留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米孔隙中页岩气扩散模拟实验和数学模型分析

邹雨 王国建 卢丽 朱怀平 刘光祥 袁玉松 杨海元 金之钧

邹雨, 王国建, 卢丽, 朱怀平, 刘光祥, 袁玉松, 杨海元, 金之钧. 纳米孔隙中页岩气扩散模拟实验和数学模型分析[J]. 石油实验地质, 2021, 43(5): 844-854. doi: 10.11781/sysydz202105844
引用本文: 邹雨, 王国建, 卢丽, 朱怀平, 刘光祥, 袁玉松, 杨海元, 金之钧. 纳米孔隙中页岩气扩散模拟实验和数学模型分析[J]. 石油实验地质, 2021, 43(5): 844-854. doi: 10.11781/sysydz202105844
ZOU Yu, WANG Guojian, LU Li, ZHU Huaiping, LIU Guangxiang, YUAN Yusong, YANG Haiyuan, JIN Zhijun. Simulation experiment and mathematical model analysis for shale gas diffusion in nano-scale pores[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(5): 844-854. doi: 10.11781/sysydz202105844
Citation: ZOU Yu, WANG Guojian, LU Li, ZHU Huaiping, LIU Guangxiang, YUAN Yusong, YANG Haiyuan, JIN Zhijun. Simulation experiment and mathematical model analysis for shale gas diffusion in nano-scale pores[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(5): 844-854. doi: 10.11781/sysydz202105844

纳米孔隙中页岩气扩散模拟实验和数学模型分析

doi: 10.11781/sysydz202105844
基金项目: 

国家重点研发计划 2017YFC0603105

国家自然科学基金项目 41872126和42072156

详细信息
    作者简介:

    邹雨(1992-), 男, 博士, 工程师, 从事油气地球化学研究。E-mail: zouyu1992.syky@sinopec.com

    通讯作者:

    金之钧(1957-), 男, 教授, 中国科学院院士, 主要从事盆地分析、油气资源评价、油气成藏机理与分布规律等研究工作。E-mail: jinzj.syky@sinopec.com

  • 中图分类号: TE135

Simulation experiment and mathematical model analysis for shale gas diffusion in nano-scale pores

  • 摘要: 深层页岩气在纳米孔隙中的扩散行为分为体相扩散(Fick和Knudsen扩散)和表面扩散。为了定量评价温度、压力等对扩散系数的影响,揭示深层页岩气的保存机理,以南方鄂西秭归茅坪地区寒武系牛蹄塘组页岩为实验对象,在不同温压条件下,通过等压扩散实验对纳米孔隙甲烷扩散进行实验模拟。结果表明:(1)扩散系数DF随压力增大而减小(当压力大于30 MPa时,DF趋于平稳),随温度升高而增大;(2)在高温高压环境下,DF受压力影响更大,总体趋于减小。随后,定量考虑了温度、压力、孔隙及岩性特征对各种扩散行为的影响,建立了数学模型。该模型与模拟实验结果相似,可以相互验证:(1)温度升高促使分子动能增大,导致体相和表面扩散系数都增大,而压力增大虽然会使Fick扩散和表面扩散作用稍微加强,但会显著限制Knudsen扩散并最终导致总扩散作用降低;(2)孔径增大加强了体相扩散作用,削弱了表面扩散作用。最后,结合具体研究区块,认为深层高压环境有利于页岩纳米孔隙气藏的保存,而地层抬升释放压力的过程是页岩气散失的主要阶段。

     

  • 图  1  鄂西秭归茅坪地区寒武系牛蹄塘组页岩孔隙直径大小及分布

    Figure  1.  Diameter size and distribution characteristics of shale pores in Cambrian Niutitang Formation, Maoping area, Zigui, western Hubei

    图  2  鄂西秭归茅坪地区寒武系牛蹄塘组页岩SEM特征

    Figure  2.  SEM characteristics of shale in Cambrian Niutitang Formation, Maoping area, Zigui, western Hubei

    图  3  扩散系数模拟实验装置简易图

    Figure  3.  Simplified diagram of simulator for diffusion coefficient analysis

    图  4  扩散系数随单一变量(压力或温度)增加的变化趋势

    Figure  4.  Variation trend of diffusion coefficient with increased single variable (pressure or temperature)

    图  5  温压耦合模拟实验中扩散系数变化趋势

    Figure  5.  Variation trend of diffusion coefficient in simulation experiment of temperature-pressure coupling

    图  6  页岩纳米孔内甲烷扩散过程及机理示意

    Figure  6.  Schematic diagram of methane diffusion process and mechanism in shale nano-pores

    图  7  扩散模拟实验与数学模型的相互验证

    Figure  7.  Mutual verification of simulation and mathematical model

    图  8  纳米孔隙中不同条件下的扩散数学模型

    Pconfine-P = 5 MPa

    Figure  8.  Mathematical model of nano-pores under different conditions

    图  9  扩散数学模型中温度—压力共同影响下的扩散系数特征

    Figure  9.  Characteristics of diffusion coefficient affected by temperature and pressure in mathematical model

    表  1  不同温压条件下模拟测试的甲烷扩散系数

    Table  1.   Methane diffusion coefficient tested by simulation under different temperature and pressure conditions

    实验计划 实验条件 扩散系数/(10-8 cm2·s-1)
    温度/℃ 环压/MPa 气体压力/MPa
    温度保持不变,压力增高 30 8 2 2.528
    30 15 10 1.433
    30 25 20 0.539
    30 35 30 0.231
    30 50 45 0.500
    30 60 55 0.404
    压力保持不变,温度升高 30 2.528
    50 2.758
    80 8 2 3.013
    110 3.239
    温度、压力同时增高 30 8 2 2.528
    50 16.5 11 2.684
    90 27 20 0.876
    110 35 30 1.815
    110 40 35 0.943
    110 45 40 0.561
    下载: 导出CSV

    表  2  扩散模拟实验和数学模型中的参数取值

    Table  2.   Parameter values in experimental simulation and mathematical model of this study

    参数 参数意义 取值 参数 参数意义 取值
    T/K 绝对温度 300~400 κb/(J·K-1) Boltzmann常数 1.308×10-23
    P/Pa 气体压力 (2~55)×106 δ/dM /m 气体分子(碰撞)直径 3.8×10-10
    Pconfine/Pa 施加压力/围压 (7~60)×106 M/(kg·mol-1) 气体摩尔质量 0.016
    PL[28]/Pa Langmuir压力 4.48×106 μg/(Pa·s) 气体黏度 0.000 014
    ΔH [29]/(J·mol-1) 等温吸附热 14 000 r0/m 初始孔隙半径 1.29×10-9
    R/(J·mol-1·K-1) 通用气体常数 8.314 r/m 施压后孔隙半径 公式(7)
    κ 分子阻塞系数 0.5 α 比奥Biot系数 0.8
    H(1-κ) Heaviside函数 1 φ 平均孔隙度 0.018
    τ 孔隙迂曲度 10 εL 朗缪尔体积应变常数 0.05
    K/Pa 页岩样品体积模量 8×108 ζreal-b 实际总扩散校正系数 0.01
    ζreal-a 实际表面扩散校正系数 0.001 DF/(cm2·s-1) 实验测试扩散系数 表 1
    Dtotal/(cm2·s-1) 理论总扩散系数 公式(16)
    下载: 导出CSV

    表  3  单一变量下的扩散系数特征

    Table  3.   Parameter values in experimental simulation and mathematical model of this study

    单一变量 Dknudsen/(10-8 cm2·s-1) Dfick/(10-8 cm2·s-1) Dsurface/(10-8 cm2·s-1) Dtotal/(10-8 cm2·s-1)
    压力变化,其他条件不变
    (T = 300 K;r0 = 1 nm;ζreal-b = 0.01)
    P=10 MPa 0.57 0.35 0.19 1.11
    P=20 MPa 0.33 0.40 0.25 0.98
    温度变化,其他条件不变
    (P = 10 MPa;r0 = 1 nm;ζreal-b = 0.01)
    T=300 K 0.57 0.35 0.19 1.11
    T=400 K 0.81 0.43 0.27 1.52
    孔径变化,其他条件不变
    (T = 300 K;P = 10 MPa;ζreal-b = 0.01)
    r0 = 1 nm 0.57 0.35 0.19 1.11
    r0 = 5 nm 1.81 1.10 0.05 2.96
    孔隙连通性变化,其他条件不变
    (T = 300 K;P = 10 MPa;r0 = 1 nm)
    ζreal-b = 0.01 0.57 0.35 0.19 1.11
    ζreal-b = 0.02 1.14 0.70 0.38 2.23
    下载: 导出CSV
  • [1] 邹才能, 张国生, 杨智, 等. 非常规油气概念、特征、潜力及技术: 兼论非常规油气地质学[J]. 石油勘探与开发, 2013, 40(4): 385-399. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201304000.htm

    ZOU Caineng, ZHANG Guosheng, YANG Zhi, et al. Geological concepts, characteristics, resource potential and key techniques of unconventional hydrocarbon: on unconventional petroleum geology[J]. Petroleum Exploration and Development, 2013, 40(4): 385-399. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201304000.htm
    [2] 任俊豪, 任晓海, 宋海强, 等. 基于分子模拟的纳米孔内甲烷吸附与扩散特征[J]. 石油学报, 2020, 41(11): 1366-1375. doi: 10.7623/syxb202011006

    REN Junhao, REN Xiaohai, SONG Haiqiang, et al. Adsorption and diffusion characteristics of methane in nanopores based on molecular simulation[J]. Acta Petrolei Sinica, 2020, 41(11): 1366-1375. doi: 10.7623/syxb202011006
    [3] 薛海涛, 李璐璐, 卢双舫. 天然气扩散损失量估算方法探讨[J]. 石油与天然气地质, 2010, 31(3): 343-346. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201003015.htm

    XUE Haitao, LI Lulu, LU Shuangfang. A discussion on methods for estimating diffusion loss of natural gas[J]. Oil & Gas Geology, 2010, 31(3): 343-346. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201003015.htm
    [4] MI Lidong, JIANG Hanqiao, LI Junjian. The impact of diffusion type on multiscale discrete fracture model numerical simulation for shale gas[J]. Journal of Natural Gas Science and Engineer-ing, 2014, 20: 74-81. doi: 10.1016/j.jngse.2014.06.013
    [5] 赵可英. 页岩吸附气壁面扩散机理及现场应用[J]. 科学技术与工程, 2021, 21(4): 1362-1366. doi: 10.3969/j.issn.1671-1815.2021.04.016

    ZHAO Keying. Diffusion mechanisms and field application of absorbed gas on surface wall of nano-pores of shale[J]. Science Technology and Engineering, 2021, 21(4): 1362-1366. doi: 10.3969/j.issn.1671-1815.2021.04.016
    [6] WU Keliu, LI Xiangfang, GUO Chaohua, et al. A unified model for gas transfer in nanopores of shale-gas reservoirs: coupling pore diffusion and surface diffusion[J]. SPE Journal, 2016, 21(5): 1583-1611. doi: 10.2118/2014-1921039-PA
    [7] ZHONG Ying, SHE Jiping, ZHANG Hao, et al. Experimental and numerical analyses of apparent gas diffusion coefficient in gas shales[J]. Fuel, 2019, 258: 116123. doi: 10.1016/j.fuel.2019.116123
    [8] CHEN Mingjun, KANG Yili, ZHANG Tingshan, et al. Methane diffusion in shales with multiple pore sizes at supercritical conditions[J]. Chemical Engineering Journal, 2018, 334: 1455-1465. doi: 10.1016/j.cej.2017.11.082
    [9] ETMINAN S R, JAVADPOUR F, MAINI B B, et al. Measurement of gas storage processes in shale and of the molecular diffusion coefficient in kerogen[J]. International Journal of Coal Geology, 2014, 123: 10-19. doi: 10.1016/j.coal.2013.10.007
    [10] WEI Mingyao, LIU Yingke, LIU Jishan, et al. Micro-scale investigation on coupling of gas diffusion and mechanical deformation of shale[J]. Journal of Petroleum Science and Engineering, 2019, 175: 961-970. doi: 10.1016/j.petrol.2019.01.039
    [11] 吴克柳, 李相方, 陈掌星. 页岩纳米孔吸附气表面扩散机理和数学模型[J]. 中国科学: 技术科学, 2015, 45(5): 525-540. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201505012.htm

    WU Keliu, LI Xiangfang, CHEN Zhangxing. The mechanism and mathematical model for the adsorbed gas surface diffusion in nanopores of shale gas reservoirs[J]. Scientia Sinica Technologica, 2015, 45(5): 525-540. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201505012.htm
    [12] 柳广弟, 赵忠英, 孙明亮, 等. 天然气在岩石中扩散系数的新认识[J]. 石油勘探与开发, 2012, 39(5): 559-565. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201205007.htm

    LIU Guangdi, ZHAO Zhongying, SUN Mingliang, et al. New insights into natural gas diffusion coefficient in rocks[J]. Petroleum Exploration and Development, 2012, 39(5): 559-565. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201205007.htm
    [13] 张焱林, 段轲, 刘早学, 等. 鄂西下寒武统牛蹄塘组页岩特征及页岩气富集主控因素[J]. 石油实验地质, 2019, 41(5): 691-698. doi: 10.11781/sysydz201905691

    ZHANG Yanlin, DUAN Ke, LIU Zaoxue, et al. Characteristics of shale and main controlling factors of shale gas enrichment of Lower Cambrian Niutitang Formation in western Hubei[J]. Petroleum Geology & Experiment, 2019, 41(5): 691-698. doi: 10.11781/sysydz201905691
    [14] 冯光俊. 上扬子区下寒武统页岩高温高压甲烷吸附与页岩气赋存[D]. 徐州: 中国矿业大学, 2020.

    FENG Guangjun. High-temperature high-pressure methane adsorption and shale gas occurrence in Lower Cambrian shale, Upper Yangtze area[D]. Xuzhou: China University of Mining and Technology, 2020.
    [15] 全国石油天然气标准化技术委员会. 岩心分析方法: GB/T 29172-2012[S]. 北京: 中国标准出版社, 2012.

    Petroleum of Standardization Administration of China. Practices for core analysis: GB/T 29172-2012[S]. Beijing: China Standards Press, 2012.
    [16] 卢丽, 王国建, 朱怀平, 等. 深层天然气扩散系数模拟实验装置的研制[J]. 物探与化探, 2020, 44(6): 1441-1445. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202006023.htm

    LU Li, WANG Guojian, ZHU Huaiping, et al. The development of an experimental measuring apparatus for simulating the diffusion coefficient of naturalgas in depth[J]. Geophysical and Geochemical Exploration, 2020, 44(6): 1441-1445. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202006023.htm
    [17] SCHLOEMER S, KROOSS B M. Molecular transport of methane, ethane and nitrogen and the influence of diffusion on the chemical and isotopic composition of natural gas accumulations[J]. Geofluids, 2004, 4(1): 81-108. doi: 10.1111/j.1468-8123.2004.00076.x
    [18] WANG Sen, FENG Qihong, ZHA Ming, et al. Supercritical methane diffusion in shale nanopores: effects of pressure, mineral types, and moisture content[J]. Energy & Fuels, 2018, 32(1): 169-180.
    [19] 陈璐, 胡志明, 熊伟, 等. 页岩气扩散实验与数学模型[J]. 天然气地球科学, 2020, 31(9): 1285-1293. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202009009.htm

    CHEN Lu, HU Zhiming, XIONG Wei, et al. Diffusion experiment of shale gas and mathematical model[J]. Natural Gas Geoscience, 2020, 31(9): 1285-1293. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202009009.htm
    [20] 曲斌, 武晓鹏, 巩继海, 等. 基于扩散性实验技术的泥质岩封盖能力: 以松辽盆地北部徐家围子断陷泥质岩为例[C]//油气田勘探与开发国际会议(IFEDC 2018)论文集. 西安: 西安华线网络信息服务有限公司, 2018: 1217-1223.

    QU Bin, WU Xiaopeng, GONG Jihai, et al. Mudstone capping capability based on diffusion experimental technique: taking the mudstone in the northern Songliao Basin as an example[C]//IFEDC-20182378. 2018: 1217-1223.
    [21] KIM C, JANG H, LEE Y, et al. Diffusion characteristics of nanoscale gas flow in shale matrix from Haenam Basin, Korea[J]. Environmental Earth Sciences, 2016, 75(4): 350. doi: 10.1007/s12665-016-5267-4
    [22] ZHANG Yanyu, LI Dongdong, SUN Xiaofei, et al. New theoretical model to calculate the apparent permeability of shale gas in the real state[J]. Journal of Natural Gas Science and Engineering, 2019, 72: 103012. doi: 10.1016/j.jngse.2019.103012
    [23] ROSS D J K, BUSTIN R M. Impact of mass balance calculations on adsorption capacities in microporous shale gas reservoirs[J]. Fuel, 2007, 86(17/18): 2696-2706.
    [24] KIM C, JANG H, LEE J. Experimental investigation on the characteristics of gas diffusion in shale gas reservoir using porosity and permeability of nanopore scale[J]. Journal of Petroleum Science and Engineering, 2015, 133: 226-237.
    [25] CURTIS M E, CARDOTT B J, SONDERGELD C H, et al. Deve-lopment of organic porosity in the Woodford shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012, 103: 26-31.
    [26] CUI X, BUSTIN A M M, BUSTIN R M. Measurements of gas permeability and diffusivity of tight reservoir rocks: different approaches and their applications[J]. Geofluids, 2009, 9(3): 208-223.
    [27] WU Keliu, CHEN Zhangxin, LI Xiangfang, et al. A model for multiple transport mechanisms through nanopores of shale gas reservoirs with real gas effect: adsorption-mechanic coupling[J]. International Journal of Heat and Mass Transfer, 2016, 93: 408-426.
    [28] 周庆华, 宋宁, 王成章, 等. 湖南常德地区牛蹄塘组页岩特征及含气性[J]. 天然气地球科学, 2015, 26(2): 301-311. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201502015.htm

    ZHOU Qinghua, SONG Ning, WANG Chengzhang, et al. Characteristics of shale and gas content of Niutitang Formation in Changde region of Hunan Province[J]. Natural Gas Geoscience, 2015, 26(2): 301-311. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201502015.htm
    [29] 付德亮, 田涛, 秦建强, 等. 大竹坝-回军坝向斜牛蹄塘组页岩吸附性研究[J]. 煤炭学报, 2018, 43(12): 3453-3460. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201812024.htm

    FU Deliang, TIAN Tao, QIN Jianqiang, et al. Characterization of methane adsorption on the shales in Niutitang Formation at Dazhuba-Huijunba Oblique[J]. Journal of China Coal Society, 2018, 43(12): 3453-3460. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201812024.htm
    [30] 谢舟, 卢双舫, 于玲, 等. 泥质气源岩层内天然气扩散损失量评价: 以黔南坳陷黄页1井九门冲组页岩为例[J]. 矿物学报, 2014, 34(1): 137-143. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201401021.htm

    XIE Zhou, LU Shuangfang, YU Ling, et al. Assessment of natural gas loss from mudstone gas source rocks: an example from Jiumenchong Formation of Huangye 1 well, Lower Cambrian, southern Guizhou Sag[J]. Acta Mineralogica Sinica, 2014, 34(1): 137-143. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201401021.htm
    [31] 谢卫东. 川南长宁地区龙马溪组储层特征与页岩气保存条件[D]. 徐州: 中国矿业大学, 2020.

    XIE Weidong. Reservoir characteristics and shale gas preservation of the Longmaxi Formation in the Changning area, south Sichuan[D]. Xuzhou: China University of Mining and Technology, 2020.
    [32] 王濡岳, 丁文龙, 龚大建, 等. 黔北地区海相页岩气保存条件: 以贵州岑巩区块下寒武统牛蹄塘组为例[J]. 石油与天然气地质, 2016, 37(1): 45-55. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201601008.htm

    WANG Ruyue, DING Wenlong, GONG Dajian, et al. Gas preservation conditions of marine shale in northern Guizhou area: a case study of the Lower Cambrian Niutitang Formation in the Cen' gong block, Guizhou Province[J]. Oil & Gas Geology, 2016, 37(1): 45-55. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201601008.htm
    [33] 钟宁宁, 赵喆, 李艳霞, 等. 论南方海相层系有效供烃能力的主要控制因素[J]. 地质学报, 2010, 84(2): 149-158. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201002001.htm

    ZHONG Ningning, ZHAO Zhe, LI Yanxia, et al. An approach to the main controls on the potential of efficient hydrocarbon supply of marine sequences in South China[J]. Acta Geologica Sinica, 2010, 84(2): 149-158. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201002001.htm
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  744
  • HTML全文浏览量:  176
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-22
  • 修回日期:  2021-08-04
  • 刊出日期:  2021-09-28

目录

    /

    返回文章
    返回