留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

准噶尔盆地南缘下组合煤系烃源岩生烃模拟及高探1井油气源研究

于淼 高岗 靳军 马万云 何丹 向宝力 樊柯廷 刘苗

于淼, 高岗, 靳军, 马万云, 何丹, 向宝力, 樊柯廷, 刘苗. 准噶尔盆地南缘下组合煤系烃源岩生烃模拟及高探1井油气源研究[J]. 石油实验地质, 2022, 44(4): 687-697. doi: 10.11781/sysydz202204687
引用本文: 于淼, 高岗, 靳军, 马万云, 何丹, 向宝力, 樊柯廷, 刘苗. 准噶尔盆地南缘下组合煤系烃源岩生烃模拟及高探1井油气源研究[J]. 石油实验地质, 2022, 44(4): 687-697. doi: 10.11781/sysydz202204687
YU Miao, GAO Gang, JIN Jun, MA Wanyun, HE Dan, XIANG Baoli, FAN Keting, LIU Miao. Hydrocarbon generation simulation of coaly source rocks in the Lower combination on the southern margin of Junggar Basin and indications for oil and gas sources of well Gaotan 1[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(4): 687-697. doi: 10.11781/sysydz202204687
Citation: YU Miao, GAO Gang, JIN Jun, MA Wanyun, HE Dan, XIANG Baoli, FAN Keting, LIU Miao. Hydrocarbon generation simulation of coaly source rocks in the Lower combination on the southern margin of Junggar Basin and indications for oil and gas sources of well Gaotan 1[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(4): 687-697. doi: 10.11781/sysydz202204687

准噶尔盆地南缘下组合煤系烃源岩生烃模拟及高探1井油气源研究

doi: 10.11781/sysydz202204687
基金项目: 

中石油新疆油田分公司对外协作项目 2020-C4006

详细信息
    作者简介:

    于淼(1997—), 男, 博士研究生, 从事油气勘探与开发研究。E-mail: 461973844@qq.com

    通讯作者:

    高岗(1966—), 男, 博士, 教授, 从事油气勘探与开发科研和教学工作。E-mail: gaogang2819@sina.com

  • 中图分类号: TE122.11

Hydrocarbon generation simulation of coaly source rocks in the Lower combination on the southern margin of Junggar Basin and indications for oil and gas sources of well Gaotan 1

  • 摘要: 随着准噶尔盆地勘探的不断深入,准南下组合日益成为油气勘探的重点,但目前针对下组合烃源岩生烃演化特征尚未进行系统性研究,不同岩性煤系烃源岩生烃能力和生油气量如何等尚未进行系统性实验分析。最近获得高产的高泉背斜高探1井油气与哪种岩性煤系源岩关系最为密切等都值得进一步讨论。通过对侏罗系煤岩、碳质泥岩和泥岩进行密闭容器高压釜加水热模拟实验,对3种岩性煤系烃源岩生烃特征及油气源对比进行了研究。碳质泥岩和泥岩具有较高的生油潜力,碳质泥岩是侏罗系煤成油的主要贡献者,且角质体可能是碳质泥岩主要生油母质。煤岩在更高演化阶段较碳质泥岩和泥岩具有更高的生气潜力,且主要为干酪根降解气。模拟气体随演化程度升高均不同程度出现碳同位素分馏效应,即随成熟度增加气体稳定碳同位素先变轻后变重,且δ13C1分馏效应较δ13C2明显。结合模拟实验进一步对高探1井油气源进行了分析,认为高探1井下白垩统清水河组原油主要为侏罗系碳质泥岩生成的较高成熟度原油,而3种岩性煤系烃源岩对天然气均有贡献。

     

  • 图  1  准噶尔盆地南缘侏罗系八道湾组煤系烃源岩模拟排出油、气态烃及各组分产率相关图

    Figure  1.  Simulated oil and gas emission and correlation diagram of each component yield of coal measure source rocks from Lower Jurassic Badaowan Formation, southern margin of Junggar Basin

    图  2  准噶尔盆地南缘侏罗系八道湾组煤系烃源岩模拟δ13C1δ13C2演变特征

    Figure  2.  δ13C1 and δ13C2 evolution of coal measure source rocks from Lower Jurassic Badaowan Formation, southern margin of Junggar Basin

    图  3  准噶尔盆地南缘侏罗系八道湾组煤系烃源岩热模拟液态烃(Poil)、气态烃产率(Pgas)与Ro关系

    Figure  3.  Correlation between simulated oil and gas yields and Ro of coal measure source rocks in Lower Jurassic Badaowan Formation, southern margin of Junggar Basin

    图  4  准噶尔盆地南缘高探1井下白垩统清水河组原油与可能烃源岩对比

    Figure  4.  Correlation between possible source rocks and crude oil in Lower Cretaceous Qingshuihe Formation, well Gaotan 1, southern margin of Junggar Basin

    图  5  准噶尔盆地南缘高探1井下白垩统清水河组原油生标物质谱图

    Figure  5.  Biomarker spectrum of crude oil in Lower Cretaceous Qingshuihe Formation, well Gaotan 1, southern margin of Junggar Basin

    图  6  准噶尔盆地南缘高探1井下白垩统清水河组原油与碳质泥岩模拟排出油生标物对比

    Figure  6.  Comparison of biomarkers between simulated discharged oil from carbonaceous mudstone and crude oil in Lower Cretaceous Qingshuihe Formation, well Gaotan 1, southern margin of Junggar Basin

    图  7  准噶尔盆地南缘侏罗系八道湾组碳质泥岩热模拟排出油色谱—质谱图

    Figure  7.  Chromatography and mass spectrometry of carbonaceous mudstone in Jurassic Badaowan Formation, southern margin of Junggar Basin

    图  8  准噶尔盆地南缘侏罗系八道湾组碳质泥岩热模拟有机显微组分演化

    Figure  8.  Thermal simulation of organic maceral evolution of carbonaceous mudstone in Jurassic Badaowan Formation, southern margin of Junggar Basin

    图  9  准噶尔盆地南缘油气田分布及侏罗系煤系源岩成熟度[34]

    Figure  9.  Distribution of oil and gas fields and maturity of Jurassic coal measure source rocks on the southern margin of Junggar Basin

    图  10  准噶尔盆地南缘高探1井天然气成因类型判识

    图 10b的图版据文献[36, 42-44]。

    Figure  10.  Identification of genetic type of natural gas in well Gaotan 1, southern margin of Junggar Basin

    图  11  准噶尔盆地南缘高探1井甲烷碳同位素(a)、乙烷碳同位素(b)与模拟气碳同位素对比

    Figure  11.  Comparison of carbon isotope between methane (a), ethane (b) and simulated gas in well Gaotan 1, southern margin of Junggar Basin

    图  12  准噶尔盆地南缘高探1井地震地质解释剖面

    Figure  12.  Seismic geological interpretation section of well Gaotan 1, southern margin of Junggar Basin

    表  1  准噶尔盆地南缘NA井侏罗系八道湾组烃源岩模拟样品地球化学特征

    Table  1.   Geochemical characteristics of source rock samples from Lower Jurassic Badaowan Formation, well NA, southern margin of Junggar Basin

    样品编号 样品岩性 取样深度/m ω(TOC)/% Tmax/℃ S1/(mg·g-1) S2/(mg·g-1) Ro/% 干酪根类型 有机显微组分 沉积环境
    NA-1 煤岩 485.44 67.44 426 0.63 134.60 0.54% 2 基质镜质体为主,少量孢子体 湖沼相
    NA-2 碳质泥岩 484.32 31.88 425 1.39 54.17 0.52% 2 角质体为主 湖沼相
    NA-3 泥岩 483.07 3.14 437 2.59 6.86 0.53% 2 孢子体为主,少量角质体 湖沼相
    下载: 导出CSV

    表  2  准噶尔盆地南缘高泉油气田高探1井下白垩统清水河组天然气组分与碳同位素统计

    Table  2.   Statistics of natural gas components and carbon isotopes of Lower Cretaceous Qingshuihe Formation in well Gaotan 1, Gaoquan Oil and Gas Field, southern margin of Junggar Basin

    采样深度/m C1/% C2/% C3/% δ13C1/‰ δ13C2/‰ δ13C3/‰
    5 768~5 775 76.50 13.32 5.94 -40.49 -29.14 -26.9
    5 768~5 775 74.44 13.39 6.82 -40.35 -28.74 -26.54
    5 768~5 775 58.93 10.78 5.34 -40.68 -28.92 -26.42
    5 768~5 775 76.62 12.32 5.68 -40.72 -29.01 -26.53
    5 768~5 775 78.34 12.60 5.45 -40.46 -28.91 -26.22
    下载: 导出CSV
  • [1] 陈建平, 王绪龙, 邓春萍, 等. 准噶尔盆地南缘油气生成与分布规律: 烃源岩地球化学特征与生烃史[J]. 石油学报, 2015, 36(7): 767-780.

    CHEN Jianping, WANG Xulong, DENG Chunping, et al. Geoche-mcial features of source rocks in the southern margin, Junggar Basin, Northwestern China[J]. Acta Petrolei Sinica, 2015, 36(7): 767-780.
    [2] 龙华山, 王绪龙, 向才富, 等. 准噶尔盆地南缘侏罗系烃源岩评价[J]. 现代地质, 2013, 27(5): 1070-1080. doi: 10.3969/j.issn.1000-8527.2013.05.009

    LONG Huashan, WANG Xulong, XIANG Caifu, et al. Evaluation on Jurassic hydrocarbon source rock developed in southern margin of Junggar Basin[J]. Geoscience, 2013, 27(5): 1070-1080. doi: 10.3969/j.issn.1000-8527.2013.05.009
    [3] 郭继刚, 王绪龙, 庞雄奇, 等. 准噶尔盆地南缘中下侏罗统烃源岩评价及排烃特征[J]. 中国矿业大学学报, 2013, 42(4): 595-605. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201304014.htm

    GUO Jigang, WANG Xulong, PANG Xiongqi, et al. Evaluaton and hydrocarbon expulsion characteristics of the Middle-Lower Jurassic source rock in the southern margin of Junggar Basin[J]. Journal of China University of Mining & Technology, 2013, 42(4): 595-605. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201304014.htm
    [4] 杜金虎, 支东明, 李建忠, 等. 准噶尔盆地南缘高探1井重大发现及下组合勘探前景展望[J]. 石油勘探与开发, 2019, 46(2): 205-215.

    DU Jinhu, ZHI Dongming, LI Jianzhong, et al. Major breakthrough of well Gaotan 1 and exploration prospects of lower assemblage in southern margin of Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2019, 46(2): 205-215.
    [5] 雷德文, 唐勇, 常秋生. 准噶尔盆地南缘深部优质储集层及有利勘探领域[J]. 新疆石油地质, 2008, 29(4): 435-438. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD200804010.htm

    LEI Dewen, TANG Yong, CHANG Qiusheng. The deep and relatively high-quality clastic reservoir bodies and favorable exploration areas in southern margin of Junggar Basin[J]. Xinjiang Petroleum Geology, 2008, 29(4): 435-438. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD200804010.htm
    [6] 魏东涛, 赵应成, 阿不力米提, 等. 准噶尔盆地南缘前陆冲断带油气成藏差异性分析[J]. 高校地质学报, 2010, 16(3): 339-350. doi: 10.3969/j.issn.1006-7493.2010.03.007

    WEI Dongtao, ZHAO Yingcheng, ABULIMITI, et al. Difference of hydrocarbon accumulation in the foreland thrust-fold belt of the southern Junggar Basin[J]. Geological Journal of China Universities, 2010, 16(3): 339-350. doi: 10.3969/j.issn.1006-7493.2010.03.007
    [7] 靳军, 王飞宇, 任江玲, 等. 四棵树凹陷高探1井高产油气成因与烃源岩特征[J]. 新疆石油地质, 2019, 40(2): 145-151.

    JIN Jun, WANG Feiyu, REN Jiangling, et al. Genesis of high-yield oil and gas in well Gaotan-1 and characteristics of source rocks in Sikeshu Sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 2019, 40(2): 145-151.
    [8] 陈建平, 王绪龙, 倪云燕, 等. 准噶尔盆地南缘天然气成因类型与气源[J]. 石油勘探与开发, 2019, 46(3): 461-473. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201903006.htm

    CHEN Jianping, WANG Xulong, NI Yunyan, et al. Genetic type and source of natural gas in the southern margin of Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2019, 46(3): 461-473. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201903006.htm
    [9] 王屿涛. 准噶尔盆地南缘油气资源潜力和富集规律[J]. 勘探家, 2000, 5(1): 49-51.

    WANG Yutao. Oil and gas resource potential and abundance law on southern periphery of Junggar Basin[J]. Petroleum Explorationist, 2000, 5(1): 49-51.
    [10] 李学义, 邵雨, 李天明. 准噶尔盆地南缘三个油气成藏组合研究[J]. 石油勘探与开发, 2003, 30(6): 32-34. doi: 10.3321/j.issn:1000-0747.2003.06.009

    LI Xueyi, SHAO Yu, LI Tianming. Three oil-reservoir combinations in south marginal of Jungar Basin, Northwest China[J]. Petroleum Exploration and Development, 2003, 30(6): 32-34. doi: 10.3321/j.issn:1000-0747.2003.06.009
    [11] 李吉君, 卢双舫, 薛海涛, 等. 准噶尔盆地南缘中下侏罗统煤系烃源岩生气史[J]. 新疆石油地质, 2010, 31(4): 369-371.

    LI Jijun, LU Shuangfang, XUE Haitao, et al. Gas-generating history from Middle-Lower Jurassic coal measures in southern margin of Junggar Basin[J]. Xinjiang Petroleum Geology, 2010, 31(4): 369-371.
    [12] 孙平安, 卞保力, 袁云峰, 等. 准噶尔盆地南缘天然气地球化学与成因研究[J]. 地球化学, 2015, 44(3): 275-288. doi: 10.3969/j.issn.0379-1726.2015.03.007

    SUN Pingan, BIAN Baoli, YUAN Yunfeng, et al. Natural gas in southern Junggar Basin in northwest China: geochemistry and origin[J]. Geochimica, 2015, 44(3): 275-288. doi: 10.3969/j.issn.0379-1726.2015.03.007
    [13] 马万云, 迪丽达尔·肉孜, 李际, 等. 准噶尔盆地南缘侏罗系烃源岩生烃特征[J]. 新疆石油地质, 2020, 41(1): 31-37.

    MA Wanyun, DILIDAER Rouzi, LI Ji, et al. Hydrocarbon generation of Jurassic source rocks in the southern margin of Junggar Basin[J]. Xinjiang Petroleum Geology, 2020, 41(1): 31-37.
    [14] 高岗. 油气生成模拟方法及其石油地质意义[J]. 天然气地球科学, 2000, 11(2): 25-29.

    GAO Gang. Method of petroleum-generating simulation and its petroleum geological significance[J]. Natural Gas Geoscience, 2000, 11(2): 25-29.
    [15] 刘栩, 程青松. 准噶尔盆地侏罗系煤系烃源岩有机显微组成及意义[J]. 河北工程大学学报(自然科学版), 2020, 37(3): 82-90.

    LIU Xu, CHENG Qingsong. Organic macerals of source rocks of Jurassic coal measures in Junggar Basin and their significance[J]. Journal of Hebei University of Engineering(Natural Science Edition), 2020, 37(3): 82-90.
    [16] 马风华, 潘进礼, 马瑞赟, 等. 六盘山盆地马东山组低熟泥页岩有机质类型划分[J]. 天然气地球科学, 2019, 30(9): 1370-1377.

    MA Fenghua, PAN Jinli, MA Ruiyun, et al. Division of immature mud-shale organic type of Madongshan Formation in Liupanshan Basin[J]. Natural Gas Geoscience, 2019, 30(9): 1370-1377.
    [17] 黄光辉, 张敏, 胡国艺, 等. 原油裂解气和干酪根裂解气的地球化学研究(Ⅱ): 原油裂解气和干酪根裂解气的区分方法[J]. 中国科学(D辑: 地球科学), 2008, 38(S2): 9-16.

    HUANG Guanghui, ZHANG Min, HU Guoyi, et al. Geochemical study on oil-cracked gases and kerogen-cracked gases (Ⅱ): discrimination methods between oil-cracked gases and kerogen-cracked gases[J]. Science in China(Series D: Earth Sciences), 2009, 52(S1): 10-18.
    [18] 帅燕华, 邹艳荣, 彭平安. 天然气甲烷碳同位素动力学模型与地质应用新进展[J]. 地球科学进展, 2003, 18(3): 405-411.

    SHUAI Yanhua, ZOU Yanrong, PENG Ping'an, et al. Kinetic model for the stable carbon isotope of methane: the state of the art[J]. Advance in Earth Sciences, 2003, 18(3): 405-411.
    [19] 田辉, 肖贤明, 李贤庆, 等. 海相干酪根与原油裂解气甲烷生成及碳同位素分馏的差异研究[J]. 地球化学, 2007, 36(1): 71-77.

    TIAN Hui, XIAO Xianming, LI Xianqing, et al. Comparison of gas generation and carbon isotope fractionation of methane from marine kerogen- and crude oil-cracking gases[J]. Geochimica, 2007, 36(1): 71-77.
    [20] 毛榕, 米敬奎, 张水昌, 等. 不同煤系源岩生烃特征的黄金管热模拟实验对比研究[J]. 天然气地球科学, 2012, 23(6): 1127-1134.

    MAO Rong, MI Jingkui, ZHANG Shuichang, et al. Study on the hydrocarbon generation characteristics of different coaly source rocks by gold-tube pyrolysis experiment[J]. Natural Gas Geoscience, 2012, 23(6): 1127-1134.
    [21] 陈磊, 郑伦举, 黄海平, 等. 碳酸盐岩烃源岩不同热模拟方式下气体碳同位素演变特征[J]. 石油实验地质, 2022, 44(1): 121-128. doi: 10.11781/sysydz202201121

    CHEN Lei, ZHENG Lunju, HUANG Haiping, et al. Carbon isotopic evolution of hydrocarbon gases generated from carbonate source rocks via different thermal simulation methods[J]. Petroleum Geo-logy & Experiment, 2022, 44(1): 121-128. doi: 10.11781/sysydz202201121
    [22] LU Shuangfang, LI Jijun, XUE Haitao, et al. Pyrolytic gaseous hydrocarbon generation and the kinetics of carbon isotope fractionation in representative model compounds with different chemical structures[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(4): 1773-1793.
    [23] GAO Jinliang, LIU Jiaqi, NI Yunyan. Gas generation and its isotope composition during coal pyrolysis: the catalytic effect of nickel and magnetite[J]. Fuel, 2018, 222: 74-82.
    [24] 高岗, 柳广弟, 王兆峰. 生烃模拟结果的校正[J]. 新疆石油地质, 2005, 26(2): 202-205.

    GAO Gang, LIU Guangdi, WANG Zhaofeng. Correction of results from hydrocarbon-generating simulation[J]. Xinjiang Petroleum Geology, 2005, 26(2): 202-205.
    [25] 郭春清, 沈忠民, 张林晔, 等. 准噶尔盆地南缘烃源岩生源特征及原油分类[J]. 成都理工大学学报(自然科学版), 2005, 32(3): 257-262.

    GUO Chunqing, SHEN Zhongmin, ZHANG Linye, et al. Biogenic origin characteristics of hydrocarbon source rocks and classification of oils in the south part of Junggar Basin, China[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2005, 32(3): 257-262.
    [26] 程克明, 赵长毅, 苏爱国, 等. 吐哈盆地煤成油气的地质地球化学研究[J]. 勘探家, 1997(2): 5-10. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY199702001.htm

    CHENG Keming, ZHAO Changyi, SU Aiguo, et al. Geological and geochemical studies on coal-formed oil and gas in Turpan-Hami Basin[J]. China Petroleum Exploration, 1997(2): 5-10. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY199702001.htm
    [27] 刘全有, 刘文汇, 宋岩, 等. 塔里木盆地煤岩显微组分热模拟实验中液态烃特征研究[J]. 天然气地球科学, 2004, 15(3): 297-301.

    LIU Quanyou, LIU Wenhui, SONG Yan, et al. Characteristics of liquid hydrocarbon for Tarim coal and its macerals in thermal pyrolysis experiments[J]. Natural Gas Geoscience, 2004, 15(3): 297-301.
    [28] 刘全有, 刘文汇, 王长华. 依据热模拟实验动态建立煤成烃模式[J]. 天然气地球科学, 2009, 20(1): 20-25.

    LIU Quanyou, LIU Wenhui, WANG Changhua. Mathematical simulation of coal-generating hydrocarbons based on pyrolysis products from coal macerals under closed system[J]. Natural Gas Geoscience, 2009, 20(1): 20-25.
    [29] 戴金星. 煤成气及鉴别理论研究进展[J]. 科学通报, 2018, 63(14): 1290-1305.

    DAI Jinxing. Coal-derived gas theory and its discrimination[J]. Chinese Science Bulletin, 2018, 63(14): 1290-1305.
    [30] 中国石油学会石油地质委员会. 天然气勘探[M]. 北京: 石油工业出版社, 1986.

    China Institute of Petroleum Oil Geology Committee. Natural gas exploration and development[M]. Beijing: Petroleum Industry Press, 1986.
    [31] 郑建京, 温德顺, 孟仟祥, 等. 煤系烃源岩热模拟演化过程的地球化学参数特征: 以准噶尔盆地侏罗系煤系烃源岩为例[J]. 天然气地球科学, 2003, 14(2): 134-139.

    ZHENG Jianjing, WEN Deshun, MENG Qianxiang, et al. Characte-ristics of geochemical parameters of coal measures source rock in the thermal simulation experiment[J]. Natural Gas Geoscience, 2003, 14(2): 134-139.
    [32] POWELL T G, CREANEY S, SNOWDON L R. Limitations of use of organic petrographic techniques for identification of petroleum source rocks[J]. AAPG Bulletin, 1982, 66(4): 430-435.
    [33] TISSOT B P. Recent advances in petroleum geochemistry applied to hydrocarbon exploration[J]. AAPG Bulletin, 1984, 68(5): 545-563.
    [34] 陈建平, 王绪龙, 陈践发, 等. 甲烷碳同位素判识天然气及其源岩成熟度新公式[J]. 中国科学(地球科学), 2021, 51(4): 560-581.

    CHEN Jianping, WANG Xulong, CHEN Jianfa, et al. A new formula for judging the maturity of natural gas and its source rock by methane carbon isotope[J]. Scientia Sinica (Terrae), 2021, 51(4): 560-581.
    [35] 刘文汇, 王晓锋, 腾格尔, 等. 中国近十年天然气示踪地球化学研究进展[J]. 矿物岩石地球化学通报, 2013, 32(3): 279-289.

    LIU Wenhui, WANG Xiaofeng, TENGER, et al. Research progress of gas geochemistry during the past decade in China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(3): 279-289.
    [36] BERNARD B B, BROOKS J M, SACKETT W M. A geochemical model for characterization of hydrocarbon gas sources in marine sediments[C]//Proceedings of the Ninth Annual Offshore Technology Conference. Houston: 1977: 435-438.
    [37] SCHOELL M. Genetic characterization of natural gases[J]. AAPG Bulletin, 1983, 67(12): 2225-2238.
    [38] 沈平, 申歧祥, 王先彬, 等. 气态烃同位素组成特征及煤型气判识[J]. 中国科学: 化学, 1987, 17(6): 647-656.

    SHEN Ping, SHEN Qixiang, WANG Xianbin, et al. Isotopic composition characteristics of gaseous hydrocarbons and identification of coal type gas[J]. Science China Chemistry, 1987, 17(6): 647-656.
    [39] 戴金星. 各类烷烃气的鉴别[J]. 中国科学(B辑化学生命科学地学), 1992(2): 185-193.

    DAI Jinxing. Identification of various alkane gases[J]. Scientia Sinica(Chimica), 1992(2): 185-193.
    [40] 戴金星. 天然气碳氢同位素特征和各类天然气鉴别[J]. 天然气地球科学, 1993, 4(2/3): 1-40.

    DAI Jinxing. Hydrocarbon isotopic characteristics of natural gas and identification of various natural gases[J]. Natural Gas Geoscience, 1993, 4(2/3): 1-40.
    [41] 戴金星, 倪云燕, 黄士鹏, 等. 中国天然气水合物气的成因类型[J]. 石油勘探与开发, 2017, 44(6): 837-848.

    DAI Jinxing, NI Yunyan, HUANG Shipeng, et al. Genetic types of gas hydrates in China[J]. Petroleum Exploration and Deve-lopment, 2017, 44(6): 837-848.
    [42] WHITICAR M J. Correlation of natural gases with their sources[C]//MAGOON L, DOW W. The petroleum system: from source to trap, AAPG memoir 60. Tulsa: AAPG, 1994: 261-283.
    [43] WHITICAR M J. Stable isotope geochemistry of coals, humic kerogens and related natural gases[J]. International Journal of Coal Geology, 1996, 32(1/4): 191-215.
    [44] WHITICAR M J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane[J]. Chemical Geology, 1999, 161(1/3): 291-314.
    [45] 戴金星, 倪云燕, 秦胜飞, 等. 四川盆地超深层天然气地球化学特征[J]. 石油勘探与开发, 2018, 45(4): 588-597.

    DAI Jinxing, NI Yunyan, QIN Shengfei, et al. Geochemical characteristics of ultra-deep natural gas in the Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2018, 45(4): 588-597.
    [46] 柳波, 黄志龙, 罗权生, 等. 吐哈盆地北部山前带下侏罗统天然气气源与成藏模式[J]. 中南大学学报(自然科学版), 2012, 43(1): 258-264.

    LIU Bo, HUANG Zhilong, LUO Quansheng, et al. Accumulation mode and resource of Lower Jurassic gas reservoir of Northern Foothill Belt, Turpan-Hami Basin[J]. Journal of Central South University(Science and Technology), 2012, 43(1): 258-264.
    [47] 倪云燕, 廖凤蓉, 龚德瑜, 等. 吐哈盆地台北凹陷天然气碳氢同位素组成特征[J]. 石油勘探与开发, 2019, 46(3): 509-520.

    NI Yunyan, LIAO Fengrong, GONG Deyu, et al. Stable carbon and hydrogen isotopic characteristics of natural gas from Taibei Sag, Turpan-Hami Basin, NW China[J]. Petroleum Exploration and Development, 2019, 46(3): 509-520.
    [48] 史基安, 孙秀建, 王金鹏, 等. 天然气运移物理模拟实验及其组分分异与碳同位素分馏特征[J]. 石油实验地质, 2005, 27(3): 293-298. doi: 10.11781/sysydz200503293

    SHI Ji'an, SUN Xiujian, WANG Jinpeng, et al. Physical simulating experiment of natural gas migration and its characteristics of composition differentiation and carbon isotope fractionation[J]. Petroleum Geology & Experiment, 2005, 27(3): 293-298. doi: 10.11781/sysydz200503293
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  705
  • HTML全文浏览量:  262
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-29
  • 修回日期:  2022-06-14
  • 刊出日期:  2022-07-28

目录

    /

    返回文章
    返回