Simulation experiment and mathematical model analysis for shale gas diffusion in nano-scale pores
-
摘要: 深层页岩气在纳米孔隙中的扩散行为分为体相扩散(Fick和Knudsen扩散)和表面扩散。为了定量评价温度、压力等对扩散系数的影响,揭示深层页岩气的保存机理,以南方鄂西秭归茅坪地区寒武系牛蹄塘组页岩为实验对象,在不同温压条件下,通过等压扩散实验对纳米孔隙甲烷扩散进行实验模拟。结果表明:(1)扩散系数DF随压力增大而减小(当压力大于30 MPa时,DF趋于平稳),随温度升高而增大;(2)在高温高压环境下,DF受压力影响更大,总体趋于减小。随后,定量考虑了温度、压力、孔隙及岩性特征对各种扩散行为的影响,建立了数学模型。该模型与模拟实验结果相似,可以相互验证:(1)温度升高促使分子动能增大,导致体相和表面扩散系数都增大,而压力增大虽然会使Fick扩散和表面扩散作用稍微加强,但会显著限制Knudsen扩散并最终导致总扩散作用降低;(2)孔径增大加强了体相扩散作用,削弱了表面扩散作用。最后,结合具体研究区块,认为深层高压环境有利于页岩纳米孔隙气藏的保存,而地层抬升释放压力的过程是页岩气散失的主要阶段。Abstract: Gas diffusion in nano-scale porous media of deeply burried shale includes bulk diffusion (Fick and Knudsen diffusions) and surface diffusion. To reveal the migration mechanism of this process, the influence of temperature and pressure on diffusion coefficient needs to be quantitatively evaluated. A case study was made with the Cambrian Niutitang Formation in the Maoping area, Zigui, western Hubei, South China. Gas diffusion was simulated by isobaric diffusion experiments under different temperature and pressure conditions. The results indicated that: (1) The diffusion coefficient DF decreases with increasing of pressure (when the pressure is higher than 30 MPa, DF tends to be constant), and increases with increasing of temperature; (2) In the high temperature-pressure setting, DF is affected significantly by pressure and generally tends to decrease. Moreover, the impacts of temperature, pressure, porosity and lithology were quantitatively calculated, and a mathematical model of gas diffusion was established, which had comparable results with simulation experiment. The following conclusions were thus drawn: (1)Higher temperature will cause stronger molecular kinetic energy, resulting in increasing bulk and surface diffusion coefficients, while higher pressure will slightly strengthen the Fick and surface diffusions, but significantly limit the Knudsen diffusion, and cause lower total diffusion coefficient; (2) Larger pore size leads to stronger bulk diffusion, but weaker surface diffusion. Finally, according to the studies of a specific research block, high pressure setting is conducive to the preservation of nano-scale porous gas reservoir in shale, while the uplift accompanied by pressure release is the main stage of shale gas loss.
-
Key words:
- methane /
- diffusion coefficient /
- simulation experiment /
- mathematical model
-
表 1 不同温压条件下模拟测试的甲烷扩散系数
Table 1. Methane diffusion coefficient tested by simulation under different temperature and pressure conditions
实验计划 实验条件 扩散系数/(10-8 cm2·s-1) 温度/℃ 环压/MPa 气体压力/MPa 温度保持不变,压力增高 30 8 2 2.528 30 15 10 1.433 30 25 20 0.539 30 35 30 0.231 30 50 45 0.500 30 60 55 0.404 压力保持不变,温度升高 30 2.528 50 2.758 80 8 2 3.013 110 3.239 温度、压力同时增高 30 8 2 2.528 50 16.5 11 2.684 90 27 20 0.876 110 35 30 1.815 110 40 35 0.943 110 45 40 0.561 表 2 扩散模拟实验和数学模型中的参数取值
Table 2. Parameter values in experimental simulation and mathematical model of this study
参数 参数意义 取值 参数 参数意义 取值 T/K 绝对温度 300~400 κb/(J·K-1) Boltzmann常数 1.308×10-23 P/Pa 气体压力 (2~55)×106 δ/dM /m 气体分子(碰撞)直径 3.8×10-10 Pconfine/Pa 施加压力/围压 (7~60)×106 M/(kg·mol-1) 气体摩尔质量 0.016 PL[28]/Pa Langmuir压力 4.48×106 μg/(Pa·s) 气体黏度 0.000 014 ΔH [29]/(J·mol-1) 等温吸附热 14 000 r0/m 初始孔隙半径 1.29×10-9 R/(J·mol-1·K-1) 通用气体常数 8.314 r/m 施压后孔隙半径 公式(7) κ 分子阻塞系数 0.5 α 比奥Biot系数 0.8 H(1-κ) Heaviside函数 1 φ 平均孔隙度 0.018 τ 孔隙迂曲度 10 εL 朗缪尔体积应变常数 0.05 K/Pa 页岩样品体积模量 8×108 ζreal-b 实际总扩散校正系数 0.01 ζreal-a 实际表面扩散校正系数 0.001 DF/(cm2·s-1) 实验测试扩散系数 表 1 Dtotal/(cm2·s-1) 理论总扩散系数 公式(16) 表 3 单一变量下的扩散系数特征
Table 3. Parameter values in experimental simulation and mathematical model of this study
单一变量 Dknudsen/(10-8 cm2·s-1) Dfick/(10-8 cm2·s-1) Dsurface/(10-8 cm2·s-1) Dtotal/(10-8 cm2·s-1) 压力变化,其他条件不变
(T = 300 K;r0 = 1 nm;ζreal-b = 0.01)P=10 MPa 0.57 0.35 0.19 1.11 P=20 MPa 0.33 0.40 0.25 0.98 温度变化,其他条件不变
(P = 10 MPa;r0 = 1 nm;ζreal-b = 0.01)T=300 K 0.57 0.35 0.19 1.11 T=400 K 0.81 0.43 0.27 1.52 孔径变化,其他条件不变
(T = 300 K;P = 10 MPa;ζreal-b = 0.01)r0 = 1 nm 0.57 0.35 0.19 1.11 r0 = 5 nm 1.81 1.10 0.05 2.96 孔隙连通性变化,其他条件不变
(T = 300 K;P = 10 MPa;r0 = 1 nm)ζreal-b = 0.01 0.57 0.35 0.19 1.11 ζreal-b = 0.02 1.14 0.70 0.38 2.23 -
[1] 邹才能, 张国生, 杨智, 等. 非常规油气概念、特征、潜力及技术: 兼论非常规油气地质学[J]. 石油勘探与开发, 2013, 40(4): 385-399. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201304000.htmZOU Caineng, ZHANG Guosheng, YANG Zhi, et al. Geological concepts, characteristics, resource potential and key techniques of unconventional hydrocarbon: on unconventional petroleum geology[J]. Petroleum Exploration and Development, 2013, 40(4): 385-399. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201304000.htm [2] 任俊豪, 任晓海, 宋海强, 等. 基于分子模拟的纳米孔内甲烷吸附与扩散特征[J]. 石油学报, 2020, 41(11): 1366-1375. doi: 10.7623/syxb202011006REN Junhao, REN Xiaohai, SONG Haiqiang, et al. Adsorption and diffusion characteristics of methane in nanopores based on molecular simulation[J]. Acta Petrolei Sinica, 2020, 41(11): 1366-1375. doi: 10.7623/syxb202011006 [3] 薛海涛, 李璐璐, 卢双舫. 天然气扩散损失量估算方法探讨[J]. 石油与天然气地质, 2010, 31(3): 343-346. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201003015.htmXUE Haitao, LI Lulu, LU Shuangfang. A discussion on methods for estimating diffusion loss of natural gas[J]. Oil & Gas Geology, 2010, 31(3): 343-346. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201003015.htm [4] MI Lidong, JIANG Hanqiao, LI Junjian. The impact of diffusion type on multiscale discrete fracture model numerical simulation for shale gas[J]. Journal of Natural Gas Science and Engineer-ing, 2014, 20: 74-81. doi: 10.1016/j.jngse.2014.06.013 [5] 赵可英. 页岩吸附气壁面扩散机理及现场应用[J]. 科学技术与工程, 2021, 21(4): 1362-1366. doi: 10.3969/j.issn.1671-1815.2021.04.016ZHAO Keying. Diffusion mechanisms and field application of absorbed gas on surface wall of nano-pores of shale[J]. Science Technology and Engineering, 2021, 21(4): 1362-1366. doi: 10.3969/j.issn.1671-1815.2021.04.016 [6] WU Keliu, LI Xiangfang, GUO Chaohua, et al. A unified model for gas transfer in nanopores of shale-gas reservoirs: coupling pore diffusion and surface diffusion[J]. SPE Journal, 2016, 21(5): 1583-1611. doi: 10.2118/2014-1921039-PA [7] ZHONG Ying, SHE Jiping, ZHANG Hao, et al. Experimental and numerical analyses of apparent gas diffusion coefficient in gas shales[J]. Fuel, 2019, 258: 116123. doi: 10.1016/j.fuel.2019.116123 [8] CHEN Mingjun, KANG Yili, ZHANG Tingshan, et al. Methane diffusion in shales with multiple pore sizes at supercritical conditions[J]. Chemical Engineering Journal, 2018, 334: 1455-1465. doi: 10.1016/j.cej.2017.11.082 [9] ETMINAN S R, JAVADPOUR F, MAINI B B, et al. Measurement of gas storage processes in shale and of the molecular diffusion coefficient in kerogen[J]. International Journal of Coal Geology, 2014, 123: 10-19. doi: 10.1016/j.coal.2013.10.007 [10] WEI Mingyao, LIU Yingke, LIU Jishan, et al. Micro-scale investigation on coupling of gas diffusion and mechanical deformation of shale[J]. Journal of Petroleum Science and Engineering, 2019, 175: 961-970. doi: 10.1016/j.petrol.2019.01.039 [11] 吴克柳, 李相方, 陈掌星. 页岩纳米孔吸附气表面扩散机理和数学模型[J]. 中国科学: 技术科学, 2015, 45(5): 525-540. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201505012.htmWU Keliu, LI Xiangfang, CHEN Zhangxing. The mechanism and mathematical model for the adsorbed gas surface diffusion in nanopores of shale gas reservoirs[J]. Scientia Sinica Technologica, 2015, 45(5): 525-540. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201505012.htm [12] 柳广弟, 赵忠英, 孙明亮, 等. 天然气在岩石中扩散系数的新认识[J]. 石油勘探与开发, 2012, 39(5): 559-565. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201205007.htmLIU Guangdi, ZHAO Zhongying, SUN Mingliang, et al. New insights into natural gas diffusion coefficient in rocks[J]. Petroleum Exploration and Development, 2012, 39(5): 559-565. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201205007.htm [13] 张焱林, 段轲, 刘早学, 等. 鄂西下寒武统牛蹄塘组页岩特征及页岩气富集主控因素[J]. 石油实验地质, 2019, 41(5): 691-698. doi: 10.11781/sysydz201905691ZHANG Yanlin, DUAN Ke, LIU Zaoxue, et al. Characteristics of shale and main controlling factors of shale gas enrichment of Lower Cambrian Niutitang Formation in western Hubei[J]. Petroleum Geology & Experiment, 2019, 41(5): 691-698. doi: 10.11781/sysydz201905691 [14] 冯光俊. 上扬子区下寒武统页岩高温高压甲烷吸附与页岩气赋存[D]. 徐州: 中国矿业大学, 2020.FENG Guangjun. High-temperature high-pressure methane adsorption and shale gas occurrence in Lower Cambrian shale, Upper Yangtze area[D]. Xuzhou: China University of Mining and Technology, 2020. [15] 全国石油天然气标准化技术委员会. 岩心分析方法: GB/T 29172-2012[S]. 北京: 中国标准出版社, 2012.Petroleum of Standardization Administration of China. Practices for core analysis: GB/T 29172-2012[S]. Beijing: China Standards Press, 2012. [16] 卢丽, 王国建, 朱怀平, 等. 深层天然气扩散系数模拟实验装置的研制[J]. 物探与化探, 2020, 44(6): 1441-1445. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202006023.htmLU Li, WANG Guojian, ZHU Huaiping, et al. The development of an experimental measuring apparatus for simulating the diffusion coefficient of naturalgas in depth[J]. Geophysical and Geochemical Exploration, 2020, 44(6): 1441-1445. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202006023.htm [17] SCHLOEMER S, KROOSS B M. Molecular transport of methane, ethane and nitrogen and the influence of diffusion on the chemical and isotopic composition of natural gas accumulations[J]. Geofluids, 2004, 4(1): 81-108. doi: 10.1111/j.1468-8123.2004.00076.x [18] WANG Sen, FENG Qihong, ZHA Ming, et al. Supercritical methane diffusion in shale nanopores: effects of pressure, mineral types, and moisture content[J]. Energy & Fuels, 2018, 32(1): 169-180. [19] 陈璐, 胡志明, 熊伟, 等. 页岩气扩散实验与数学模型[J]. 天然气地球科学, 2020, 31(9): 1285-1293. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202009009.htmCHEN Lu, HU Zhiming, XIONG Wei, et al. Diffusion experiment of shale gas and mathematical model[J]. Natural Gas Geoscience, 2020, 31(9): 1285-1293. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202009009.htm [20] 曲斌, 武晓鹏, 巩继海, 等. 基于扩散性实验技术的泥质岩封盖能力: 以松辽盆地北部徐家围子断陷泥质岩为例[C]//油气田勘探与开发国际会议(IFEDC 2018)论文集. 西安: 西安华线网络信息服务有限公司, 2018: 1217-1223.QU Bin, WU Xiaopeng, GONG Jihai, et al. Mudstone capping capability based on diffusion experimental technique: taking the mudstone in the northern Songliao Basin as an example[C]//IFEDC-20182378. 2018: 1217-1223. [21] KIM C, JANG H, LEE Y, et al. Diffusion characteristics of nanoscale gas flow in shale matrix from Haenam Basin, Korea[J]. Environmental Earth Sciences, 2016, 75(4): 350. doi: 10.1007/s12665-016-5267-4 [22] ZHANG Yanyu, LI Dongdong, SUN Xiaofei, et al. New theoretical model to calculate the apparent permeability of shale gas in the real state[J]. Journal of Natural Gas Science and Engineering, 2019, 72: 103012. doi: 10.1016/j.jngse.2019.103012 [23] ROSS D J K, BUSTIN R M. Impact of mass balance calculations on adsorption capacities in microporous shale gas reservoirs[J]. Fuel, 2007, 86(17/18): 2696-2706. [24] KIM C, JANG H, LEE J. Experimental investigation on the characteristics of gas diffusion in shale gas reservoir using porosity and permeability of nanopore scale[J]. Journal of Petroleum Science and Engineering, 2015, 133: 226-237. [25] CURTIS M E, CARDOTT B J, SONDERGELD C H, et al. Deve-lopment of organic porosity in the Woodford shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012, 103: 26-31. [26] CUI X, BUSTIN A M M, BUSTIN R M. Measurements of gas permeability and diffusivity of tight reservoir rocks: different approaches and their applications[J]. Geofluids, 2009, 9(3): 208-223. [27] WU Keliu, CHEN Zhangxin, LI Xiangfang, et al. A model for multiple transport mechanisms through nanopores of shale gas reservoirs with real gas effect: adsorption-mechanic coupling[J]. International Journal of Heat and Mass Transfer, 2016, 93: 408-426. [28] 周庆华, 宋宁, 王成章, 等. 湖南常德地区牛蹄塘组页岩特征及含气性[J]. 天然气地球科学, 2015, 26(2): 301-311. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201502015.htmZHOU Qinghua, SONG Ning, WANG Chengzhang, et al. Characteristics of shale and gas content of Niutitang Formation in Changde region of Hunan Province[J]. Natural Gas Geoscience, 2015, 26(2): 301-311. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201502015.htm [29] 付德亮, 田涛, 秦建强, 等. 大竹坝-回军坝向斜牛蹄塘组页岩吸附性研究[J]. 煤炭学报, 2018, 43(12): 3453-3460. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201812024.htmFU Deliang, TIAN Tao, QIN Jianqiang, et al. Characterization of methane adsorption on the shales in Niutitang Formation at Dazhuba-Huijunba Oblique[J]. Journal of China Coal Society, 2018, 43(12): 3453-3460. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201812024.htm [30] 谢舟, 卢双舫, 于玲, 等. 泥质气源岩层内天然气扩散损失量评价: 以黔南坳陷黄页1井九门冲组页岩为例[J]. 矿物学报, 2014, 34(1): 137-143. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201401021.htmXIE Zhou, LU Shuangfang, YU Ling, et al. Assessment of natural gas loss from mudstone gas source rocks: an example from Jiumenchong Formation of Huangye 1 well, Lower Cambrian, southern Guizhou Sag[J]. Acta Mineralogica Sinica, 2014, 34(1): 137-143. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201401021.htm [31] 谢卫东. 川南长宁地区龙马溪组储层特征与页岩气保存条件[D]. 徐州: 中国矿业大学, 2020.XIE Weidong. Reservoir characteristics and shale gas preservation of the Longmaxi Formation in the Changning area, south Sichuan[D]. Xuzhou: China University of Mining and Technology, 2020. [32] 王濡岳, 丁文龙, 龚大建, 等. 黔北地区海相页岩气保存条件: 以贵州岑巩区块下寒武统牛蹄塘组为例[J]. 石油与天然气地质, 2016, 37(1): 45-55. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201601008.htmWANG Ruyue, DING Wenlong, GONG Dajian, et al. Gas preservation conditions of marine shale in northern Guizhou area: a case study of the Lower Cambrian Niutitang Formation in the Cen' gong block, Guizhou Province[J]. Oil & Gas Geology, 2016, 37(1): 45-55. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201601008.htm [33] 钟宁宁, 赵喆, 李艳霞, 等. 论南方海相层系有效供烃能力的主要控制因素[J]. 地质学报, 2010, 84(2): 149-158. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201002001.htmZHONG Ningning, ZHAO Zhe, LI Yanxia, et al. An approach to the main controls on the potential of efficient hydrocarbon supply of marine sequences in South China[J]. Acta Geologica Sinica, 2010, 84(2): 149-158. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201002001.htm