Geochemical characteristics of paleo-fluids in thrust belt in the northern Middle Yangtze and its significance for shale gas preservation: a case study of well Baodi 1
-
摘要: 为研究中扬子北缘大洪山冲断带古流体特征及其对页岩气保存的指示意义,以该区保地1井为例,系统采集志留系裂缝脉体样品并开展流体地球化学与包裹体分析。测试结果显示,方解石脉δ13C值变化范围为-8.19‰~0.16‰,碳同位素最小值远小于志留系灰岩夹层,也小于海相碳酸盐岩,结合脉体包裹体群脱硫系数高达23.53~87.90且自下而上具有降低的趋势,表明古流体中有下伏寒武系膏岩层卤水混入,导致古流体SO42-增高,以及寒武系TSR产生的H2S、CO2沿着裂缝系统进入志留系,致使方解石脉δ13C负偏和钻遇地层气显发现H2S。志留系龙马溪组底部包裹体类型以纯水溶液包裹体为主,最大均一温度峰值约为110~120℃,最小均一温度峰值为60~80℃;结合区域构造演化,大洪山冲断带较川东地区志留系页岩抬升剥蚀时间早,古流体形成阶段埋深浅、温度低、含气饱和度低。滑脱带附近包裹体均一温度变化范围大,最低均一温度发育于该段,表明滑脱带构造活动期次更多、持续时间更长,特别是晚期构造活动更强,成为页岩气逸散的长期通道。综合分析表明,大洪山冲断带发育多个滑脱层的冲断、变形,对多层系页岩气藏和常规气藏破坏较大。Abstract: To study the geochemical characteristics of paleo-fluids in the Dahongshan thrust belt of Middle Yangtze and its significance for shale gas preservation, in this study, Silurian vein samples were collected from well Baodi 1 and fluid geochemistry and inclusions were systematically analyzed. Results show that the variation range of δ13C of calcite veins is -8.19‰ to 0.16‰, with the minimum value much lower than that of Silurian limestone interlayer and marine carbonate. The desulfurization coefficient of vein inclusion group is 23.53 to 87.90, with downward trend from bottom to top. It is indicated that the SO42- in paleo-fluid of Silurian increases because of the mixing of underlying Cambrian gypsum brine, as well as CO2 and H2S entering into Silurian along fracture system from Cambrian TSR productions, resulting in negative δ13C of calcite veins and H2S show in drilled formations. The inclusions at the bottom of Silurian Longmaxi Formation are mainly pure aqueous solution inclusions. The maximum homogenization temperature peak is about 110 to 120℃, and the minimum homogenization temperature distribute from 60 to 80℃. Compared with those in the eastern Sichuan Basin, the shale in Dahongshan thrust belt entered uplifting and denudation stage earlier, and the paleo-fluid formation stage had shallower burial depth, low temperature and low gas saturation. The range of homogenization temperature of inclusions near the detachment zone is wider, and the lowest homogenization temperature is developed in this section, indicating the detachment zone has more periods of tectonic activity and longer duration time, especially in the later stage, which has become a long-term channel for shale gas escape. Comprehensive analysis shows that there are many detachment layers in the Dahongshan thrust belt, and the thrust and deformation destroyed multi-layer shale gas reservoirs and conventional gas reservoirs.
-
Key words:
- paleo-fluids /
- shale gas /
- preservation condition /
- inclusions /
- geochemistry /
- Dahongshan thrust belt /
- northern Middle Yangtze
-
表 1 中扬子北缘保地1井石英脉包裹体群离子组分统计
Table 1. Statistics of ion composition of quartz vein inclusions in well Baodi 1, northern Middle Yangtze
样号 井深/m 离子含量/(μg·g-1) r(Na+)/rCl-) [r(Cl-)-r(Na+)]/r(Mg2+) r(SO42-)×100/r(Cl-) F- Cl- NO3- SO42- Na+ K+ Mg2+ Ca2+ BD11 1 492.3 0.420 2.06 1.50 1.64 1.68 0.632 0.405 1.66 1.26 -0.45 58.72 BD18 1 404.8 0.499 2.66 1.68 1.49 1.47 0.593 0.755 4.19 0.85 0.18 41.32 BD19 1 392.5 0.283 1.61 1.79 1.15 0.88 0.393 0.582 5.61 0.84 0.15 52.68 BD24 1 284.6 0.593 3.63 1.43 2.92 1.49 0.709 1.070 15.90 0.63 0.43 59.33 BD26 1 267.9 0.577 3.51 1.86 1.27 2.22 0.551 1.040 6.08 0.98 0.03 26.69 BD36 1 158.6 0.369 2.18 1.44 1.82 1.34 0.752 1.120 6.74 0.95 0.03 61.58 BD37 1 119.3 0.375 2.42 1.28 1.47 1.90 0.540 0.810 3.22 1.21 -0.22 44.80 BD43 1 023.5 0.280 2.66 1.17 3.17 1.76 0.533 0.946 2.61 1.02 -0.02 87.90 BD53 830.0 0.297 3.75 1.17 1.43 2.09 0.587 1.400 4.71 0.86 0.13 28.13 BD62 643.5 0.289 2.24 1.09 1.37 1.31 0.626 0.827 4.38 0.90 0.09 45.11 BD70 512.3 0.269 5.80 1.17 1.85 2.91 0.798 0.616 3.23 0.77 0.73 23.53 表 2 中扬子北缘保地1井与其他地区志留系包裹体类型及均一温度对比
Table 2. Comparison of types and homogeneous temperature of Silurian inclusions in well Baodi 1, northern Middle Yangtze and other areas
项目 保地1井 鄂西地区 焦石坝 南川 丁山 包裹体类型 纯水包裹体为主 液相和气液两相包裹体 纯甲烷和气液两相包裹体 纯甲烷和气液两相包裹体 纯甲烷和气液两相包裹体 均一温度最低值/℃ 59 90 141.2 118.5 85.7 均一温度最高值/℃ 121 271 201.1 240.8 229.6 均一温度峰值/℃ 60~80, 110~130等 小于130为主 150, 190~210 160~190,230~240 100~120,170~210 抬升开始时间 侏罗纪 侏罗—白垩纪 85 Ma 70 Ma 60 Ma 注:鄂西地区数据据LIU等[7];焦石坝、南川、丁山数据据NIE等[25]。 -
[1] 何登发, 贾承造. 冲断构造与油气聚集[J]. 石油勘探与开发, 2005, 32(2): 55-62. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK20050200D.htmHE Dengfa, JIA Chengzao. Thrust tectonics and hydrocarbon accumulation[J]. Petroleum Exploration and Development, 2005, 32(2): 55-62. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK20050200D.htm [2] 张世民, 谢富仁, 黄忠贤, 等. 龙门山地区上地壳的拱曲冲断作用及其深部动力学机制探讨[J]. 第四纪研究, 2009, 29(3): 449-463. doi: 10.3969/j.issn.1001-7410.2009.03.006ZHANG Shimin, XIE Furen, HUANG Zhongxian, et al. Bending and thrusting of the upper crust in Longmenshan area and its deep dynamics[J]. Quaternary Sciences, 2009, 29(3): 449-463. doi: 10.3969/j.issn.1001-7410.2009.03.006 [3] 段金宝, 张庆峰, 范小军. 大巴山前构造带油气苗分布及油气成藏特征[J]. 地质科技情报, 2016, 35(5): 163-167. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201605022.htmDUAN Jinbao, ZHANG Qingfeng, FAN Xiaojun. Distribution of oil-gas seepages and characteristics of pool forming at Dabashan piedmont structural belt[J]. Geological Science and Technology Information, 2016, 35(5): 163-167. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201605022.htm [4] 覃小丽, 李荣西, 杨玲, 等. 大巴山陆内造山带高压古流体及其运移动力学机制研究[J]. 地学前缘, 2017, 24(2): 123-129. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201702018.htmQIN Xiaoli, LI Rongxi, YANG Ling, et al. High pressure paleofluid in the Dabashan intercontinental orogenic belt and its migration dynamics[J]. Earth Science Frontiers, 2017, 24(2): 123-129. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201702018.htm [5] 周业鑫, 丁俊, 余谦, 等. 南大巴山前陆冲断褶皱带断裂流体地球化学特征及构造保存研究[J]. 地质学报, 2017, 91(6): 1169-1180. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201706002.htmZHOU Yexin, DING Jun, YU Qian, et al. Geochemical characteristics of fracture fluids in the foreland thrust-fold belt in South Dabashan and structural preservation analysis[J]. Acta Geologica Sinica, 2017, 91(6): 1169-1180. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201706002.htm [6] 席斌斌, 腾格尔, 俞凌杰, 等. 川东南页岩气储层脉体中包裹体古压力特征及其地质意义[J]. 石油实验地质, 2016, 38(4): 473-479. doi: 10.11781/sysydz201604473XI Binbin, TENGER, YU Lingjie, et al. Trapping pressure of fluid inclusions and its significance in shale gas reservoirs, southeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2016, 38(4): 473-479. doi: 10.11781/sysydz201604473 [7] LIU An, OU Wenjia, HUANG Huilan, et al. Significance of paleo-fluid in the Ordovician-Silurian detachment zone to the preservation of shale gas in western Hunan-Hubei area[J]. Natural Gas Industry B, 2018, 5(6): 565-574. doi: 10.1016/j.ngib.2018.11.004 [8] 刘安, 蔡全升, 陈孝红, 等. 雪峰隆起西缘页岩气构造保存条件的古流体评价[J]. 大地构造与成矿学, 2021, 45(6): 1161-1173. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202106006.htmLIU An, CAI Quansheng, CHEN Xiaohong, et al. Paleofluid as indicator of shale gas tectonic preservation in the western margin of Xuefeng uplift[J]. Geotectonica et Metallogenia, 2021, 45(6): 1161-1173. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202106006.htm [9] 刘安, 周鹏, 陈孝红, 等. 运用方解石脉包裹体和碳氧同位素评价页岩气保存条件: 以中扬子地区寒武系为例[J]. 天然气工业, 2021, 41(2): 47-55. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202102010.htmLIU An, ZHOU Peng, CHEN Xiaohong, et al. Evaluation of shale gas preservation conditions using calcite vein inclusions and C/O isotopes: a case study on the Cambrian strata of Middle Yangtze area[J]. Natural Gas Industry, 2021, 41(2): 47-55. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202102010.htm [10] 刘安, 蔡全升, 陈孝红, 等. 湘西沅麻盆地印支期以来古流体特征及其对寒武系页岩气勘探方向的指示[J]. 地球科学, 2021, 46(10): 3615-3628. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202110016.htmLIU An, CAI Quansheng, CHEN Xiaohong, et al. Paleofluid characteristics since Indosinian movement in Yuanma Basin, west Hunan: significance for Cambrian shale gas exploration[J]. Earth Science, 2021, 46(10): 3615-3628. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202110016.htm [11] 余光春, 魏祥峰, 李飞, 等. 上扬子地区断裂活动对页岩气保存的破坏作用[J]. 石油实验地质, 2020, 42(3): 355-362. doi: 10.11781/sysydz202003355YU Guangchun, WEI Xiangfeng, LI Fei, et al. Disruptive effects of faulting on shale gas preservation in Upper Yangtze region[J]. Petroleum Geology & Experiment, 2020, 42(3): 355-362. doi: 10.11781/sysydz202003355 [12] 张国伟, 程顺有, 郭安林, 等. 秦岭—大别中央造山系南缘勉略古缝合带的再认识: 兼论中国大陆主体的拼合[J]. 地质通报, 2004, 23(9/10): 846-853. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2004Z2004.htmZHANG Guowei, CHENG Shunyou, GUO Anlin, et al. Mianlue paleo-suture on the southern margin of the Central Orogenic System in Qinling-Dabie: with a discussion of the assembly of the main part of the continent of China[J]. Geological Bulletin of China, 2004, 23(9/10): 846-853. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2004Z2004.htm [13] LI S Z, ZHAO G C, ZHANG G W, et al. Not all folds and thrusts in the Yangtze foreland thrust belt are related to the Dabie Orogen: insights from Mesozoic deformation south of the Yangtze River[J]. Geological Journal, 2010, 45(5/6): 650-663. [14] ZHANG Guowei, MENG Qingren, LAI Shaocong. Tectonics and structure of Qinling orogenic belt[J]. Science in China (Series B), 1995, 38(11): 1379-1394. [15] SHI Wei, ZHANG Yueqiao, DONG Shuwen, et al. Intra-continental Dabashan orocline, southwestern Qinling, central China[J]. Journal of Asian Earth Sciences, 2012, 46: 20-38. [16] 王凯, 刘少峰, 姜承鑫, 等. 扬子板块北缘中段多期褶皱构造的变形特征及叠加关系[J]. 大地构造与成矿学, 2015, 39(2): 231-240. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201502003.htmWANG Kai, LIU Shaofeng, JIANG Chengxin, et al. Structural style and superposed relationship of multi-period folds in the middle segment of northern Yangtze Block[J]. Geotectonica et Metallogenia, 2015, 39(2): 231-240. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201502003.htm [17] RIVERS J M, JAMES N P, KYSER T K. Early diagenesis of carbo-nates on a cool-water carbonate shelf, southern Australia[J]. Journalof Sedimentary Research, 2008, 78(12): 784-802. [18] BOLES J R, EICHHUBL P, GARVEN G, et al. Evolution of a hydrocarbon migration pathway along basin-bounding faults: evidence from fault cement[J]. AAPG Bulletin, 2004, 88(7): 947-970. [19] JACOBSEN S B, KAUFMAN A J. The Sr, C and O isotopic evolution of Neoproterozoic seawater[J]. Chemical Geology, 1999, 161(1/3): 37-57. [20] 曾溅辉, 吴琼, 杨海军, 等. 塔里木盆地塔中地区地层水化学特征及其石油地质意义[J]. 石油与天然气地质, 2008, 29(2): 223-229. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200802010.htmZENG Jianhui, WU Qiong, YANG Haijun, et al. Chemical characte-ristics of formation water in Tazhong area of the Tarim Basin and their petroleum geological significance[J]. Oil & Gas Geology, 2008, 29(2): 223-229. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200802010.htm [21] SHAN Xiuqin, ZHANG Baomin, ZHANG Jing, et al. Paleofluid restoration and its application in studies of reservoir forming: a case study of the Ordovician in Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(3): 301-310. [22] 关云梅, 王兰生, 张鉴, 等. 四川盆地高含硫气藏地层水地化特征分析[J]. 天然气勘探与开发, 2011, 34(3): 21-23. https://www.cnki.com.cn/Article/CJFDTOTAL-TRKT201103005.htmGUAN Yunmei, WANG Lansheng, ZHANG Jian, et al. Geochemical characteristics of formation water in high H2S gas reservoirs, Sichuan Basin[J]. Natural Gas Exploration and Development, 2011, 34(3): 21-23. https://www.cnki.com.cn/Article/CJFDTOTAL-TRKT201103005.htm [23] 朱光有, 张水昌, 梁英波. 川东北飞仙关组H2S的分布与古环境的关系[J]. 石油勘探与开发, 2005, 32(4): 65-69. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200504013.htmZHU Guangyou, ZHANG Shuichang, LIANG Yingbo. Relationship between palaeoenvironment and the distribution of H2S in Feixianguan Formation, NE Sichuan Province[J]. Petroleum Exploration and Development, 2005, 32(4): 65-69. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200504013.htm [24] 陈斐然, 段金宝, 张汉荣, 等. 页岩气"压力系数"分级资源评价方法: 以川东南上奥陶统五峰组—下志留统龙马溪组为例[J]. 石油实验地质, 2020, 42(3): 405-414. doi: 10.11781/sysydz202003405CHEN Feiran, DUAN Jinbao, ZHANG Hanrong, et al. Shale gas resource evaluation based on"pressure coefficient": a case study of Upper Ordovician Wufeng-Lower Silurian Longmaxi formations in southeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2020, 42(3): 405-414. doi: 10.11781/sysydz202003405 [25] NIE Haikuan, HE Zhiliang, WANG Ruyue, et al. Temperature and origin of fluid inclusions in shale veins of Wufeng-Longmaxi formations, Sichuan Basin, South China: implications for shale gas preservation and enrichment[J]. Journal of Petroleum Science and Engineering, 2020, 193: 107329. [26] 郑冰. 中扬子区多源、多期油气成藏地球化学研究[D]. 成都: 成都理工大学, 2008: 43-54.ZHENG Bing. Geochemical study of hydrocarbon accumulations with multiple sources and multiple generation stages in the Middle Yangzi area[D]. Chengdu: Chengdu University of Technology, 2008: 43-54. [27] 宋庆伟, 颜丹平, 焦守涛, 等. 大巴山与雪峰山逆冲构造带J3-K1复合过程的响应: 鄂西秭归褶皱带构造样式与形成机制[J]. 地质学报, 2014, 88(8): 1382-1400. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201408003.htmSONG Qingwei, YAN Danping, JIAO Shoutao, et al. The response of compounding process of Dabashan and Xuefengshan Thrust Belt in J3-K1: the structural styles and formation mechanism of the Zigui Fold Belt, western Hubei[J]. Acta Geologica Sinica, 2014, 88(8): 1382-1400. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201408003.htm [28] ZHANG Yuying, HE Zhiliang, JIANG Shu, et al. Fracture types in the Lower Cambrian shale and their effect on shale gas accumulation, Upper Yangtze[J]. Marine and Petroleum Geology, 2019, 99: 282-291.