留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

准噶尔盆地玛湖凹陷二叠系风城组岩性对岩石力学特性的影响

李鹏 熊健 晏奇 朱政文 刘向君 吴俊 王振林 张磊

李鹏, 熊健, 晏奇, 朱政文, 刘向君, 吴俊, 王振林, 张磊. 准噶尔盆地玛湖凹陷二叠系风城组岩性对岩石力学特性的影响[J]. 石油实验地质, 2022, 44(4): 569-578. doi: 10.11781/sysydz202204569
引用本文: 李鹏, 熊健, 晏奇, 朱政文, 刘向君, 吴俊, 王振林, 张磊. 准噶尔盆地玛湖凹陷二叠系风城组岩性对岩石力学特性的影响[J]. 石油实验地质, 2022, 44(4): 569-578. doi: 10.11781/sysydz202204569
LI Peng, XIONG Jian, YAN Qi, ZHU Zhengwen, LIU Xiangjun, WU Jun, WANG Zhenlin, ZHANG Lei. Lithological influences to rock mechanical properties of Permian Fengcheng Formation in Mahu Sag, Junggar Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(4): 569-578. doi: 10.11781/sysydz202204569
Citation: LI Peng, XIONG Jian, YAN Qi, ZHU Zhengwen, LIU Xiangjun, WU Jun, WANG Zhenlin, ZHANG Lei. Lithological influences to rock mechanical properties of Permian Fengcheng Formation in Mahu Sag, Junggar Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(4): 569-578. doi: 10.11781/sysydz202204569

准噶尔盆地玛湖凹陷二叠系风城组岩性对岩石力学特性的影响

doi: 10.11781/sysydz202204569
基金项目: 

中国石油重大科技专项 2019E-2602

西南石油大学青年科技创新团队项目 2018CXTD13

详细信息
    作者简介:

    李鹏(1987—), 男, 工程师, 从事地球物理勘探工作。E-mail: lip8@petrochina.com.cn

    通讯作者:

    熊健(1986—), 男, 博士, 副教授, 从事岩石物理与地质力学方面研究。E-mail: 361184163@qq.com

  • 中图分类号: TE122.2

Lithological influences to rock mechanical properties of Permian Fengcheng Formation in Mahu Sag, Junggar Basin

  • 摘要: 以准噶尔盆地玛湖凹陷下二叠统风城组储层岩石为研究对象,基于室内力学试验研究了风城组储层不同岩性岩石的力学行为,从而揭示风城组储层不同岩性岩石的力学特性。在此基础上,讨论了矿物组成对风城组储层岩石强度参数的影响。玛湖凹陷风城组储层岩石具有较强的非均质性,造成不同岩性岩石力学特性存在较明显的差异,其中云质类岩石的力学强度和弹性模量较大而泊松比较小;岩石破坏形式较单一,其中单轴条件下,岩样脆性较强,表现为拉张破坏特征,而高围压条件下,岩样脆性减弱、延性增强,主要表现为单剪切破坏特征;岩石的抗压强度、抗张强度、断裂韧性值随着硅质矿物含量的增加呈减小的趋势,而随着钙质矿物含量的增加呈增大的趋势。

     

  • 图  1  准噶尔盆地玛湖凹陷下二叠统风城组岩样的矿物组成

    Figure  1.  Mineral composition of rock samples from Lower Permian Fengcheng Formation in Mahu Sag, Junggar Basin

    图  2  准噶尔盆地玛湖凹陷下二叠统风城组样品典型薄片

    a.MY1井,4 664.85 m,白云质泥岩,普通薄片;b.JL53井,5 041.80 m,白云质细砂岩,普通薄片;c.JL53井,5 041.80 m,白云质细砂岩,普通薄片(+);d.M025井,4 305.3 m,凝灰质细砂岩,普通薄片;e.MY1井,4 590.31 m,泥质砂岩,见溶蚀孔,蓝色铸体;f.MY1井,4 897.39 m,熔结凝灰岩,粒间孔发育,蓝色铸体

    Figure  2.  Typical thin sections of experimental samples from Lower Permian Fengcheng Formation in Mahu Sag, Junggar Basin

    图  3  准噶尔盆地玛湖凹陷二叠系风城组不同岩性岩样单轴和三轴抗压强度对比

    Figure  3.  Comparison of uniaxial and triaxial compressive strength of rock samples of different lithologies from Permian Fengcheng Formation in Mahu Sag, Junggar Basin

    图  4  准噶尔盆地玛湖凹陷二叠系风城组不同岩性岩样弹性模量对比

    Figure  4.  Comparison of elastic modulus of rock samples of different lithologies from Permian Fengcheng Formation in Mahu Sag, Junggar Basin

    图  5  准噶尔盆地玛湖凹陷二叠系风城组不同岩性岩样泊松比对比

    Figure  5.  Comparison of Poisson's ratio of rock samples of different lithologies from Permian Fengcheng Formation in Mahu Sag, Junggar Basin

    图  6  准噶尔盆地玛湖凹陷二叠系风城组不同岩性岩样脆性指数对比

    Figure  6.  Comparison of brittle index of rock samples of different lithologies from Permian Fengcheng Formation in Mahu Sag, Junggar Basin

    图  7  准噶尔盆地玛湖凹陷二叠系风城组不同岩性岩样抗张强度对比

    Figure  7.  Comparison of tensile strength of rock samples of different lithologies from Permian Fengcheng Formation in Mahu Sag, Junggar Basin

    图  8  准噶尔盆地玛湖凹陷二叠系风城组不同岩性样品断裂韧性对比

    Figure  8.  Comparison of fracture toughness of samples of different lithologies from Permian Fengcheng Formation in Mahu Sag, Junggar Basin

    图  9  准噶尔盆地玛湖凹陷二叠系风城组单轴(a-e) 和三轴(a′-e′)压缩试验条件下岩样的破坏模式

    Figure  9.  Fracturing mode of rock samples under uniaxial and triaxial compression conditions from Permian Fengcheng Formation in Mahu Sag, Junggar Basin

    图  10  准噶尔盆地玛湖凹陷二叠系风城组巴西劈裂条件下岩样的破坏模式

    Figure  10.  Fracturing mode of rock samples under Brazilian splitting test conditions from Permian Fengcheng Formation in Mahu Sag, Junggar Basin

    图  11  准噶尔盆地玛湖凹陷二叠系风城组断裂韧性测试条件下岩样的破坏模式

    Figure  11.  Fracturing mode of rock samples under fracture toughness test conditions from Permian Fengcheng Formation in Mahu Sag, Junggar Basin

    图  12  准噶尔盆地玛湖凹陷二叠系风城组单轴和三轴压缩条件下不同岩性岩样的应力—应变曲线

    Figure  12.  Stress-strain curves of rock samples of different lithologies under uniaxial and triaxial compressions from Permian Fengcheng Formation in Mahu Sag, Junggar Basin

    图  13  准噶尔盆地玛湖凹陷二叠系风城组矿物组成对岩样单轴抗压强度的影响

    Figure  13.  Effect of mineral composition on uniaxial compressive strength of rock samples from Permian Fengcheng Formation in Mahu Sag, Junggar Basin

    图  14  准噶尔盆地玛湖凹陷二叠系风城组矿物组成对岩样三轴抗压强度(60 MPa)的影响

    Figure  14.  Effect of mineral composition on triaxial compressive strength of rock samples from Permian Fengcheng Formation in Mahu Sag, Junggar Basin (60 MPa)

    图  15  准噶尔盆地玛湖凹陷二叠系风城组矿物组成对岩样抗张强度的影响

    Figure  15.  Effect of mineral composition on tensile strength of rock samples from Permian Fengcheng Formation in Mahu Sag, Junggar Basin

    图  16  准噶尔盆地玛湖凹陷二叠系风城组矿物组成对岩样断裂韧性的影响

    Figure  16.  Effect of mineral composition on fracture toughness of rock samples from Permian Fengcheng Formation in Mahu Sag, Junggar Basin

    表  1  准噶尔盆地玛湖凹陷下二叠统风城组岩样的取样信息

    Table  1.   Sampling information of rock samples from Lower Permian Fengcheng Formation in Mahu Sag, Junggar Basin

    编号 井名 取样深度/m 岩性 编号 井名 取样深度/m 岩性
    1 JL53 4 888.50~4 889.15 白云质泥岩 11 MY1 4 581.90~4 582.29 白云质泥岩
    2 4 889.28~4 889.91 白云质泥岩 12 4 582.89~4 583.13 灰质泥岩
    3 4 890.62~4 890.63 白云质泥岩 13 4 818.80~4 818.94 白云质泥岩
    4 5 040.98~5 041.94 白云质细砂岩 14 4 820.90~4 821.18 白云质泥岩
    5 5 045.16~5 047.64 白云质细砂岩 15 4 821.70~4 822.01 白云质粉砂岩
    6 M025 4 310.51~4 312.01 凝灰质细砂岩 16 4 822.01~4 822.19 白云质泥岩
    7 4 313.68~4 314.12 凝灰质细砂岩 17 4 894.17~4 895.00 凝灰质细砂岩
    8 4 315.59~4 316.19 凝灰质细砂岩 18 4 907.91~4 909.19 熔结凝灰岩
    9 X87 4 358.08~4 359.59 白云质泥岩 19 4 910.83~4 911.36 熔结凝灰岩
    10 4 368.73~4 369.75 白云质泥岩 20 4 911.82~4 912.49 安山岩
    下载: 导出CSV

    表  2  准噶尔盆地吉木萨尔凹陷二叠系芦草沟组页岩岩样的抗张强度[29]

    Table  2.   Tensile strength of shale samples from Permian Lucaogou Formation in Jimusar Sag, Junggar Basin

    序号 岩性 围压/MPa 抗压强度/MPa
    1 白云质砂岩 11.03 227.67
    2 泥岩 22.06 293.35
    3 泥质粉砂岩 11.03 161.84
    4 灰质砂岩 11.03 223.76
    5 粉砂质泥岩 22.06 269.64
    下载: 导出CSV
  • [1] 焦方正, 邹才能, 杨智. 陆相源内石油聚集地质理论认识及勘探开发实践[J]. 石油勘探与开发, 2020, 47(6): 1067-1078. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202006002.htm

    JIAO Fangzheng, ZOU Caineng, YANG Zhi. Geological theory and exploration & development practice of hydrocarbon accumulation inside continental source kitchens[J]. Petroleum Exploration and Development, 2020, 47(6): 1067-1078. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202006002.htm
    [2] 匡立春, 侯连华, 杨智, 等. 陆相页岩油储层评价关键参数及方法[J]. 石油学报, 2021, 42(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202101001.htm

    KUANG Lichun, HOU Lianhua, YANG Zhi, et al. Key parameters and methods of lacustrine shale oil reservoir characterization[J]. Acta Petrolei Sinica, 2021, 42(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202101001.htm
    [3] 黎茂稳, 金之钧, 董明哲, 等. 陆相页岩形成演化与页岩油富集机理研究进展[J]. 石油实验地质, 2020, 42(4): 489-505. doi: 10.11781/sysydz202004489

    LI Maowen, JIN Zhijun, DONG Mingzhe, et al. Advances in the basic study of lacustrine shale evolution and shale oil accumulation[J]. Petroleum Geology & Experiment, 2020, 42(4): 489-505. doi: 10.11781/sysydz202004489
    [4] 郭少斌, 王子龙, 马啸. 中国重点地区二叠系海陆过渡相页岩气勘探前景[J]. 石油实验地质, 2021, 43(3): 377-385. doi: 10.11781/sysydz202103377

    GUO Shaobin, WANG Zilong, MA Xiao. Exploration prospect of shale gas with Permian transitional facies of some key areas in China[J]. Petroleum Geology & Experiment, 2021, 43(3): 377-385. doi: 10.11781/sysydz202103377
    [5] 郭彤楼. 深层页岩气勘探开发进展与攻关方向[J]. 油气藏评价与开发, 2021, 11(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202101001.htm

    GUO Tonglou. Progress and research direction of deep shale gas exploration and development[J]. Reservoir Evaluation and Development, 2021, 11(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202101001.htm
    [6] 支东明, 宋永, 何文军, 等. 准噶尔盆地中—下二叠统页岩油地质特征资源潜力及勘探方向[J]. 新疆石油地质, 2019, 40(4): 389-401. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201904002.htm

    ZHI Dongming, SONG Yong, HE Wenjun, et al. Geological characte-ristics, resource potential and exploration direction of shale oil in Middle-Lower Permian, Junggar Basin[J]. Xinjiang Petroleum Geology, 2019, 40(4): 389-401. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201904002.htm
    [7] 支东明, 唐勇, 何文军, 等. 准噶尔盆地玛湖凹陷风城组常规—非常规油气有序共生与全油气系统成藏模式[J]. 石油勘探与开发, 2021, 48(1): 38-51. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202101006.htm

    ZHI Dongming, TANG Yong, HE Wenjun, et al. Orderly coexistence and accumulation models of conventional and unconventional hydrocarbons in Lower Permian Fengcheng Formation, Mahu Sag, Junggar Basin[J]. Petroleum Exploration and Deve-lopment, 2021, 48(1): 38-51. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202101006.htm
    [8] 何沐飞, 张景坤, 米巨磊, 等. 烃源岩中可溶有机质的FTIR地球化学意义探讨: 以准噶尔盆地下二叠统风城组为例[J]. 石油实验地质, 2021, 43(6): 1048-1053. doi: 10.11781/sysydz2021061048

    HE Mufei, ZHANG Jingkun, MI Julei, et al. Organic geochemical study of FTIR analysis on source rock extracts: a case study of Lower Permian Fengcheng Formation in Junggar Basin, NW China[J]. Petroleum Geology & Experiment, 2021, 43(6): 1048-1053. doi: 10.11781/sysydz2021061048
    [9] 冯有良, 张义杰, 王瑞菊, 等. 准噶尔盆地西北缘风城组白云岩成因及油气富集因素[J]. 石油勘探与开发, 2011, 38(6): 685-692. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201106006.htm

    FENG Youliang, ZHANG Yijie, WANG Ruiju, et al. Dolomites genesis and hydrocarbon enrichment of the Fengcheng Formation in the northwestern margin of Junggar Basin[J]. Petroleum Exploration and Development, 2011, 38(6): 685-692. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201106006.htm
    [10] 张元元, 曾宇轲, 唐文斌. 准噶尔盆地西北缘二叠纪原型盆地分析[J]. 石油科学通报, 2021, 6(3): 333-343. doi: 10.3969/j.issn.2096-1693.2021.03.027

    ZHANG Yuanyuan, ZENG Yuke, TANG Wenbin. Permian attributes and tectonic evolution of the west Junggar Basin[J]. Petroleum Science Bulletin, 2021, 6(3): 333-343. doi: 10.3969/j.issn.2096-1693.2021.03.027
    [11] 尹路, 瞿建华, 祁利祺, 等. 准噶尔盆地风城地区二叠系白云岩化模式[J]. 新疆石油地质, 2013, 34(5): 542-544. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201305011.htm

    YIN Lu, QU Jianhua, QI Liqi, et al. Lacustrine dolomitic pattern of Permian in Fengcheng area in northwestern margin of Junggar Basin[J]. Xinjiang Petroleum Geology, 2013, 34(5): 542-544. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201305011.htm
    [12] 朱世发, 朱筱敏, 陶文芳, 等. 准噶尔盆地乌夏地区二叠系风城组云质岩类成因研究[J]. 高校地质学报, 2013, 19(1): 38-45. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201301006.htm

    ZHU Shifa, ZHU Xiaomin, TAO Wenfang, et al. Origin of dolomitic reservoir rock in the Permian Fengcheng Formation in Wu-Xia area of the Junggar Basin[J]. Geological Journal of China Universities, 2013, 19(1): 38-45. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201301006.htm
    [13] 陈磊, 丁靖, 潘伟卿, 等. 准噶尔盆地玛湖凹陷西斜坡二叠系风城组云质岩优质储层特征及控制因素[J]. 中国石油勘探, 2012, 17(3): 8-11. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201203004.htm

    CHEN Lei, DING Jing, PAN Weiqing, et al. Characteristics and controlling factors of high-quality dolomite reservoir in Permian Fengcheng Formation in west slope of Mahu Sag, Junggar Basin[J]. China Petroleum Exploration, 2012, 17(3): 8-11. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201203004.htm
    [14] 许琳, 常秋生, 冯玲丽, 等. 准噶尔盆地玛湖凹陷二叠系风城组页岩油储层特征及控制因素[J]. 中国石油勘探, 2019, 24(5): 649-660. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201905012.htm

    XU Lin, CHANG Qiusheng, FENG Lingli, et al. The reservoir characteristics and control factors of shale oil in Permian Fengcheng Formation of Mahu Sag, Junggar Basin[J]. China Petroleum Exploration, 2019, 24(5): 649-660. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201905012.htm
    [15] 支东明, 唐勇, 郑孟林, 等. 准噶尔盆地玛湖凹陷风城组页岩油藏地质特征与成藏控制因素[J]. 中国石油勘探, 2019, 24(5): 615-623. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201905008.htm

    ZHI Dongming, TANG Yong, ZHENG Menglin, et al. Geological characteristics and accumulation controlling factors of shale reservoirs in Fengcheng Formation, Mahu Sag, Junggar Basin[J]. China Petroleum Exploration, 2019, 24(5): 615-623. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201905008.htm
    [16] 杨智峰, 唐勇, 郭旭光, 等. 准噶尔盆地玛湖凹陷二叠系风城组页岩油赋存特征与影响因素[J]. 石油实验地质, 2021, 43(5): 784-796. doi: 10.11781/sysydz202105784

    YANG Zhifeng, TANG Yong, GUO Xuguang, et al. Occurrence states and potential influencing factors of shale oil in the Permian Fengcheng Formation of Mahu Sag, Junggar Basin[J]. Petroleum Geology & Experiment, 2021, 43(5): 784-796. doi: 10.11781/sysydz202105784
    [17] 庞宏, 尤新才, 胡涛, 等. 准噶尔盆地深部致密油藏形成条件与分布预测: 以玛湖凹陷西斜坡风城组致密油为例[J]. 石油学报, 2015, 36(S2): 176-183. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2015S2016.htm

    PANG Hong, YOU Xincai, HU Tao, et al. Forming conditions and distribution prediction of deep tight reservoir in Junggar Basin: a case study from tight reservoir of Fengcheng Formation in the west slope of Mahu Sag[J]. Acta Petrolei Sinica, 2015, 36(S2): 176-183. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2015S2016.htm
    [18] 杜洪凌, 许江文, 李峋, 等. 新疆油田致密砂砾岩油藏效益开发的发展与深化: 地质工程一体化在玛湖地区的实践与思考[J]. 中国石油勘探, 2018, 23(2): 15-26. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201802003.htm

    DU Hongling, XU Jiangwen, LI Xun, et al. Development and deepen-ing of profitable development of tight glutenite oil reservoirs in Xinjiang oilfield: application of geology-engineering integration in Mahu area and its enlightenment[J]. China Petroleum Exploration, 2018, 23(2): 15-26. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201802003.htm
    [19] 刘涛, 石善志, 郑子君, 等. 地质工程一体化在玛湖凹陷致密砂砾岩水平井开发中的实践[J]. 中国石油勘探, 2018, 23(2): 90-103. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201802012.htm

    LIU Tao, SHI Shanzhi, ZHENG Zijun, et al. Application of geology-engineering integration for developing tight oil in glutenite reservoir by horizontal wells in Mahu Sag[J]. China Petroleum Exploration, 2018, 23(2): 90-103. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201802012.htm
    [20] 章敬, 罗兆, 徐明强, 等. 新疆油田致密油地质工程一体化实践与思考[J]. 中国石油勘探, 2017, 22(1): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201701003.htm

    ZHANG Jing, LUO Zhao, XU Mingqiang, et al. Application of geology-engineering integration in development of tight oil in Xinjiang oilfield[J]. China Petroleum Exploration, 2017, 22(1): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201701003.htm
    [21] 朱海燕, 宋宇家, 唐煊赫. 页岩气储层四维地应力演化及加密井复杂裂缝扩展研究进展[J]. 石油科学通报, 2021, 6(3): 396-416. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE202103006.htm

    ZHU Haiyan, SONG Yujia, TANG Xuanhe. Research progress on 4-dimensional stress evolution and complex fracture propagation of infill wells in shale gas reservoirs[J]. Petroleum Science Bulletin, 2021, 6(3): 396-416. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE202103006.htm
    [22] 张辉, 杨海军, 尹国庆, 等. 地质工程一体化关键技术在克拉苏构造带高效开发中的应用实践[J]. 中国石油勘探, 2020, 25(2): 120-132. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202002012.htm

    ZHANG Hui, YANG Haijun, YIN Guoqing, et al. Application practice of key technologies of geology-engineering integration in efficient development in Kelasu structural belt[J]. China Petroleum Exploration, 2020, 25(2): 120-132. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202002012.htm
    [23] 闫长辉, 陈青, 周文. 川西须家河组致密储层力学特性的试验研究[J]. 石油钻探技术, 2008, 36(1): 61-64. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT200801016.htm

    YAN Changhui, CHEN Qing, ZHOU Wen. Mechanics characteristics experimental study of Xujiahe tight reservoir in West Sichuan[J]. Petroleum Drilling Techniques, 2008, 36(1): 61-64. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT200801016.htm
    [24] 孙珂, 陈清华. 苏北盆地金湖凹陷阜宁组砂岩储层力学性质及影响因素[J]. 石油实验地质, 2021, 43(2): 343-353. doi: 10.11781/sysydz202102343

    SUN Ke, CHEN Qinghua. Mechanical properties and influencing factors of Funing Formation sandstone reservoir in Jinhu Sag, Subei Basin[J]. Petroleum Geology & Experiment, 2021, 43(2): 343-353. doi: 10.11781/sysydz202102343
    [25] 梁利喜, 庄大琳, 刘向君, 等. 龙马溪组页岩的力学特性及破坏模式研究[J]. 地下空间与工程学报, 2017, 13(1): 108-116. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201701016.htm

    LIANG Lixi, ZHUANG Dalin, LIU Xiangjun, et al. Study on mechanical properties and failure modes of Longmaxi shale[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(1): 108-116. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201701016.htm
    [26] 熊健, 张茜, 梁利喜, 等. 四川盆地龙马溪组页岩断裂韧性特征与预测方法[J]. 地下空间与工程学报, 2019, 15(S2): 541-547. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2019S2006.htm

    XIONG Jian, ZHANG Xi, LIANG Lixi, et al. Prediction method and characteristics of the fracture toughness of Longmaxi Formation shale in Sichuan Basin[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(S2): 541-547. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2019S2006.htm
    [27] 刘向君, 熊健, 梁利喜, 等. 玛湖凹陷百口泉组砂砾岩储集层岩石力学特征与裂缝扩展机理[J]. 新疆石油地质, 2018, 39(1): 83-91. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201801017.htm

    LIU Xiangjun, XIONG Jian, LIANG Lixi, et al. Rock mechanical characteristics and fracture propagation mechanism of sandy conglomerate reservoirs in Baikouquan Formation of Mahu Sag[J]. Xinjiang Petroleum Geology, 2018, 39(1): 83-91. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201801017.htm
    [28] 李泽华, 邓鹏, 杨春和, 等. 碳酸盐岩储层力学特性及可压性评价研究[J]. 广西大学学报(自然科学版), 2019, 44(5): 1450-1460. https://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ201905031.htm

    LI Zehua, DENG Peng, YANG Chunhe, et al. Experimental study on mechanical properties and fracability evaluation of carbonate reservoirs[J]. Journal of Guangxi University(Natural Science Edition), 2019, 44(5): 1450-1460. https://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ201905031.htm
    [29] 高阳, 王英伟, 王玉多, 等. 吉木萨尔凹陷芦草沟组致密储集层岩石力学特征[J]. 新疆石油地质, 2016, 37(2): 158-162. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201602007.htm

    GAO Yang, WANG Yingwei, WANG Yuduo, et al. Rock mechanics characteristics of Lucaogou tight oil reservoir in Jimusaer Sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 2016, 37(2): 158-162. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201602007.htm
    [30] 刘冬桥, 张树东, 何鹏飞, 等. 真三轴应力作用下立方体节理煤岩力学响应试验研究[J]. 中国矿业大学学报, 2021, 50(1): 115-122. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202101012.htm

    LIU Dongqiao, ZHANG Shudong, HE Pengfei, et al. Experimental research on mechanical behaviors of the cubic jointed coal mass subjected to the true triaxial stress[J]. Journal of China University of Mining & Technology, 2021, 50(1): 115-122. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202101012.htm
    [31] 李庆辉, 李少轩. 超深层砂岩储层岩石力学特性实验研究[J]. 岩石力学与工程学报, 2021, 40(5): 948-957. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202105009.htm

    LI Qinghui, LI Shaoxuan. Experimental study on mechanical properties of ultra-deep sandstone[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(5): 948-957. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202105009.htm
    [32] 张文, 高阳, 梁利喜, 等. 砾岩油藏岩石力学特征及其对压裂改造的影响[J]. 断块油气田, 2021, 28(4): 541-545. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202104021.htm

    ZHANG Wen, GAO Yang, LIANG Lixi, et al. Rock mechanics characteristics of conglomerate reservoir and its effects on fracturing treatment[J]. Fault-Block Oil and Gas Field, 2021, 28(4): 541-545. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202104021.htm
    [33] HUGMAN R H H Ⅲ, FRIEDMAN M. Effects of texture and composition on mechanical behavior of experimentally deformed carbonate rocks[J]. AAPG Bulletin, 1979, 63(9): 1478-1489.
    [34] FAHY M P, GUCCIONE M J. Estimating strength of sandstone using petrographic thin-section data[J]. Bulletin of the Association of Engineering Geologists, 1979, 16(4): 467-485.
    [35] GUNSALLUS K L, KULHAWY F H. A comparative evaluation of rock strength measures[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1984, 21(5): 233-248.
    [36] 孟召平, 彭苏萍. 煤系泥岩组分特征及其对岩石力学性质的影响[J]. 煤田地质与勘探, 2004, 32(2): 14-16. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT200402004.htm

    MENG Zhaoping, PENG Suping. Mudstone composition of coal measures and its influence on the mechanical properties[J]. Coal Geology & Exploration, 2004, 32(2): 14-16. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT200402004.htm
    [37] 黄波, 谢斌, 李佳琦, 等. 吉木萨尔二叠系致密油岩石力学特性参数分析与压裂对策[J]. 科学技术与工程, 2016, 16(25): 67-74. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201625011.htm

    HUANG Bo, XIE Bin, LI Jiaqi, et al. Rock mechanical parameters analysis of Permian tight formations at Jimusaer in Xinjiang and the related measures for fracturing[J]. Science Technology and Engineering, 2016, 16(25): 67-74. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201625011.htm
    [38] MERRIAM R, RIEKE H H Ⅲ, KIM Y C. Tensile strength related to mineralogy and texture of some granitic rocks[J]. Engineering Geology, 1970, 4(2): 155-160.
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  991
  • HTML全文浏览量:  256
  • PDF下载量:  119
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-18
  • 修回日期:  2022-05-31
  • 刊出日期:  2022-07-28

目录

    /

    返回文章
    返回