[1] |
汤玉平, 顾磊, 许科伟, 等. 油气微生物勘探机理及应用[J]. 微生物学通报, 2016, 43(11): 2386-2395. https://www.cnki.com.cn/Article/CJFDTOTAL-WSWT201611008.htmTANG Yuping, GU Lei, XU Kewei, et al. Research and application of microbial exploration for oil and gas[J]. Microbiology China, 2016, 43(11): 2386-2395. https://www.cnki.com.cn/Article/CJFDTOTAL-WSWT201611008.htm
|
[2] |
汤玉平, 许科伟, 顾磊, 等. 油气微生物勘探理论与技术研究进展[J]. 石油实验地质, 2021, 43(2): 325-334. doi: 10.11781/sysydz202102325TANG Yuping, XU Kewei, GU Lei, et al. Recent progress in the theory and technology of microbial prospecting for oil and gas[J]. Petroleum Geology & Experiment, 2021, 43(2): 325-334. doi: 10.11781/sysydz202102325
|
[3] |
SINGH N K, CHOUDHARY S. Bacterial and archaeal diversity in oil fields and reservoirs and their potential role in hydrocarbon recovery and bioprospecting[J]. Environmental Science and Pollution Research, 2021, 28(42): 58819-58836. doi: 10.1007/s11356-020-11705-z
|
[4] |
梅海, 林壬子, 梅博文, 等. 油气微生物检测技术: 理论、实践和应用前景[J]. 天然气地球科学, 2008, 19(6): 888-893. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200806026.htmMEI Hai, LIN Renzi, MEI Bowen, et al. Microbial oil-gas detection technologies: theory, practice and application prospect[J]. Natural Gas Geoscience, 2008, 19(6): 888-893. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200806026.htm
|
[5] |
REDMOND M C, VALENTINE D L, SESSIONS A L. Identification of novel methane-, ethane-, and propane-oxidizing bacteria at marine hydrocarbon seeps by stable isotope probing[J]. Applied and Environmental Microbiology, 2010, 76(19): 6412-6422. doi: 10.1128/AEM.00271-10
|
[6] |
林军章, 汪卫东, 胡婧, 等. 胜利油田微生物采油技术研究与应用进展[J]. 油气地质与采收率, 2021, 28(2): 18-26. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202102004.htmLIN Junzhang, WANG Weidong, HU Jing, et al. Progress in research and application of microbial enhanced oil recovery technology in Shengli Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(2): 10-17. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202102004.htm
|
[7] |
曹军, 周进松, 银晓, 等. 微生物地球化学勘探技术在黄土塬地貌区油气勘探中的应用[J]. 特种油气藏, 2020, 27(5): 53-60. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202005008.htmCAO Jun, ZHOU Jinsong, YIN Xiao, et al. Application of microbial geochemical exploration technology in oil and gas exploration in Loess Tableland regions[J]. Special oil & Gas Reservoirs, 2020, 27(5): 53-60. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202005008.htm
|
[8] |
顾磊, 许科伟, 汤玉平, 等. 基于高通量测序技术研究页岩气区上方微生物多样性[J]. 石油实验地质, 2020, 42(3): 443-450. doi: 10.11781/sysydz202003443GU Lei, XU Kewei, TANG Yuping, et al. Microbial diversity above a shale gas field using high-throughput sequencing[J]. Petroleum Geology & Experiment, 2020, 42(3): 443-450. doi: 10.11781/sysydz202003443
|
[9] |
温静, 肖传敏, 郭斐, 等. 高凝油油藏微生物驱提高采收率实验研究[J]. 特种油气藏, 2020, 27(6): 127-132. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202301012.htmWEN Jing, XIAO Chuanmin, GUO Fei, et al. Experimental research on microbial flooding technology for enhancing oil recovery in high-pour-point reservoirs[J]. Special Oil & Gas Reservoirs, 2020, 27(6): 127-132. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202301012.htm
|
[10] |
汪卫东. 微生物采油技术研究进展与发展趋势[J]. 油气地质与采收率, 2021, 28(2): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202102001.htmWANG Weidong. Research advance and development trend in microbial enhanced oil recovery technology[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(2): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202102001.htm
|
[11] |
侯兆伟, 李蔚, 乐建君, 等. 大庆油田微生物采油技术研究及应用[J]. 油气地质与采收率, 2021, 28(2): 10-17. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202102002.htmHOU Zhaowei, LI Wei, LE Jianjun, et al. Research and application of microbial enhanced oil recovery technology in Daqing Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(2): 10-17. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202102002.htm
|
[12] |
刘雅慈, 何泽, 张胜, 等. 油气田土壤甲烷氧化菌实时荧光定量PCR检测技术的建立与应用[J]. 微生物学通报, 2014, 41(6): 1071-1081. https://www.cnki.com.cn/Article/CJFDTOTAL-WSWT201406006.htmLIU Yaci, HE Ze, ZHANG Sheng, et al. Development and application of a fluorescent quantitative real-time PCR technique for detection of methane-oxidizing bacteria in oil and gas field soil[J]. Microbiology China, 2014, 41(6): 1071-1081. https://www.cnki.com.cn/Article/CJFDTOTAL-WSWT201406006.htm
|
[13] |
DENG Yue, DENG Chunping, YANG Jinshui, et al. Novel butane-oxidizing bacteria and diversity of bmoX genes in Puguang gas field[J]. Frontiers in Microbiology, 2018, 9: 1576.
|
[14] |
张春林, 庞雄奇, 梅海, 等. 微生物油气勘探技术在岩性气藏勘探中的应用: 以柴达木盆地三湖坳陷为例[J]. 石油勘探与开发, 2010, 37(3): 310-315. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201003009.htmZHANG Chunlin, PANG Xiongqi, Mei Hai, et al. Application of microbial oil surveying to exploration of lithologic gas reservoirs: a case from the Sanhu Depression, Qaidam Basin, NW China[J]. Petroleum Exploration And Development, 2010, 37(3): 310-315. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201003009.htm
|
[15] |
张敏, 何泽, 杜建军, 等. 苏干湖盆地连续电磁剖面和微生物基因定量油气勘探[J]. 地质与勘探, 2017, 53(6): 1197-1207. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201706016.htmZHANG Min, HE Ze, DU Jianjun, et al. Application of continuous electromagnetic profiling and quantitative detection of gene technique to oil and gas exploration in the Sugan Lake Basin[J]. Geology and Exploration, 2017, 53(6): 1197-1207. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201706016.htm
|
[16] |
杨帆, 沈忠民, 汤玉平, 等. 准噶尔盆地春光探区油气微生物指示[J]. 石油学报, 2017, 38(7): 804-812. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201707007.htmYANG Fan, SHEN Zhongmin, TANG Yuping, et al. Hydrocarbon microbial prospecting in Chunguang exploration area, Junggar Basin[J]. Acta Petrolei Sinica, 2017, 38(7): 804-812. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201707007.htm
|
[17] |
顾磊, 许科伟, 汤玉平, 等. 基于高通量测序技术研究玉北油田上方微生物多样性[J]. 应用与环境生物学报, 2017, 23(2): 276-282. https://www.cnki.com.cn/Article/CJFDTOTAL-YYHS201702015.htmGU Lei, XU Kewei, TANG Yuping, et al. Microbial diversity in Yubei Oil field determined by high-throughput sequencing[J]. Chinese Journal of Applied & Environmental Biology, 2017, 23(2): 276-282. https://www.cnki.com.cn/Article/CJFDTOTAL-YYHS201702015.htm
|
[18] |
廖志勇, 康仁东, 曹远志. 于奇地区中生界油气成藏条件及聚集规律[J]. 石油实验地质, 2016, 38(S1): 83-86. doi: 10.11781/sysydz2016S1083LIAO Zhiyong, KANG Rendong, CAO Yuanzhi. Reservoir formation conditions and accumulation laws in Mesozoic in Yuqi area[J]. Petroleum Geology & Experiment, 2016, 38(S1): 83-86. doi: 10.11781/sysydz2016S1083
|
[19] |
韩勇, 徐浩. 塔河油田于奇地区断裂体系特征研究[J]. 石油地质与工程, 2020, 34(3): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN202003003.htmHAN Yong, XU Hao. Characteristics of fault system in Yuqi area of Tahe oilfield[J]. Petroleum Geology and Engineering, 2020, 34(3): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN202003003.htm
|
[20] |
旷理雄, 郭建华, 黄太柱, 等. 塔里木盆地于奇地区奥陶系碳酸盐岩成藏条件及成藏模式[J]. 石油勘探与开发, 2007, 34(3): 299-303. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200703007.htmKUANG Lixiong, GUO Jianhua, HUANG Taizhu, et al. Petroleum accumulation in Ordovician carbonate rocks of Yuqi region in Akekule uplift, Tarim Basin[J]. Petroleum Exploration and Development, 2007, 34(3): 299-303. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200703007.htm
|
[21] |
闫亮, 季苗, 贾宝迁, 等. 塔里木盆地顺北断溶体油气藏微生物特征及有利区预测[J]. 石油与天然气地质, 2020, 41(3): 576-585. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202003014.htmYAN Liang, JI Miao, JIA Baoqian, et al. Microbial characteristics of Shunbei faulted-karst reservoirs and prediction of play fairways, Tarim Basin[J]. Oil & Gas Geology, 2020, 41(3): 576-585. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202003014.htm
|
[22] |
闫亮, 贾宝迁, 季苗, 等. 塔里木盆地新和地区低幅度构造油气微生物特征及有利目标区预测[J]. 石油实验地质, 2020, 42(6): 1001-1008. doi: 10.11781/sysydz2020061001YAN Liang, JIA Baoqian, JI Miao, et al. Microbial characteristics of low-amplitude structures and prediction of favorable target areas in Xinhe area, Tarim Basin[J]. Petroleum Geology & Experiment, 2020, 42(6): 1001-1008. doi: 10.11781/sysydz2020061001
|
[23] |
CAPORASO J G, KUCZYNSKI J, STOMBAUGH J, et al. QⅡME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, 7(5): 335-336.
|
[24] |
BOLYEN E, RIDEOUT J R, DILLON M R, et al. Reproducible, interactive, scalable and extensible microbiome data science using QⅡME 2[J]. Nature Biotechnology, 2019, 37(8): 852-857.
|
[25] |
ONDOV B D, BERGMAN N H, PHILLIPPY A M. Interactive metagenomic visualization in a web browser[J]. BMC Bioinformatics, 2011, 12(1): 385.
|
[26] |
SCHLOSS P D, WESTCOTT S L, RYABIN T, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities[J]. Applied and Environmental Microbiology, 2009, 75(23): 7537-7541.
|
[27] |
QUAST C, PRUESSE E, YILMAZ P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools[J]. Nucleic Acids Research, 2013, 41(Database issue): D590-D596.
|
[28] |
EDGAR R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10): 996-998.
|
[29] |
张继伟. 基于主成分分析的页岩油有利区评价: 以仪陇—平昌地区大安寨段为例[J]. 断块油气田, 2021, 28(1): 28-32. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202101007.htmZHANG Jiwei. Evaluation of favorable areas of shale oil based on principal component analysis: taking Daanzhai member of Yilong-Pingchang area as an example[J]. Fault-Block Oil and Gas Field, 2021, 28(1): 28-32. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202101007.htm
|