Geochemical characteristics of reservoir bitumen and its relationship with hydrocarbon evolution in well SHB1-X-3, Shunbei No.1 fault zone, Tarim Basin
-
摘要: 塔里木盆地塔中北坡顺北1号断裂带SHB1-X-3井在奥陶系一间房组7 265~7 275 m泥晶灰岩钻遇三段缝洞充填沥青,累计厚度约3.25 m。为厘清该区的油气演化特征,对该储层固体沥青及其抽提物开展了有机岩石学以及有机地球化学方面的研究。显微镜下观察到泥晶灰岩的基质矿物以及泥质条带呈现出明显的荧光特征,并且在切割泥晶灰岩的方解石脉和石英脉中发育气液烃包裹体,上述产状关系说明至少存在早晚两期油气充注,其中沥青和气液烃包裹体分别为早、晚两期油气充注的产物。对含沥青灰岩的抽提物和顺北1号断裂带上原油进行有机地球化学对比分析认为,沥青和原油的生源条件相似,均来自还原环境下、以藻类等低等生物为主要成烃母质的海相泥质烃源岩,与寒武系玉尔吐斯组烃源岩有较强亲缘关系。原油裂解气在现今油气藏中占比低,推测早期充注的原油规模小,裂解生成气对现今油藏贡献不大。Abstract: Three sections of fracture-cave filling bitumen with a total thickness of approximately 3.25 m were discovered between 7 265 m and 7 275 m in Ordovician Yijianfang Formation micrites in the well SHB1-X-3, Shunbei No.1 fault zone, central Tarim Basin. In this paper, detailed organic petrological and geochemical analyses were carried out on solid bitumen and related extracts. The matrix minerals and argillaceous belts within micrites showed obvious fluorescence characteristics. The fractures of micrites are filled with gas-liquid hydrocarbon inclusions in calcite and quartz veins. The above occurrence relationship shows that there are at least two stages of hydrocarbon charging, and bitumen and gas-liquid hydrocarbon inclusions are the products of hydrocarbon charging in the early and late stages, respectively. Geochemical characteristics of the extracts of bituminous limestones and the crude oil in Shunbei No.1 fault zone indicate that the biogenic conditions of bitumen and crude oil are similar, both of which come from marine decay under reducing environment. The Cambrian Yu'ertusi mudstones with algae as the main hydrocarbon source may be the major source rocks of bitumen and crude oil discovered. The proportion of crude oil cracked gas in the current oil and gas reservoirs is very low. It is speculated that the contribution of cracked gas to the current oil and gas reservoirs is limited.
-
图 8 塔里木盆地顺北1号断裂带原油、沥青抽提物和烃包裹体的Pr/nC17—Ph/nC18关系
底图据文献[38]。
Figure 8. Pr/nC17 vs. Ph/nC18 of crude oil, bitumen extracts and inclusions, Shunbei No.1 fault zone, Tarim Basin
表 1 塔里木盆地顺北1号断裂带SHB1-X-3井群体烃包裹体和该区原油的饱和烃参数
Table 1. Parameters of group inclusions and crude oil in well SHB1-X-3, Shunbei No.1 fault zone, Tarim Basin
样品号 样品性质 主峰碳 OEP Pr/nC17 Ph/nC18 Pr/Ph (Pr+C17)/(Ph+C18) SHB1-X-3-A 烃包裹体 C11 0.96 0.39 0.74 0.68 1.03 SHB1-X-3-B 烃包裹体 C14 1.00 0.39 0.70 0.71 1.05 SHB1-X-3 原油 C7 1.03 0.39 0.49 0.96 1.13 SHB1-X-6 原油 C7 0.97 0.27 0.40 0.83 1.10 SHB1-X-7 原油 C7 0.97 0.32 0.36 1.01 1.03 SHB1-X-2 原油 C8 0.96 0.32 0.39 0.94 1.09 SHB1-X-5 原油 C9 0.98 0.39 0.47 0.98 1.11 注:表中群体烃包裹体数据依据包裹体在线分析GCMS m/z85获得;原油的各参数依据原油全烃色谱获得。 表 2 塔里木盆地顺北1号断裂带SHB1-X-3井中沥青的激光拉曼特征及反射率换算
Table 2. Laser Raman characteristics and reflectivity conversion of bitumen in well SHB1-X-3, Shunbei No.1 fault zone, Tarim Basin
序号 D峰拉曼位移/cm-1 G峰拉曼位移/cm-1 D-G峰间距/cm-1 沥青反射率/%1) 等效镜质体反射率/%2) 沥青亮度 1 1 346.93 1 598.28 251.35 2.31 1.89 暗 2 1 346.93 1 598.25 251.32 2.31 1.89 暗 3 1 343.38 1 596.12 252.74 2.39 1.94 亮 4 1 344.09 1 597.03 252.94 2.40 1.95 亮 5 1 344.49 1 597.51 253.02 2.41 1.95 亮 6 1 343.96 1 596.75 252.79 2.39 1.94 亮 7 1 345.56 1 597.22 251.66 2.33 1.90 亮 8 1 345.75 1 597.54 251.79 2.33 1.90 亮 9 1 345.14 1 597.75 252.61 2.38 1.94 暗 10 1 347.37 1 597.85 250.48 2.26 1.85 暗 11 1 347.39 1 597.74 250.35 2.25 1.85 暗 12 1 344.86 1 597.74 252.88 2.40 1.95 暗 13 1 347.43 1 598.45 251.02 2.29 1.88 暗 1)据王茂林等[29]公式换算;
2)据刘德汉等[27]公式换算。表 3 塔里木盆地顺北1号断裂带沥青抽提物和原油的地球化学参数
Table 3. Geochemical parameters of bitumen extracts and crude oil, Shunbei No.1 fault zone, Tarim Basin
样品 样品号 δ13C/‰ C27/(C27-C29)ST C28/(C27-C29)ST C29/(C27-C29)ST C21/ C23TT C24TeT/C26TT g/C30H ETR 沥青抽提物 SHB1-3-1 -31.1 0.32 0.30 0.38 0.67 0.50 0.48 0.74 SHB1-3-5 -31.3 0.34 0.30 0.36 0.79 0.58 0.47 0.74 SHB1-3-B -31.5 0.36 0.25 0.39 0.66 0.46 0.57 0.77 原油 SHB1-X-3 -31.9 0.42 0.20 0.38 0.51 0.42 0.85 SHB1-X-1 -32.3 0.52 0.35 0.80 SHB1-X-6 -32.0 0.34 0.31 0.36 0.58 0.45 0.87 SHB1-X-7 -31.8 0.32 0.27 0.40 0.48 0.36 0.82 SHB1-X-2 -31.9 0.40 0.25 0.35 0.59 0.43 0.92 注:ST.规则甾烷;TT.三环萜烷;TeT.四环萜烷;ETR=(C28TT+C29TT)/(C28TT+C29TT+Ts)。 -
[1] 焦方正. 塔里木盆地顺托果勒地区北东向走滑断裂带的油气勘探意义[J]. 石油与天然气地质, 2017, 38(5): 831-839. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201705001.htmJIAO Fangzheng. Significance of oil and gas exploration in NE strikeslip fault belts in Shuntuoguole area of Tarim Basin[J]. Oil & Gas Geology, 2017, 38(5): 831-839. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201705001.htm [2] 焦方正. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J]. 石油与天然气地质, 2018, 39(2): 207-216. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201802002.htmJIAO Fangzheng. Significance and prospect of ultra-deep carbonate fault-karst reservoirs in Shunbei area, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(2): 207-216. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201802002.htm [3] 邓尚, 李慧莉, 张仲培, 等. 塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集的关系[J]. 石油与天然气地质, 2018, 39(5): 878-888. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805004.htmDENG Shang, LI Huili, ZHANG Zhongpei, et al. Characteristics of differential activities in major strike-slip fault zones and their control on hydrocarbon enrichment in Shunbei area and its surroundings, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(5): 878-888. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805004.htm [4] 邓尚, 李慧莉, 韩俊, 等. 塔里木盆地顺北5号走滑断裂中段活动特征及其地质意义[J]. 石油与天然气地质, 2019, 40(5): 990-998. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201905004.htmDENG Shang, LI Huili, HAN Jun, et al. Characteristics of the central segment of Shunbei 5 strike-slip fault zone in Tarim Basin and its geological significance[J]. Oil & Gas Geology, 2019, 40(5): 990-998. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201905004.htm [5] 赵锐, 赵腾, 李慧莉, 等. 塔里木盆地顺北油气田断控缝洞型储层特征与主控因素[J]. 特种油气藏, 2019, 26(5): 8-13. doi: 10.3969/j.issn.1006-6535.2019.05.002ZHAO Rui, ZHAO Teng, LI Huili, et al. Fault-controlled fracture-cavity reservoir characterization and main-controlling factors in the Shunbei hydrocarbon field of Tarim Basin[J]. Special Oil & Gas Reservoirs, 2019, 26(5): 8-13. doi: 10.3969/j.issn.1006-6535.2019.05.002 [6] 李山明, 宋全友, 李宝刚, 等. 阿满地区顺北1号走滑断裂带差异性及油气富集规律[J]. 河南科学, 2019, 37(5): 797-805. doi: 10.3969/j.issn.1004-3918.2019.05.018LI Shanming, SONG Quanyou, LI Baogang, et al. Difference of Shunbei 1 strike-slip fault zone and the regularity of oil and gas accumulation in Aman area[J]. Henan Science, 2019, 37(05): 797-805. doi: 10.3969/j.issn.1004-3918.2019.05.018 [7] 曹自成, 路清华, 顾忆, 等. 塔里木盆地顺北油气田1号和5号断裂带奥陶系油气藏特征[J]. 石油与天然气地质, 2020, 41(5): 975-984. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202005009.htmCAO Zicheng, LU Qinghua, GU Yi, et al. Characteristics of Ordovician reservoirs in Shunbei 1 and 5 fault zones, Tarim Basin[J]. Oil & Gas Geology, 2020, 41(5): 975-984. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202005009.htm [8] 漆立新. 塔里木盆地顺北超深断溶体油藏特征与启示[J]. 中国石油勘探, 2020, 25(1): 102-111. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202001010.htmQI Lixin. Characteristics and inspiration of ultra-deep fault-karst reservoir in the Shunbei area of the Tarim Basin[J]. China Petro-leum Exploration, 2020, 25(1): 102-111. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202001010.htm [9] 伍齐乔, 李景瑞, 曹飞, 等. 顺北1井区奥陶系断溶体油藏岩溶发育特征[J]. 中国岩溶, 2019, 38(3): 444-449. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201903018.htmWU Qiqiao, LI Jingrui, CAO Fei, et al. Characteristics of fault-karst carbonate reservoirs in the Shunbei No.1 well block, Tarim Basin[J]. Carsologica Sinica, 2019, 38(3): 444-449. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201903018.htm [10] 王昱翔, 王斌, 顾忆, 等. 塔里木盆地顺北地区中下奥陶统缝洞充填方解石地球化学特征及地质意义[J]. 石油实验地质, 2019, 41(4): 583-592. doi: 10.11781/sysydz201904583WANG Yuxiang, WANG Bin, GU Yi, et al. Geochemical characteristics and geological significance of calcite filled fractures and caves in Middle-Lower Ordovician, northern Shuntuoguole area, Tarim Basin[J]. Petroleum Geology & Experiment, 2019, 41(4): 583-592. doi: 10.11781/sysydz201904583 [11] 高晓歌, 吴鲜, 洪才均, 等. 顺北油田1号断裂带奥陶系原油地球化学特征[J]. 石油地质与工程, 2018, 32(6): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN201806010.htmGAO Xiaoge, WU Xian, HONG Caijun, et al. Geochemical characteristics of Ordovician crude oil in the No.1 fault zone of Shunbei oilfield[J]. Petroleum Geology and Engineering, 2018, 32(6): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN201806010.htm [12] 罗明霞, 夏永涛, 邵小明, 等. 塔里木盆地顺北油气田不同层系原油地球化学特征对比及成因分析[J]. 石油实验地质, 2019, 41(6): 849-854. doi: 10.11781/sysydz201906849LUO Mingxia, XIA Yongtao, SHAO Xiaoming, et al. Geochemical characteristics and origin of oil from different strata in Shunbei oil and gas field, Tarim Basin[J]. Petroleum Geology & Experiment, 2019, 41(6): 849-854. doi: 10.11781/sysydz201906849 [13] 马安来, 金之钧, 李慧莉, 等. 塔里木盆地顺北地区奥陶系超深层油藏蚀变作用及保存[J]. 地球科学, 2020, 45(5): 1737-1753. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202005017.htmMA Anlai, JIN Zhijun, LI Huili, et al. Secondary alteration and preservation of ultra-deep Ordovician oil reservoirs of north Shuntuoguole area of Tarim Basin, NW China[J]. Earth Science, 2020, 45(5): 1737-1753. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202005017.htm [14] 韩强, 云露, 蒋华山, 等. 塔里木盆地顺北地区奥陶系油气充注过程分析[J]. 吉林大学学报(地球科学版), 2021, 51(3): 645-658. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202103001.htmHAN Qiang, YUN Lu, JIANG Huashan, et al. Marine oil and gas filling and accumulation process in the north of Shuntuoguole area in northern Tarim Basin[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(3): 645-658. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202103001.htm [15] 王玉伟, 陈红汉, 郭会芳, 等. 塔里木盆地顺1走滑断裂带超深储层油气充注历史[J]. 石油与天然气地质, 2019, 40(5): 972-989. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201905003.htmWANG Yuwei, CHEN Honghan, GUO Huifang, et al. Hydrocarbon charging history of the ultra-deep reservoir in Shun 1 strike-slip fault zone, Tarim Basin[J]. Oil & Gas Geology, 2019, 40(5): 972-989. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201905003.htm [16] 陈强路, 席斌斌, 韩俊, 等. 塔里木盆地顺托果勒地区超深层油藏保存及影响因素: 来自流体包裹体的证据[J]. 中国石油勘探, 2020, 25(3): 121-133. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202003011.htmCHEN Qianglu, XI Binbin, HAN Jun, et al. Preservation and influence factors of ultra-deep oil reservoirs in Shuntuoguole area, Tarim Basin: evidence from fluid inclusions[J]. China Petroleum Exploration, 2020, 25(3): 121-133. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202003011.htm [17] 李萌, 汤良杰, 李宗杰, 等. 走滑断裂特征对油气勘探方向的选择: 以塔中北坡顺1井区为例[J]. 石油实验地质, 2016, 38(1): 113-121. doi: 10.11781/sysydz201601113LI Meng, TANG Liangjie, LI Zongjie, et al. Fault characteristics and their petroleum geology significance: a case study of well Shun-1 on the northern slope of the central Tarim Basin[J]. Petroleum Geology & Experiment, 2016, 38(1): 113-121. doi: 10.11781/sysydz201601113 [18] 谷茸, 云露, 朱秀香, 等. 塔里木盆地顺北油田油气来源研究[J]. 石油实验地质, 2020, 42(2): 248-254. doi: 10.11781/sysydz202002248GU Rong, YUN Lu, ZHU Xiuxiang, et al. Oil and gas sources in Shunbei Oilfield, Tarim Basin[J]. Petroleum Geology & Experiment, 2020, 42(2): 248-254. doi: 10.11781/sysydz202002248 [19] 潘文庆, 陈永权, 熊益学, 等. 塔里木盆地下寒武统烃源岩沉积相研究及其油气勘探指导意义[J]. 天然气地球科学, 2015, 26(7): 1224-1232. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201507003.htmPAN Wenqing, CHEN Yongquan, XIONG Yixue, et al. Sedimentary facies research and implications to advantaged exploration regions on Lower Cambrian source rocks, Tarim Basin[J]. Natural Gas Geoscience, 2015, 26(7): 1224-1232. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201507003.htm [20] 吕海涛, 丁勇, 耿锋. 塔里木盆地奥陶系油气成藏规律与勘探方向[J]. 石油与天然气地质, 2014, 35(6): 798-805. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201406009.htmLÜ Haitao, DING Yong, GENG Feng. Hydrocarbon accumulation patterns and favorable exploration areas of the Ordovician in Tarim Basin[J]. Oil & Gas Geology, 2014, 35(6): 798-805. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201406009.htm [21] 顾忆, 赵永强, 贾存善, 等. 塔里木盆地阿瓦提坳陷油气资源潜力分析[J]. 石油实验地质, 2012, 34(3): 257-266. doi: 10.11781/sysydz201203257GU Yi, ZHAO Yongqiang, JIA Cunshan, et al. Analysis of hydrocarbon resource potential in Awati Depression of Tarim Basin[J]. Petroleum Geology & Experiment, 2012, 34(3): 257-266. doi: 10.11781/sysydz201203257 [22] 戈一伟, 李坤. 塔里木地区下寒武统玉尔吐斯组烃源岩地球化学特征[J]. 重庆科技学院学报(自然科学版), 2014, 16(1): 8-12. https://www.cnki.com.cn/Article/CJFDTOTAL-CQSG201401004.htmGE Yiwei, LI Kun. On geochemical characteristics of source rock of the Lower Cambrian Yuertusi Formation in Tarim Basin[J]. Journal of Chongqing University of Science and Technology (Natural Sciences Edition), 2014, 16(1): 8-12. https://www.cnki.com.cn/Article/CJFDTOTAL-CQSG201401004.htm [23] 朱光有, 陈斐然, 陈志勇, 等. 塔里木盆地寒武系玉尔吐斯组优质烃源岩的发现及其基本特征[J]. 天然气地球科学, 2016, 27(1): 8-21. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201601003.htmZHU Guangyou, CHEN Feiran, CHEN Zhiyong, et al. Discovery and basic characteristics of the high-quality source rocks of the Cambrian Yuertusi Formation in Tarim Basin[J]. Natural Gas Geoscience, 2016, 27(1): 8-21. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201601003.htm [24] 马安来, 李慧莉, 李杰豪, 等. 塔里木盆地柯坪露头剖面中上奥陶统烃源岩地球化学特征与海相油源对比[J]. 天然气地球科学, 2020, 31(1): 47-60. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202001005.htmMA Anlai, LI Huili, LI Jiehao, et al. The geochemical characteristics of Middle-Upper Ordovician source rocks in Keping outcrops profiles and marine oil-source correlation, Tarim Basin, NW China[J]. Natural Gas Geoscience, 2020, 31(1): 47-60. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202001005.htm [25] 彼得斯K E, 沃尔特斯C C, 莫尔多万J M. 生物标志化合物指南下册: 生物标志化合物和同位素在石油勘探与地史研究中的应用[M]. 2版. 张水昌, 李振西, 译. 北京: 石油工业出版社, 2011.PETERS K E, WALTERS C C, MOLDOWAN J M. The biomarker guide[M]. 2nd ed. ZHANG Shuichang, LI Zhenxi, trans. Beijing: Peteoleum Industry Press, 2011. [26] MASTALERZ M, DROBNIAK A, STANKIEWICZ A B. Origin, properties, and implications of solid bitumen in source-rock reservoirs: a review[J]. International Journal of Coal Geology, 2018, 195: 14-36. [27] 刘德汉, 肖贤明, 田辉, 等. 固体有机质拉曼光谱参数计算样品热演化程度的方法与地质应用[J]. 科学通报, 2013, 58(13): 1228-1241. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201313010.htmLIU Dehan, XIAO Xianming, TIAN Hui, et al. Sample maturation calculated using Raman spectroscopic parameters for solid organics: methodology and geological applications[J]. Chinese Science Bulletin, 2013, 58(11): 1285-1298. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201313010.htm [28] 房忱琛, 熊永强, 李芸, 等. 原油裂解过程中固体沥青的拉曼光谱演化特征[J]. 地球化学, 2015, 44(2): 196-204. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201502009.htmFANG Chenchen, XIONG Yongqiang, LI Yun, et al. Raman spectra characteristics of solid bitumens generated during oil cracking[J]. Geochimica, 2015, 44(2): 196-204. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201502009.htm [29] 王茂林, 肖贤明, 魏强, 等. 页岩中固体沥青拉曼光谱参数作为成熟度指标的意义[J]. 天然气地球科学, 2015, 26(9): 1712-1718. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201509013.htmWANG Maolin, XIAO Xianming, WEI Qiang, et al. Thermal maturation of solid bitumen in shale as revealed by Raman spectroscopy[J]. Natural Gas Geoscience, 2015, 26(9): 1712-1718. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201509013.htm [30] 雷锐. 热成因固体沥青的形成过程及主控因素[D]. 广州: 中国科学院大学(中国科学院广州地球化学研究所), 2019.LEI Rui. Formation process and main influencing factors of thermogenic solid bitumen[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2019. [31] ZHANG Shuichang, HUANG Haiping. Geochemistry of Palaeozoic marine petroleum from the Tarim Basin, NW China: part 1. Oil family classification[J]. Organic Geochemistry, 2005, 36(8): 1204-1214. [32] 马安来, 金之钧, 张水昌, 等. 塔里木盆地寒武—奥陶系烃源岩的分子地球化学特征[J]. 地球化学, 2006, 35(6): 593-601. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200606003.htmMA Anlai, JIN Zhijun, ZHANG Shuichang, et al. Molecular geoche-mical characteristics of Cambrian-Ordovician source rocks in Tarim Basin, NW China[J]. Geochimica, 2006, 35(6): 593-601. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200606003.htm [33] ZHANG Shuichang, SU Jin, WANG Xiaomei, et al. Geochemistry of Palaeozoic marine petroleum from the Tarim Basin, NW China: part 3. Thermal cracking of liquid hydrocarbons and gas washing as the major mechanisms for deep gas condensate accumulations[J]. Organic Geochemistry, 2011, 42(11): 1394-1410. [34] 王倩茹, 陈红汉, 赵玉涛, 等. 塔中北坡顺托果勒地区志留系油气成藏期差异性分析[J]. 地球科学, 2018, 43(2): 577-593. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201802018.htmWANG Qianru, CHEN Honghan, ZHAO Yutao, et al. Differences of hydrocarbon accumulation periods in Silurian of Tazhong northern slope, Tarim Basin[J]. Earth Science, 2018, 43(2): 577-593. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201802018.htm [35] 顾忆, 黄继文, 贾存善, 等. 塔里木盆地海相油气成藏研究进展[J]. 石油实验地质, 2020, 42(1): 1-12. doi: 10.11781/sysydz202001001GU Yi, HUANG Jiwen, JIA Cunshan, et al. Research progress on marine oil and gas accumulation in Tarim Basin[J]. Petroleum Geology & Experiment, 2020, 42(1): 1-12. doi: 10.11781/sysydz202001001 [36] OURISSON G, ROHMER M. Prokaryotic polyterpenes: phylogenetic precursors of sterols[J]. Current Topics in Membranes and Transport, 1982, 17: 153-182. [37] 翟晓先, 顾忆, 钱一雄, 等. 塔里木盆地塔深1井寒武系油气地球化学特征[J]. 石油实验地质, 2007, 29(4): 329-333. doi: 10.11781/sysydz200704329ZHAI Xiaoxian, GU Yi, QIAN Yixiong, et al. Geochemical characteristics of the Cambrian oil and gas in well Tashen 1, the Tarim Basin[J]. Petroleum Geology & Experiment, 2007, 29(4): 329-333. doi: 10.11781/sysydz200704329 [38] LI Maowen, FOWLER M G, OBERMAJER M, et al. Geochemical characterization of Middle Devonian oils in NW Alberta, Canada: possible source and maturity effect on pyrrolic nitrogen compounds[J]. Organic Geochemistry, 1999, 30(9): 1039-1057. [39] HOLBA A G, ELLIS L, DZOU I L, et al. Extended tricyclic terpanes as age discriminators between Triassic, Early Jurassic and Middle-Late Jurassic oils[C]//Presented at the 20th International Meeting on Organic Geochemistry. Nancy, France: [s. n.], 2001. [40] 王大锐. 油气稳定同位素地球化学[M]. 北京: 石油工业出版社, 2000.WANG Darui. Oil and gas stable isotope geochemistry[M]. Beijing: Petroleum Industry Press, 2000. [41] ZHU Guangyou, MILKOV A V, LI Jingfei, et al. Deepest oil in Asia: characteristics of petroleum system in the Tarim Basin, China[J]. Journal of Petroleum Science and Engineering, 2020, 199(4): 108246. [42] CURTIS M E, CARDOTT B J, SONDERGELD C H, et al. Development of organic porosity in the Woodford shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012, 103: 26-31. [43] 马中良, 郑伦举, 徐旭辉, 等. 富有机质页岩有机孔隙形成与演化的热模拟实验[J]. 石油学报, 2017, 38(1): 23-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201701003.htmMA Zhongliang, ZHENG Lunju, XU Xuhui, et al. Thermal simulation experiment on the formation and evolution of organic pores in organic-rich shale[J]. Acta Petrolei Sinica, 2017, 38(1): 23-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201701003.htm [44] HILL R J, TANG Yongchun, KAPLAN I R. Insights into oil cracking based on laboratory experiments[J]. Organic Geochemistry, 2003, 34(12): 1651-1672. [45] 韩金平, 黄光辉, 张敏, 等. 定量表征原油裂解程度的模拟实验研究[J]. 地球化学, 2010, 39(1): 82-89. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201001013.htmHAN Jinping, HUANG Guanghui, ZHANG Min, et al. Study of simulated experiment on quantitatively characterizing crude oil cracking[J]. Geochimica, 2010, 39(1): 82-89. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201001013.htm