Reconstruction of paleo-temperature and pressure of oil reservoirs based on PVTx simulation: problems, strategies and case studies
-
摘要: 包裹体PVTx数值模拟是恢复油藏古温压的重要手段。由于无法精确地确定油包裹体的组成,以及油包裹体成分在地质演化过程中可能发生不可逆的次生变化,现有方法恢复的古温压存在不确定性。一般而言,与油包裹体伴生的盐水包裹体成分相对简单,且遭受次生蚀变影响的概率较低。因此,尝试将伴生的盐水包裹体作为独立的地质压力计在塔里木盆地顺南地区SN1井进行了应用研究。包裹体岩相学研究显示,SN1井高角度裂缝充填的方解石中,发育大量遭受过次生蚀变的含沥青烃包裹体及伴生的盐水包裹体。包裹体古温压恢复显示,伴生的盐水包裹体呈现异常高的均一温度(超过170℃),均一压力波动范围大,且存在异常高压(39.1 MPa起,甚至超过165.8 MPa)。上述现象可能与热流体活动和原油充注后所经历的裂解增压过程有关。基于盐水包裹体均一压力的最低值,结合该地区埋藏史和热演化史分析,推测热液活动时间为海西期。上述认识与该地区NE向走滑断裂活动具有较好的时空匹配关系。综上所述,油包裹体伴生的盐水包裹体作为独立的地质压力计,可以用来恢复油藏古温压的演化轨迹,并限定古流体活动的时间,能够在一定程度上弥补现有方法的不足。Abstract: The PVTx simulation of fluid inclusions is a valuable method for the reconstruction of paleo-temperature and pressure of oil reservoir. Since the accurate composition of oil-bearing inclusion is very difficult to be obtained and the composition may be altered during secondary alteration processes, it may cause uncorrected results. Compared to oil-bearing inclusion, the composition of accompanied aqueous inclusion is relatively simple and could hardly be affected during secondary alteration processions. As a result, accompanied aqueous inclusions were applied to reconstruct the paleo-temperature and pressure of well SN 1 in the South Shuntuoguole area of Tarim Basin. Gas-oil-bitumen bearing inclusions and aqueous inclusions are co-existed in calcite veins of well SN 1. The homogenization temperatures of aqueous inclusions were higher than 170℃, and the homogenization pressure of aqueous inclusions is significantly fluctuating from 39.1 MPa to over 165.8 MPa. The unusually high homogenization temperature of aqueous inclusions may be caused by hydrothermal fluid activity while the fluctuation of homogenization pressure of aqueous inclusions may be caused by oil cracking. The lowest homogenization pressure of aqueous inclusion was applied to determine the charge time of hydrothermal fluid, which is Hercynian. The charging time of hydrothermal fluid is in accordance with the active time of NE-trending strike-slip faults in the South Shuntuoguole area. Thus, the co-existing aqueous inclusions potentially can be applied to reconstruct the paleo-temperature and pressure of oil reservoir to make up the deficiency of present methods.
-
图 1 油包裹体与盐水包裹体等容线相交图
据文献[26],有修改。
Figure 1. Intersection of isochors of co-existing petroleum and aqueous inclusions
图 2 不同温压条件下原油中水的溶解度变化
原油组分来源于文献[1]。
Figure 2. Solubility of water in oil at different temperatures and pressures
图 6 塔里木盆地顺南地区SN1井热液活动时间投影图
底图据文献[16]。
Figure 6. Trapping time of hydrothermal fluid in well SN 1, South Shuntuoguole area, Tarim Basin
表 1 塔里木盆地顺南地区SN1井盐水包裹体古温压恢复结果
Table 1. Reconstruction of paleo-temperature and pressure of aqueous inclusions in well SN 1, South Shuntuoguole area, Tarim Basin
编号 vrealNe1/cm-1 vrealNe2/cm-1 vmeasNe1/cm-1 vmeasNe2/cm-1 vmeasCH4/cm-1 vcorrCH4/cm-1 Th/℃ Tice/℃ P0/MPa Ph/MPa 备注 10-g 2 836.98 2 933.92 2 836.58 2 933.65 2 915.73 2 916.02 182 4.86 82.1 未爆裂 14-g 2 835.62 2 932.67 2 914.96 2 916.23 180 3.76 57.3 15-g 2 835.69 2 932.70 2 915.01 2 916.24 180 -23.1 3.70 56.1 16-g 2 836.41 2 933.47 2 915.76 2 916.23 173 -22.6 3.75 56.9 17-g 2 836.40 2 933.45 2 915.91 2 916.40 185 2.90 39.1 25-g 2 835.95 2 933.02 2 914.80 2 915.72 170 6.25 109.4 8-g 2 836.98 2 933.92 2 836.29 2 933.38 2 915.48 2 916.04 >180 4.73 >79.3 爆裂 9-g 2 835.82 2 932.94 2 915.05 2 916.06 4.65 >77.5 12-g 2 835.89 2 932.92 2 914.62 2 915.63 6.65 >118.3 20-g 2 836.67 2 933.74 2 915.02 2 915.22 8.67 >149.0 21-g 2 836.51 2 933.57 2 915.24 2 915.61 6.76 >120.2 22-g 2 836.46 2 933.53 2 914.46 2 914.87 10.07 >165.8 23-g 2 836.25 2 933.37 2 915.44 2 916.02 4.87 >82.5 24-g 2 836.10 2 933.17 2 914.58 2 915.35 8.07 >141.0 26-g 2 835.78 2 932.85 2 914.55 2 915.64 6.62 >117.8 注:vrealNe1和vrealNe2为氖灯两条标准谱线的理论值,cm-1;vmeasNe1和vmeasNe2为氖灯两条标准谱线的实测值,cm-1;vmeasCH4为CH4的拉曼位移实测值,cm-1;vcorrCH4为经氖灯矫正后的CH4的拉曼位移值,cm-1;Th为包裹体的均一温度,℃;Tice为包裹体的冰点温度,℃;P0为室温下包裹体的内压,MPa;Ph为包裹体的均一压力,MPa。本文使用的CH4拉曼位移的校正公式为:$v_{\text {corr }}^{\mathrm{CH}_4}=\left(\frac{v_{\text {real }}^{\mathrm{Ne}_1}-v_{\text {meas }}^{\mathrm{Ne}}}{v_{\text {meas }}^{\mathrm{Ne}_1}-v_{\text {meas }}^{\mathrm{Ne}_2}}\right) \times\left(v_{\text {meas }}^{\mathrm{CH}_4}-v_{\text {meas }}^{\mathrm{Ne}_2}\right)+v_{\text {real }}^{\mathrm{Ne}_2} $。 -
[1] APLIN A C, MACLEOD G, LARTER S R, et al. Combined use of confocal laser scanning microscopy and PVT simulation for estimating the composition and physical properties of petroleum in fluid inclusions[J]. Marine and Petroleum Geology, 1999, 16(2): 97-110. doi: 10.1016/S0264-8172(98)00079-8 [2] THIÉRY R, PIRONON J, WALGENWITZ F, et al. PIT (Petroleum Inclusion Thermodynamic): a new modeling tool for the characterization of hydrocarbon fluid inclusions from volumetric and microthermometric measurements[J]. Journal of Geoche-mical Exploration, 2000(69-70): 701-704. [3] 刘德汉, 宫色, 刘东鹰, 等. 江苏句容-黄桥地区有机包裹体形成期次和捕获温度-压力的PVTsim模拟计算[J]. 岩石学报, 2005, 21(5): 1435-1448. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200505015.htmLIU Dehan, GONG Se, LIU Dongying, et al. Investigation on the phases of organic inclusion from Gourong-Huangqiao region, Jiangsu Province, and its trapped temperature & pressure calculated by PVTsim modeling[J]. Acta Petrologica Sinica, 2005, 21(5): 1435-1448. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200505015.htm [4] 张俊武, 邹华耀, 李平平, 等. 含烃盐水包裹体PVT模拟新方法及其在气藏古压力恢复中的应用[J]. 石油实验地质, 2015, 37(1): 102-108. doi: 10.11781/sysydz201501102ZHANG Junwu, ZOU Huayao, LI Pingping, et al. A new PVT simulation method for hydrocarbon-containing inclusions and its application to reconstructing paleo-pressure of gas reservoirs[J]. Petroleum Geology & Experiment, 2015, 37(1): 102-108. doi: 10.11781/sysydz201501102 [5] 张鑫, 陈红汉, 孔令涛, 等. 泌阳凹陷深凹区古流体压力演化与油气充注耦合关系[J]. 地球科学, 2020, 45(5): 1769-1781. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202005020.htmZHANG Xin, CHEN Honghan, KONG Lingtao, et al. The coupling relationship between paleofluid pressure evolution and hydrocarbon-charging events in the deep of Biyang Depression, central China[J]. Earth Science, 2020, 45(5): 1769-1781. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202005020.htm [6] 米敬奎, 肖贤明, 刘德汉, 等. 利用储层流体包裹体的PVT特征模拟计算天然气藏形成古压力: 以鄂尔多斯盆地上古生界深盆气藏为例[J]. 中国科学(D辑: 地球科学), 2003, 33(7): 679-685. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200307009.htmMI Jingkui, XIAO Xianming, LIU Dehan, et al. Calculation to trapping pressure of inclusions occurring in Upper Paleozoic sandstone reservoir from the Ordos Basin using PVTsim method[J]. Science in China(Series D: Earth Science), 2003, 33(7): 679-685. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200307009.htm [7] 胡忠良, 肖贤明, 黄保家. 储层包裹体古压力的求取及其与成藏关系研究: 琼东南盆地崖21-1构造实例剖析[J]. 天然气工业, 2005, 25(6): 28-31. doi: 10.3321/j.issn:1000-0976.2005.06.007HU Zhongliang, XIAO Xianming, HUANG Baojia. Acquirement of fluid inclusion paleo-pressure and it relation to reservoiring: taking Ya 21-1 structure in Qiongdongnan Basin as an example[J]. Natural Gas Industry, 2005, 25(6): 28-31. doi: 10.3321/j.issn:1000-0976.2005.06.007 [8] 施伟军, 蒋宏, 席斌斌. 应用储层流体包裹体PVTx模拟研究油气成藏期次: 以塔里木盆地托甫台地区为例[J]. 高校地质学报, 2012, 18(1): 125-132. doi: 10.3969/j.issn.1006-7493.2012.01.011SHI Weijun, JIANG Hong, XI Binbin. Application of the PVTx simulation of reservoir fluid inclusions to estimate petroleum charge stages: a case study in the Tuoputai area of Tarim Basin[J]. Geological Journal of China Universities, 2012, 18(1): 125-132. doi: 10.3969/j.issn.1006-7493.2012.01.011 [9] 王飞宇, 冯伟平, 关晶, 等. 含油气盆地流体包裹体分析的关键问题和意义[J]. 矿物岩石地球化学通报, 2018, 37(3): 441-450. doi: 10.19658/j.issn.1007-2802.2018.37.092WANG Feiyu, FENG Weiping, GUAN jing, et al. Key questions of the fluid inclusion analysis in petroliferous basins and their significances[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2018, 37(3): 441-450. doi: 10.19658/j.issn.1007-2802.2018.37.092 [10] THIÉRY R, PIRONON J, WALGENWITZ F, et al. Individual characterization of petroleum fluid inclusions (composition and P-T trapping conditions) by microthermometry and confocal laser scanning microscopy: inferences from applied thermodynamics of oils[J]. Marine and Petroleum Geology, 2002, 19(7): 847-859. doi: 10.1016/S0264-8172(02)00110-1 [11] APLIN A C, LARTER S R, BIGGE M A, et al. PVTx history of the North Sea's Judy oilfield[J]. Journal of Geochemical Exploration, 2000, 69-70: 641-644. doi: 10.1016/S0375-6742(00)00066-2 [12] PIRONON J, BOURDET J. Petroleum and aqueous inclusions from deeply buried reservoirs: experimental simulations and consequences for overpressure estimates[J]. Geochimica et Cosmochimica Acta, 2008, 72(20): 4916-4928. doi: 10.1016/j.gca.2008.07.019 [13] TSENG H Y, POTTORF R J. Fluid inclusion constraints on petroleum PVT and compositional history of the Greater Alwyn-South Brent petroleum system, northern North Sea[J]. Marine and Petroleum Geology, 2002, 19(7): 797-809. doi: 10.1016/S0264-8172(02)00088-0 [14] TSENG H Y, POTTORF R J. The application of fluid inclusion PVT analysis to studies of petroleum migration and reservoirs[J]. Journal of Geochemical Exploration, 2003, 78-79: 433-436. doi: 10.1016/S0375-6742(03)00116-X [15] 潘立银, 倪培, 欧光习, 等. 油气包裹体在油气地质研究中的应用: 概念、分类、形成机制及研究意义[J]. 矿物岩石地球化学通报, 2006, 25(1): 19-28. doi: 10.3969/j.issn.1007-2802.2006.01.003PAN Liyin, NI Pei, OU Guangxi, et al. Application of organic inclusion study in petroleum geology: conception, classification, formation mechanism and significance[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2006, 25(1): 19-28. doi: 10.3969/j.issn.1007-2802.2006.01.003 [16] 陈强路, 席斌斌, 韩俊, 等. 塔里木盆地顺托果勒地区超深层油藏保存及影响因素: 来自流体包裹体的证据[J]. 中国石油勘探, 2020, 25(3): 121-133. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202003011.htmCHEN Qianglu, XI Binbin, HAN Jun, et al. Preservation and influence factors of ultra-deep oil reservoirs in Shuntuoguole area, Tarim Basin: evidence from fluid inclusions[J]. China Petroleum Exploration, 2020, 25(3): 121-133. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202003011.htm [17] DUBESSY J, BUSCHAERT S, LAMB W, et al. Methane-bearing aqueous fluid inclusions: Raman analysis, thermodynamic model-ling and application to petroleum basins[J]. Chemical Geology, 2001, 173(1/3): 193-205. [18] GUILLAUME D, TEINTURIER S, DUBESSY J, et al. Calibration of methane analysis by Raman spectroscopy in H2O-NaCl-CH4 fluid inclusions[J]. Chemical Geology, 2003, 194(1/3): 41-49. [19] QIU Ye, WANG Xiaolin, LIU Xian, et al. In situ Raman spectroscopic quantification of CH4-CO2 mixture: application to fluid inclusions hosted in quartz veins from the Longmaxi Formation shales in Sichuan Basin, southwestern China[J]. Petroleum Science, 2020, 17(1): 23-35. doi: 10.1007/s12182-019-00395-z [20] 席斌斌, 申宝剑, 蒋宏, 等. 天然气藏中CH4-H2O-NaCl体系不混溶包裹体群捕获温压恢复及应用[J]. 天然气地球科学, 2020, 31(7): 923-930. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202007004.htmXI Binbin, SHEN Baojian, JIANG Hong, et al. The trapping temperature and pressure of CH4-H2O-NaCl immiscible fluid inclusions and its application in natural gas reservoir[J]. Natural Gas Geoscience, 2020, 31(7): 923-930. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202007004.htm [21] FALL A, EICHHUBL P, CUMELLA S P, et al. Testing the basin-centered gas accumulation model using fluid inclusion observations: southern Piceance Basin, Colorado[J]. AAPG Bulletin, 2012, 96(12): 2297-2318. doi: 10.1306/05171211149 [22] FALL A, EICHHUBL P, BODNAR R J, et al. Natural hydraulic fracturing of tight-gas sandstone reservoirs, Piceance Basin, Colorado[J]. Geological Society of America Bulletin, 2015, 127(1/2): 61-75. [23] FALL A, BODNAR R J. How precisely can the temperature of a fluid event be constrained using fluid inclusions?[J]. Economic Geology, 2018, 113(8): 1817-1843. [24] 施伟军, 席斌斌. 应用包裹体技术恢复气藏古压力[J]. 石油实验地质, 2016, 38(1): 128-134. doi: 10.11781/sysydz201601128SHI Weijun, XI Binbin. Calculation of paleo-pressure in gas reservoirs using fluid inclusions[J]. Petroleum Geology & Experiment, 2016, 38(1): 128-134. doi: 10.11781/sysydz201601128 [25] LIU D H, XIAO X M, MI J K, et al. Determination of trapping pressure and temperature of petroleum inclusions using PVT simulation software: a case study of Lower Ordovician carbonates from the Lunnan Low Uplift, Tarim Basin[J]. Marine and Petroleum Geology, 2003, 20(1): 29-43. [26] PIRONON J. Fluid inclusions in petroleum environments: analytical procedure for PTX reconstruction[J]. Acta Petrologica Sinica, 2004, 20(6): 1333-1342. [27] 高镜涵, 陈勇, 徐兴友, 等. 激光共聚焦扫描显微镜测定烃类包裹体气液比的误差校正研究[J]. 岩矿测试, 2015, 34(5): 558-564. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201505014.htmGAO Jinghan, CHEN Yong, XU Xingyou, et al. Error correction of vapour/liquid ratio of hydrocarbon inclusions measured by confocal laser scanning microscope[J]. Rock and Mineral Analysis, 2015, 34(5): 558-564. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201505014.htm [28] TEINTURIER S, PIRONON J. Experimental growth of quartz in petroleum environment. Part Ⅰ: Procedures and fluid trapping[J]. Geochimica et Cosmochimica Acta, 2004, 68(11): 2495-2507. [29] PIRONON J, THIÉRY R, TEINTURIER S, et al. Water in petroleum inclusions: evidence from Raman and FT-IR measurements, PVT consequences[J]. Journal of Geochemical Exploration, 2000, 69-70: 663-668. [30] MAO Shide, HU Jiawen, ZHANG Dehui, et al. Thermodynamic modeling of ternary CH4-H2O-NaCl fluid inclusions[J]. Chemical Geology, 2013, 335: 128-135. [31] 张隽, 张家利, 席斌斌, 等. 基于MFC应用程序基本框架的CH4-H2O-NaCl体系包裹体PVTx计算软件开发[J]. 石油实验地质, 2014, 36(3): 385-390. doi: 10.11781/sysydz201403385ZHANG Jun, ZHANG Jiali, XI Binbin, et al. Development of PVTx calculation software for CH4-H2O-NaCl system in fluid inclusions based on Microsoft Foundation Class (MFC) program frame[J]. Petroleum Geology & Experiment, 2014, 36(3): 385-390. doi: 10.11781/sysydz201403385 [32] DUAN Zhenhao, MAO Shide. A thermodynamic model for calculating methane solubility, density and gas phase composition of methane-bearing aqueous fluids from 273 to 523 K and from 1 to 2000 bar[J]. Geochimica et Cosmochimica Acta, 2006, 70(13): 3369-3386. [33] 谷茸, 云露, 朱秀香, 等. 塔里木盆地顺北油田油气来源研究[J]. 石油实验地质, 2020, 42(2): 248-254. doi: 10.11781/sysydz202002248GU Rong, YUN Lu, ZHU Xiuxiang, et al. Oil and gas sources in Shunbei Oilfield, Tarim Basin[J]. Petroleum Geology & Experiment, 2020, 42(2): 248-254. doi: 10.11781/sysydz202002248 [34] 焦方正. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J]. 石油与天然气地质, 2018, 39(2): 207-216. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201802002.htmJIAO Fangzheng. Significance and prospect of ultra-deep carbonate fault-karst reservoirs in Shunbei area, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(2): 207-216. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201802002.htm [35] 李萌, 汤良杰, 李宗杰, 等. 走滑断裂特征对油气勘探方向的选择: 以塔中北坡顺1井区为例[J]. 石油实验地质, 2016, 38(1): 113-121. doi: 10.11781/sysydz201601113LI Meng, TANG Liangjie, LI Zongjie, et al. Fault characteristics and their petroleum geology significance: a case study of well Shun-1 on the northern slope of the central Tarim Basin[J]. Petroleum Geology & Experiment, 2016, 38(1): 113-121. doi: 10.11781/sysydz201601113 [36] 王铁冠, 宋到福, 李美俊, 等. 塔里木盆地顺南-古城地区奥陶系鹰山组天然气气源与深层天然气勘探前景[J]. 石油与天然气地质, 2014, 35(6): 753-762. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201406003.htmWANG Tieguan, SONG Daofu, LI Meijun, et al. Natural gas source and deep gas exploration potential of the Ordovician Yingshan Formation in the Shunnan-Gucheng region, Tarim Basin[J]. Oil & Gas Geology, 2014, 35(6): 753-762. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201406003.htm [37] 马安来, 金之钧, 朱翠山. 塔里木盆地顺南1井原油硫代金刚烷系列的检出及意义[J]. 石油学报, 2018, 39(1): 42-53. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201801004.htmMA Anlai, JIN Zhijun, ZHU Cuishan. Detection and research significance of thiadiamondoids from crude oil in well Shunnan 1, Tarim Basin[J]. Acta Petrolei Sinica, 2018, 39(1): 42-53. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201801004.htm [38] LU Ziye, CHEN Honghan, QING Hairuo, et al. Petrography, fluid inclusion and isotope studies in Ordovician carbonate reservoirs in the Shunnan area, Tarim Basin, NW China: implications for the nature and timing of silicification[J]. Sedimentary Geology, 2017, 359: 29-43. [39] YOU Donghua, HAN Jun, HU Wenxuan, et al. Characteristics and formation mechanisms of silicified carbonate reservoirs in well SN4 of the Tarim Basin[J]. Energy Exploration & Exploitation, 2018, 36(4): 820-849. [40] DONG Shaofeng, YOU Donghua, GUO Zenghui, et al. Intense silicification of Ordovician carbonates in the Tarim Basin: constraints from fluid inclusion Rb-Sr isotope dating and geochemistry of quartz[J]. Terra Nova, 2018, 30(6): 406-413. [41] 刘德汉, 肖贤明, 田辉, 等. 固体有机质拉曼光谱参数计算样品热演化程度的方法与地质应用[J]. 科学通报, 2013, 58(13): 1228-1241. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201313010.htmLIU Dehan, XIAO Xianming, TIAN Hui, et al. Sample maturation calculated using Raman spectroscopic parameters for solid organics: methodology and geological applications[J]. Chinese Science Bulletin, 2013, 58(13): 1228-1241. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201313010.htm [42] 房忱琛, 熊永强, 李芸, 等. 原油裂解过程中固体沥青的拉曼光谱演化特征[J]. 地球化学, 2015, 44(2): 196-204. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201502009.htmFANG Chenchen, XIONG Yongqiang, LI Yun, et al. Raman spectra characteristics of solid bitumens generated during oil cracking[J]. Geochimica, 2015, 44(2): 196-204. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201502009.htm [43] 王茂林, 肖贤明, 魏强, 等. 页岩中固体沥青拉曼光谱参数作为成熟度指标的意义[J]. 天然气地球科学, 2015, 26(9): 1712-1718. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201509013.htmWANG Maolin, XIAO Xianming, WEI Qiang, et al. Thermal maturation of solid bitumen in shale as revealed by Raman spectroscopy[J]. Natural Gas Geoscience, 2015, 26(9): 1712-1718. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201509013.htm [44] 席斌斌, 腾格尔, 俞凌杰, 等. 川东南页岩气储层脉体中包裹体古压力特征及其地质意义[J]. 石油实验地质, 2016, 38(4): 473-479. doi: 10.11781/sysydz201604473XI Binbin, TENGER, YU Lingjie, et al. Trapping pressure of fluid inclusions and its significance in shale gas reservoirs, southeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2016, 38(4): 473-479. doi: 10.11781/sysydz201604473 [45] BURLINSON K. Decrepitation in gold exploration. A case history from the Cotan prospect, N. T. [J]. Journal of Geochemical Exploration, 1991, 42(1): 143-156. [46] 徐文刚, 张德会, 席斌斌, 等. 流体包裹体爆裂法测温技术可靠性讨论: 以江西大吉山钨矿为例[J]. 现代地质, 2008, 22(5): 757-765. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200805010.htmXU Wengang, ZHANG Dehui, XI Binbin, et al. Discussions on reliability of the decrepitation technique applied in fluid inclusion studies: taking the Jiangxi Dajishan Tungsten deposit as an example[J]. Geoscience, 2008, 22(5): 757-765. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200805010.htm [47] GOLDSTEIN R H, REYNOLDS T J. Systematics of fluid inclusions in diagenetic minerals[M]. Society for Sedimentary Geology, 1994: 1-198. [48] CHI Guoxiang, DIAMOND L W, LU Huanzhang, et al. Common problems and pitfalls in fluid inclusion study: a review and discussion[J]. Minerals, 2021, 11(1): 7. [49] 刘雯, 邱楠生, 徐秋晨, 等. 四川盆地高石梯-磨溪地区下寒武统筇竹寺组生烃增压定量评价[J]. 石油科学通报, 2018, 3(3): 262-271. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE201803002.htmLIU Wen, QIU Nansheng, XU Qiuchen, et al. The quantitative evaluation of the pressurization caused by hydrocarbon generation in the Cambrian Qiongzhusi Formation of the Gaoshiti-Moxi area, Sichuan Basin[J]. Petroleum Science Bulletin, 2018, 3(3): 262-271. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE201803002.htm [50] 黄太柱. 塔里木盆地塔中北坡构造解析与油气勘探方向[J]. 石油实验地质, 2014, 36(3): 257-267. doi: 10.11781/sysydz201403257HUANG Taizhu. Structural interpretation and petroleum exploration targets in northern slope of middle Tarim Basin[J]. Petroleum Geology & Experiment, 2014, 36(3): 257-267. doi: 10.11781/sysydz201403257 [51] 邓尚, 李慧莉, 张仲培, 等. 塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集的关系[J]. 石油与天然气地质, 2018, 39(5): 878-888. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805004.htmDENG Shang, LI Huili, ZHANG Zhongpei, et al. Characteristics of differential activities in major strike-slip fault zones and their control on hydrocarbon enrichment in Shunbei area and its surroundings, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(5): 878-888. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805004.htm [52] 邓尚, 李慧莉, 韩俊, 等. 塔里木盆地顺北5号走滑断裂中段活动特征及其地质意义[J]. 石油与天然气地质, 2019, 40(5): 990-998. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201905004.htmDENG Shang, LI Huili, HAN Jun, et al. Characteristics of the central segment of Shunbei 5 strike-slip fault zone in Tarim Basin and its geological significance[J]. Oil & Gas Geology, 2019, 40(5): 990-998. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201905004.htm [53] 漆立新, 云露. 塔里木台盆区碳酸盐岩成藏模式与勘探实践[J]. 石油实验地质, 2020, 42(5): 867-876. doi: 10.11781/sysydz202005867QI Lixin, YUN Lu. Carbonate reservoir forming model and exploration in Tarim Basin[J]. Petroleum Geology & Experiment, 2020, 42(5): 867-876. doi: 10.11781/sysydz202005867 [54] 吴鲜, 曹自成, 路清华, 等. 塔里木盆地顺北地区白垩系原油成因类型与来源[J]. 石油实验地质, 2020, 42(2): 255-262. doi: 10.11781/sysydz202002255WU Xian, CAO Zicheng, LU Qinghua, et al. Genetic types and sources of Cretaceous crude oil in Shunbei area, Tarim Basin[J]. Petroleum Geology & Experiment, 2020, 42(2): 255-262. doi: 10.11781/sysydz202002255 [55] 顾忆, 黄继文, 贾存善, 等. 塔里木盆地海相油气成藏研究进展[J]. 石油实验地质, 2020, 42(1): 1-12. doi: 10.11781/sysydz202001001GU Yi, HUANG Jiwen, JIA Cunshan, et al. Research progress on marine oil and gas accumulation in Tarim Basin[J]. Petroleum Geology & Experiment, 2020, 42(1): 1-12. doi: 10.11781/sysydz202001001 [56] 顾忆, 万旸璐, 黄继文, 等. "大埋深、高压力"条件下塔里木盆地超深层油气勘探前景[J]. 石油实验地质, 2019, 41(2): 157-164. doi: 10.11781/sysydz201902157GU Yi, WAN Yanglu, HUANG Jiwen, et al. Prospects for ultra-deep oil and gas in the "deep burial and high pressure" Tarim Basin[J]. Petroleum Geology & Experiment, 2019, 41(2): 157-164. doi: 10.11781/sysydz201902157