39 5 057.8 10.02 74.9 58.0 30.5 40.5 172.8 91.6 64.2 7.88 10.06 2.48 20.2 2.01 2.31 3.04 JMX-38 8 705.9 2.27 86.5 21.9 21.6 63.5 507.9 96.8 64.8 7.30 9.04 2.58 16.4 1.81 5.87 9.51 JMX-37 6 805.6 0.76 72.8 14.3 15.6 72.5 534.6 81.9 91.8 5.67 7.95 2.24 20.1 2.53 7.35 20.53 JMX-36 9 040.7 0.64 133.0 25.5 20.7 72.4 1 892.0 107.3 146.1 9.45 9.58 2.75 21.3 2.22 14.22 32.50 JMX-35 1 823.1 0.29 36.7 8.2 11.3 21.3 470.2 39.2 48.0 2.93 3.76 1.01 11.9 3.16 12.82 38.85 JMX-34 8 748.1 1.21 55.1 20.4 14.5 38.3 256.3 107.7 109.1 7.33 9.64 2.71 52.8 5.48 4.65 11.96 JMX-33 2 885.9 1.91 258.8 941.7 99.7 47.0 3 471.8 58.0 206.6 6.39 5.29 1.42 85.1 16.10 13.42 52.25 JMX-32 3 250.7 0.56 74.6 144.3 36.0 45.1 516.5 68.8 278.6 8.23 6.02 1.66 181.3 30.11 6.92 63.87 JMX-31 9 362.8 3.42 70.1 15.0 50.6 78.2 234.8 163.7 34.3 6.64 6.52 4.30 48.2 7.39 3.35 14.78 JMX-30 9 229.1 0.83 91.4 19.3 29.5 63.2 350.6 138.9 70.1 7.50 7.36 3.80 53.8 7.31 3.84 35.54 JMX-29 6 630.2 5.97 113.0 39.8 60.8 41.5 250.7 119.8 77.8 7.01 5.54 3.24 29.5 5.32 2.22 10.17 JMX-28 6 520.5 4.40 102.0 40.3 27.0 55.0 144.7 117.6 65.2 7.30 7.06 3.07 29.7 4.21 1.42 6.14 JMX-27 6 244.4 8.75 124.0 48.8 76.2 55.0 419.2 106.1 80.0 9.34 7.15 2.90 55.5 7.75 3.38 8.71 JMX-26 5 476.4 8.49 236.4 76.7 232.6 39.8 2 127.8 139.7 1 496.0 18.48 15.32 3.51 356.3 23.26 9.00 27.38 JMX-25 6 013.1 5.88 510.7 98.5 186.6 68.5 4 949.3 206.5 200.7 13.07 10.23 5.00 74.4 7.27 9.69 31.75 JMX-24 3 813.1 9.39 142.5 43.8 236.0 47.8 865.4 114.2 151.8 7.79 7.34 3.05 129.3 17.61 6.07 25.14 JMX-23 2 941.2 4.11 94.5 33.9 74.0 43.2 595.3 56.2 73.5 6.13 4.64 1.46 52.7 11.37 6.30 18.01 JMX-22 2 803.9 6.72 105.0 48.0 125.5 35.7 279.1 53.1 89.9 4.57 3.49 1.47 52.0 14.89 2.66 18.69 JMX-21 2 616.5 5.44 594.7 253.8 122.4 33.9 3 018.3 105.6 49.8 8.92 5.85 2.75 11.6 1.99 5.08 22.51 JMX-20 3 433.4 5.08 103.6 55.7 73.6 34.5 658.7 85.6 144.7 6.81 6.21 1.84 93.6 15.06 6.36 14.49 JMX-19 2 042.9 14.87 104.0 93.9 274.2 37.0 290.4 79.2 94.0 5.57 5.19 1.94 105.5 20.33 2.79 18.44 JMX-18 2 421.7 6.25 122.6 57.9 80.5 46.9 325.9 67.9 107.6 6.50 3.96 1.59 57.2 14.43 2.66 12.87 JMX-17 1 955.7 11.00 243.3 94.8 236.2 35.9 4 119.9 93.1 83.6 9.19 5.55 2.36 87.4 15.73 16.93 21.47 JMX-16 3 158.6 9.61 242.9 241.1 172.5 50.3 3 271.4 97.8 59.4 8.99 5.85 2.44 32.4 5.53 13.47 17.95 JMX-15 1 793.4 6.98 583.7 507.7 144.6 77.5 2 742.1 89.5 72.1 8.73 5.29 2.18 50.4 9.53 4.70 20.72 JMX-14 2 022.5 15.29 20.2 280.1 191.8 123.6 324.6 14.1 15.9 4.51 0.72 0.27 83.4 115.82 16.06 12.54 JMX-13 1 375.1 5.58 229.3 89.2 187.8 47.5 6 338.8 74.9 146.8 7.63 4.63 1.92 20.5 4.43 27.64 33.63 JMX-12 1 710.3 11.47 542.6 771.5 362.8 63.8 5 708.2 91.9 130.2 8.48 5.49 2.33 50.3 9.15 10.52 31.64 JMX-11 2 816.9 3.28 2 762.0 271.4 105.9 55.4 3 032.6 99.2 55.6 9.34 7.49 2.51 12.1 1.61 1.10 32.24 JMX-10 760.9 3.37 393.6 979.0 167.1 22.5 2 499.8 23.8 40.0 2.40 1.44 0.57 73.2 50.82 6.35 49.60 JMX-9 7 867.3 8.39 251.3 124.3 144.0 50.5 1 372.0 93.6 32.3 11.12 8.82 2.18 38.0 4.30 5.46 17.15 JMX-8 15 946.1 11.74 150.9 53.3 59.0 38.8 141.1 100.9 1.7 12.14 10.75 2.75 3.8 0.35 0.94 5.03 JMX-7 15 767.0 17.62 133.7 90.6 65.4 83.8 111.0 150.0 1.6 13.58 12.25 3.93 3.4 0.28 0.83 3.71 JMX-6 11 984.0 15.25 131.6 226.8 76.8 68.7 140.9 138.4 3.1 12.82 9.91 3.71 7.5 0.76 1.07 5.04 JMX-5 12 819.9 11.72 134.5 52.4 44.9 50.3 107.0 148.7 2.4 11.38 9.77 4.08 3.9 0.40 0.80 3.83 JMX-4 12 549.2 12.29 122.3 49.5 42.6 57.6 124.8 152.4 2.3 13.32 8.83 4.04 2.5 0.28 1.02 3.47 表 3 湘西地区借母溪剖面牛蹄塘组REE含量
Table 3. Rare earth element contents of Niutitang Formation samples in western Hunan Province
样品号 稀土元素含量/10-6 (La/Yb)N δEu Y La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ∑REE JMX-45 9.4 24.0 49.0 5.37 17.6 2.63 0.76 2.49 0.30 1.63 0.33 1.10 0.17 1.17 0.19 106.8 1.52 1.41 JMX-44 14.3 24.8 52.4 6.15 22.5 4.21 1.52 3.99 0.54 2.92 0.55 1.66 0.24 1.55 0.24 123.2 1.18 1.75 JMX-42 11.5 26.0 53.3 6.03 20.2 2.80 1.04 2.78 0.33 1.82 0.39 1.29 0.21 1.43 0.23 117.8 1.76 JMX-41 11.4 21.9 44.3 4.92 16.2 2.17 1.00 2.40 0.30 1.82 0.39 1.32 0.20 1.39 0.23 98.5 1.17 2.06 JMX-40 11.9 23.0 49.0 5.56 19.2 3.07 1.69 2.98 0.36 2.01 0.42 1.30 0.21 1.37 0.21 110.4 1.24 2.63 JMX-39 17.8 24.2 49.4 5.90 21.1 3.76 1.50 3.77 0.52 2.98 0.61 1.85 0.26 1.71 0.26 117.9 1.05 1.87 JMX-38 11.6 18.5 38.0 4.65 16.3 2.56 1.81 2.41 0.30 1.79 0.39 1.29 0.20 1.39 0.22 89.7 0.98 3.43 JMX-37 9.5 17.3 33.4 3.94 13.2 1.83 1.55 2.11 0.23 1.44 0.32 1.11 0.18 1.25 0.20 78.1 1.02 3.71 JMX-36 16.5 24.6 44.5 5.32 17.8 2.56 2.01 2.63 0.34 2.19 0.50 1.73 0.27 1.92 0.31 106.6 0.95 3.65 JMX-35 7.5 11.7 22.3 2.84 9.8 1.36 0.53 1.31 0.16 0.91 0.21 0.74 0.12 0.77 0.13 52.9 1.12 1.87 JMX-34 44.0 34.3 66.8 7.52 27.0 4.08 2.20 4.41 0.63 4.24 1.02 3.42 0.49 2.98 0.47 251.6 0.85 2.44 JMX-33 72.9 16.2 25.8 4.15 18.0 4.31 1.46 5.46 0.87 5.88 1.40 4.45 0.64 4.10 0.66 93.4 0.29 1.42 JMX-31 15.9 34.8 61.5 7.78 26.4 3.11 2.13 3.30 0.38 2.18 0.48 1.60 0.24 1.56 0.24 145.7 0.65 3.13 JMX-30 13.9 23.2 38.8 4.93 16.8 2.26 2.01 2.39 0.30 1.84 0.41 1.36 0.20 1.35 0.22 96.0 1.27 4.08 JMX-29 15.2 25.3 43.8 5.54 19.4 2.39 1.54 2.54 0.33 2.00 0.46 1.53 0.24 1.56 0.24 106.8 1.20 2.95 JMX-28 19.2 24.8 44.8 5.73 20.6 2.89 1.56 2.97 0.41 2.45 0.55 1.76 0.26 1.66 0.26 110.7 1.10 2.50 JMX-27 25.4 24.6 45.4 6.22 24.0 4.59 1.85 4.48 0.62 3.59 0.73 2.27 0.32 2.02 0.31 120.9 0.90 1.92 JMX-25 31.6 34.5 52.6 7.01 23.9 3.27 1.61 3.54 0.52 3.45 0.82 2.75 0.42 2.73 0.43 137.6 0.94 2.23 JMX-24 25.5 16.1 26.9 3.92 15.3 3.05 1.28 3.15 0.49 3.22 0.72 2.24 0.32 1.95 0.29 79.0 0.61 1.95 JMX-23 16.3 19.0 30.3 4.37 16.1 2.61 1.00 2.70 0.35 2.02 0.43 1.30 0.19 1.14 0.17 81.6 1.23 1.77 JMX-22 30.2 18.5 31.7 4.65 19.3 4.38 1.49 5.02 0.68 3.87 0.79 2.22 0.29 1.69 0.26 94.8 0.81 1.50 JMX-21 21.0 13.5 18.7 3.28 12.2 2.19 0.93 2.45 0.38 2.51 0.59 1.94 0.32 2.16 0.36 61.5 0.46 1.89 JMX-20 52.5 26.6 38.8 5.95 21.9 3.88 1.31 4.93 0.83 5.63 1.29 4.08 0.56 3.27 0.50 119.5 0.60 1.41 JMX-19 48.1 26.0 42.7 5.53 22.2 4.71 1.44 5.67 0.91 5.60 1.21 3.53 0.45 2.50 0.35 122.8 0.77 1.31 JMX-18 23.6 22.2 36.2 4.56 17.1 2.96 0.99 3.23 0.45 2.64 0.57 1.76 0.24 1.55 0.23 94.7 1.06 1.51 JMX-17 33.1 19.7 34.1 4.78 19.2 3.99 1.22 4.37 0.68 4.06 0.87 2.76 0.39 2.51 0.38 99.0 0.58 1.37 JMX-16 42.0 24.0 38.9 5.60 22.2 4.77 1.67 5.47 0.83 5.14 1.12 3.43 0.46 2.89 0.43 116.8 0.61 1.54 JMX-15 69.0 27.0 41.8 6.48 26.7 5.72 1.64 6.31 1.01 6.40 1.41 4.46 0.62 3.89 0.58 134.0 0.51 1.28 JMX-14 149.2 23.0 27.8 4.87 23.5 6.39 2.87 8.64 1.33 8.63 2.08 6.53 0.88 5.28 0.79 122.5 0.32 1.82 JMX-13 25.2 21.5 29.5 4.54 16.9 2.76 0.80 3.02 0.43 2.70 0.62 2.05 0.30 2.01 0.31 87.5 0.79 1.30 JMX-12 45.2 32.1 42.8 7.35 29.0 5.70 1.48 6.07 0.89 5.30 1.17 3.68 0.52 3.46 0.52 140.0 0.68 1.19 JMX-11 29.9 40.6 41.9 7.95 25.4 3.10 1.17 3.52 0.48 3.24 0.83 3.04 0.49 3.49 0.56 135.7 0.86 1.66 JMX-10 120.8 6.5 8.0 1.79 8.5 2.91 0.81 5.42 1.08 8.09 1.99 6.33 0.82 4.69 0.67 57.6 0.30 1.20 JMX-9 37.0 42.6 57.2 9.73 36.7 6.66 2.55 5.95 0.84 4.96 1.09 3.45 0.50 3.21 0.48 175.9 0.98 1.91 JMX-8 11.2 25.8 35.4 5.14 16.6 1.99 3.34 2.03 0.25 1.56 0.37 1.28 0.21 1.43 0.22 95.6 1.33 7.83 JMX-7 18.2 45.2 66.1 8.77 29.6 4.91 3.94 4.72 0.56 3.05 0.61 1.90 0.26 1.70 0.25 171.6 1.96 3.85 JMX-6 23.2 37.9 55.2 6.86 23.9 4.17 3.10 4.44 0.62 3.59 0.75 2.33 0.33 2.16 0.33 145.6 1.30 1.21 JMX-5 11.8 26.0 38.1 4.65 15.4 2.33 2.93 2.40 0.32 1.90 0.43 1.41 0.22 1.49 0.23 97.8 1.29 5.83 JMX-4 13.2 43.6 56.3 6.52 19.4 2.23 2.80 2.63 0.31 1.90 0.44 1.61 0.25 1.85 0.29 140.2 1.74 5.45 -
[1] ZHAO G C, WANG Y J, HUANG B C, et al. Geological reconstructions of the east Asian blocks: from the breakup of Rodinia to the assembly of Pangea[J]. Earth-Science Reviews, 2018, 186: 262-286. doi: 10.1016/j.earscirev.2018.10.003 [2] 赵彦彦, 郑永飞. 全球新元古代冰期的记录和时限[J]. 岩石学报, 2011, 27(2): 545-565. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201102014.htmZHAO Yanyan, ZHENG Yongfei. Record and time of Neopro-terozoic glaciations on earth[J]. Acta Petrologica Sinica, 2011, 27(2): 545-565. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201102014.htm [3] SHU D G, ISOZAKI Y, ZHANG X L, et al. Birth and early evolution of metazoans[J]. Gondwana Research, 2014, 25(3): 884-895. doi: 10.1016/j.gr.2013.09.001 [4] Zhu M Y, Li X H. Introduction: from snowball Earth to the Cambrian explosion-evidence from China[J]. Geological Magazine, 2017, 154: 1187-1192. doi: 10.1017/S0016756817000644 [5] WANG G Z, WANG J S, WANG Z, et al. Carbon isotope gradient of the Ediacaran cap carbonate in the Shennongjia area and its implications for ocean stratification and palaeogeography[J]. Journal of Earth Science, 2017, 28(2): 187-195. doi: 10.1007/s12583-016-0923-x [6] 江卓斐. 扬子西缘新元古代冰川启动时间、期次及其构造—岩相古地理演化[D]. 北京: 中国地质大学(北京), 2016.JIANG Zhuofei. Onset time and periods of the Neoproterozoic glaciers in western Yangtze block and the tectonic-lithofacies palaeogeography[D]. Beijing: China University of Geosciences (Beijing), 2016. [7] 梁狄刚, 郭彤楼, 陈建平, 等. 中国南方海相生烃成藏研究的若干新进展(一): 南方四套区域性海相烃源岩的分布[J]. 海相油气地质, 2008, 13(2): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ200902003.htmLiang Digang, Guo Tonglou, Chen Jianping, et al. Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions, southern China (Part 1): distribution of four suits of regional marine source rocks[J]. Marine Origin Petroleum Geology, 2008, 13(2): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ200902003.htm [8] SAGEMAN B B, MURPHY A E, WERNE J P, et al. A tale of shales: the relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle-Upper Devonian, Appalachian Basin[J]. Chemical Geology, 2003, 195(1/4): 229-273. https://www.sciencedirect.com/science/article/pii/S0009254102003972 [9] GALLEGO-TORRES D, MARTÍNEZ-RUIZ F, PAYTAN A, et al. Pliocene-Holocene evolution of depositional conditions in the eastern Mediterranean: role of anoxia vs. productivity at time of sapropel deposition[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 246(2/4): 424-439. https://www.sciencedirect.com/science/article/pii/S0031018206005876 [10] MORT H, JACQUAT O, ADATTE T, et al. The Cenomanian/Turonian anoxic event at the Bonarelli level in Italy and Spain: enhanced productivity and/or better preservation?[J]. Cretaceous Research, 2007, 28(4): 597-612. doi: 10.1016/j.cretres.2006.09.003 [11] WEI H Y, CHEN D Z, WANG J G, et al. Organic accumulation in the Lower Chihsia Formation (Middle Permian) of South China: constraints from pyrite morphology and multiple geochemical proxies[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 353-355: 73-86. doi: 10.1016/j.palaeo.2012.07.005 [12] DING J H, ZHANG J C, TANG X, et al. Elemental geochemical evidence for depositional conditions and organic matter enrichment of black rock series strata in an inter-platform basin: the Lower Carboniferous Datang Formation, southern Guizhou, Southwest China[J]. Minerals, 2018, 8(11): 509. doi: 10.3390/min8110509 [13] CANFIELD D E. Sulfate reduction and oxic respiration in marine sediments: implications for organic carbon preservation in euxinic environments[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1989, 36(1): 121-138. doi: 10.1016/0198-0149(89)90022-8 [14] 丁江辉, 张金川, 石刚, 等. 宣城地区龙潭组页岩沉积环境与有机质富集[J]. 沉积学报, 2021, 39(2): 324-340. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202102005.htmDING Jianghui, ZHANG Jinchuan, SHI Gang, et al. Sedimentary environment and organic matter accumulation for the Longtan Formation shale in Xuancheng area[J]. Acta Sedimentologica Sinica, 2021, 39(2): 324-340. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202102005.htm [15] ALGEO T J, MAYNARD J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J]. Chemical Geology, 2004, 206(3/4): 289-318. [16] YEASMIN R, CHEN D Z, FU Y, et al. Climatic-oceanic forcing on the organic accumulation across the shelf during the Early Cambrian (age 2 through 3) in the mid-upper Yangtze block, NE Guizhou, South China[J]. Journal of Asian Earth Sciences, 2017, 134: 365-386. doi: 10.1016/j.jseaes.2016.08.019 [17] 贾智彬, 侯读杰, 孙德强, 等. 热水沉积区黑色页岩稀土元素特征及其地质意义: 以贵州中部和东部地区下寒武统牛蹄塘组页岩为例[J]. 天然气工业, 2018, 38(5): 44-51. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201805007.htmJIA Zhibin, HOU Dujie, SUN Deqiang, et al. Characteristics and geological implications of rare earth elements in black shale in hydrothermal sedimentation areas: a case study from the Lower Cambrian Niutitang Fm shale in central and eastern Guizhou[J]. Natural Gas Industry, 2018, 38(5): 44-51. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201805007.htm [18] WANG S F, ZOU C N, DONG D Z, et al. Multiple controls on the paleoenvironment of the Early Cambrian marine black shales in the Sichuan Basin, SW China: geochemical and organic carbon isotopic evidence[J]. Marine and Petroleum Geology, 2015, 66: 660-672. [19] 刘宝珺, 许效松, 潘杏南, 等. 中国南方古大陆沉积地壳演化与成矿[M]. 北京: 科学出版社, 1993: 50-53.LIU Baojun, XU Xiaosong, PAN Xingnan, et al. Depositional crustal evolution and mineralization of paleo-continent in southern China[M]. Beijing: Science Press, 1993: 50-53. [20] 夏鹏, 王甘露, 周豪, 等. 黔北凤冈区块典型残余隐伏向斜特征及其页岩气选区选带意义[J]. 东北石油大学学报, 2018, 42(2): 71-79. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY201802008.htmXIA Peng, WANG Ganlu, ZHOU Hao, et al. The relationship between sedimentary environment and organic matter accumulation in the Niutitang black shale in Zhenyuan, northern Guizhou[J]. Journal of Northeast Petroleum University, 2018, 42(2): 71-79. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY201802008.htm [21] 吴诗情, 郭建华, 王玺凯, 等. 湘中地区早寒武世牛蹄塘组黑色岩系地球化学特征与有机质富集机理[J]. 中南大学学报(自然科学版), 2020, 51(8): 2049-2060. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202008001.htmWU Shiqing, GUO Jianhua, WANG Xikai, et al. Geochemical characteristics and organic matter enrichment mechanism of the Lower Cambrian Niutitang Formation black rock series in central Hunan[J]. Journal of Central South University (Science and Technology), 2020, 51(8): 2049-2060. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202008001.htm [22] 张焱林, 段轲, 刘早学, 等. 鄂西下寒武统牛蹄塘组页岩特征及页岩气富集主控因素[J]. 石油实验地质, 2019, 41(5): 691-698. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201905010.htmZHANG Yanlin, DUAN Ke, LIU Zaoxue, et al. Characteristics of shale and main controlling factors of shale gas enrichment of Lower Cambrian Niutitang Formation in western Hubei[J]. Petroleum Geology & Experiment, 2019, 41(5): 691-698. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201905010.htm [23] 张水昌, 张宝民, 边立曾, 等. 中国海相烃源岩发育控制因素[J]. 地学前缘, 2005, 12(3): 39-48. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200503006.htmZHANG Shuichang, ZHANG Baomin, BIAN Lizeng, et al. Deve-lopment constraints of marine source rocks in China[J]. Earth Science Frontiers, 2005, 12(3): 39-48. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200503006.htm [24] 陈代钊, 汪建国, 严德天, 等. 扬子地区古生代烃源岩有机质富集的环境动力学机制与差异[J]. 地质科学, 2011, 46(1): 5-26. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201101004.htmCHEN Daizhao, WANG Jianguo, YAN Detian, et al. Environmental dynamics of organic accumulation for the principal Paleozoic source rocks on Yangtze block[J]. Chinese Journal of Geology (Scientia Geologica Sinica), 2011, 46(1): 5-26. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201101004.htm [25] NESBITT H W, YOUNG G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717. https://www.nature.com/articles/299715a0/ [26] BAI Y Y, LIU Z J, SUN P C, et al. Rare earth and major element geochemistry of Eocene fine-grained sediments in oil shale- and coal-bearing layers of the Meihe Basin, northeast China[J]. Journal of Asian Earth Sciences, 2015, 97: 89-101. https://www.sciencedirect.com/science/article/pii/S1367912014004659 [27] KASANZU C, MABOKO M A H, MANYA S. Geochemistry of fine-grained clastic sedimentary rocks of the Neoproterozoic Ikorongo Group, NE Tanzania: implications for provenance and source rock weathering[J]. Precambrian Research, 2008, 164(3/4): 201-213. https://www.sciencedirect.com/science/article/pii/S0301926808001071 [28] MCLENNAN S M, HEMMING S, MCDANIEL D K, et al. Geochemical approaches to sedimentation, provenance, and tectonics[M]//JOHNSSON M J, BASU A. Processes controlling the composition of clastic sediments. Geological Society of America, 1993, 284: 21-40. [29] Xiao D, Cao J, Luo B, et al. Neoproterozoic postglacial paleo-environment and hydrocarbon potential: a review and new insights from the Doushantuo Formation Sichuan Basin, China[J]. Earth-Science Reviews, 2021, (212): 1-30. https://www.sciencedirect.com/science/article/pii/S0012825220304992 [30] FLOYD P A, LEVERIDGE B E. Tectonic environment of the Devonian Gramscatho Basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones[J]. Journal of the Geological Society, 1987, 144(4): 531-542. [31] WRONKIEWICZ D J, CONDIE K C. Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: source-area weathering and provenance[J]. Geochimica et Cosmochimica Acta, 1987, 51(9): 2401-2416. https://www.sciencedirect.com/science/article/pii/0016703787902936 [32] ROSENTHAL Y, LAM P, BOYLE E A, et al. Authigenic cadmium enrichments in suboxic sediments: precipitation and postdepositional mobility[J]. Earth and Planetary Science Letters, 1995, 132(1/4): 99-111. https://www.sciencedirect.com/science/article/pii/0012821X9500056I [33] TRIBOVILLARD N, ALGEO T J, LYONS T, et al. Trace metals as paleoredox and paleoproductivity proxies: an update[J]. Chemical Geology, 2006, 232(1/2): 12-32. https://www.sciencedirect.com/science/article/abs/pii/S000925410600132X [34] ZHOU L, KANG Z H, WANG Z X, et al. Sedimentary geoche-mical investigation for paleoenvironment of the Lower Cambrian Niutitang Formation shales in the Yangtze Platform[J]. Journal of Petroleum Science and Engineering, 2017, 159: 376-386. https://www.sciencedirect.com/science/article/pii/S0920410516313365 [35] TRIBOVILLARD N P, DESPRAIRIES A, LALLIER-VERGÈS E, et al. Geochemical study of organic-matter rich cycles from the Kimmeridge Clay Formation of Yorkshire (UK): productivity versus anoxia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1994, 108(1/2): 165-181. https://www.sciencedirect.com/science/article/pii/0031018294900280 [36] ALGEO T J, LYONS T W, BLAKEY R C, et al. Hydrographic conditions of the Devono-Carboniferous North American Seaway inferred from sedimentary Mo-TOC relationships[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 256(3/4): 204-230. https://www.sciencedirect.com/science/article/pii/S0031018207003112 [37] VORLICEK T P, KAHN M D, KASUYA Y, et al. Capture of molybdenum in pyrite-forming sediments: role of ligand-induced reduction by polysulfides[J]. Geochimica et Cosmochimica Acta, 2004, 68(3): 547-556. https://www.sciencedirect.com/science/article/pii/S0016703703004447 [38] CAO J, YANG R F, YIN W, et al. Mechanism of organic matter accumulation in residual bay environments: the Early Cretaceous Qiangtang Basin, Tibet[J]. Energy & Fuels, 2018, 32(2): 1024-1037. [39] MURRAY R W, TEN BRINK M R B, GERLACH D C, et al. Rare earth, major, and trace elements in chert from the Franciscan Complex and Monterey Group, California: assessing REE sources to fine-grained marine sediments[J]. Geochimica et Cosmochimica Acta, 1991, 55(7): 1875-1895. [40] 张玉祥, 曾志刚, 殷学博, 等. 冲绳海槽海底热液区附近浮岩气孔充填沉积物中热液活动的地球化学记录[J]. 海洋地质与第四纪地质, 2018, 38(5): 102-111. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201805010.htmZHANG Yuxiang, ZENG Zhigang, YIN Xuebo, et al. Geochemical records of hydrothermal activities in the sediment fillings within pumice's vesicles in the vicinity of a seafloor hydrothermal field in the Okinawa Trough[J]. Marine Geology & Quaternary Geology, 2018, 38(5): 102-111. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201805010.htm [41] 江文剑, 侯明才, 邢凤存, 等. 川东南地区娄山关群白云岩稀土元素特征及其意义[J]. 石油与天然气地质, 2016, 37(4): 473-482. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201604004.htmJIANG Wenjian, HOU Mingcai, XING Fengcun, et al. Characte-ristics and indications of rare earth elements in dolomite of the Cambrian Loushanguan Group, SE Sichuan Basin[J]. Oil & Gas Geology, 2016, 37(4): 473-482. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201604004.htm [42] 赵建华, 金之钧, 林畅松, 等. 上扬子地区下寒武统筇竹寺组页岩沉积环境[J]. 石油与天然气地质, 2019, 40(4): 701-715. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201904003.htmZHAO Jianhua, JIN Zhijun, LIN Changsong, et al. Sedimentary environment of the Lower Cambrian Qiongzhusi Formation shale in the Upper Yangtze region[J]. Oil & Gas Geology, 2019, 40(4): 701-715. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201904003.htm