留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

烃源流体—储集岩协同演化模拟实验及地质启示——以川西地区上三叠统须家河组为例

马健飞 马中良 缪九军 郑伦举 王强 何川

马健飞, 马中良, 缪九军, 郑伦举, 王强, 何川. 烃源流体—储集岩协同演化模拟实验及地质启示——以川西地区上三叠统须家河组为例[J]. 石油实验地质, 2022, 44(4): 698-704. doi: 10.11781/sysydz202204698
引用本文: 马健飞, 马中良, 缪九军, 郑伦举, 王强, 何川. 烃源流体—储集岩协同演化模拟实验及地质启示——以川西地区上三叠统须家河组为例[J]. 石油实验地质, 2022, 44(4): 698-704. doi: 10.11781/sysydz202204698
MA Jianfei, MA Zhongliang, MIAO Jiujun, ZHENG Lunju, WANG Qiang, HE Chuan. Co-evolution simulation experiment of source rock fluid and reservoir rock and its geological implications: a case study of Upper Triassic Xujiahe Formation, western Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(4): 698-704. doi: 10.11781/sysydz202204698
Citation: MA Jianfei, MA Zhongliang, MIAO Jiujun, ZHENG Lunju, WANG Qiang, HE Chuan. Co-evolution simulation experiment of source rock fluid and reservoir rock and its geological implications: a case study of Upper Triassic Xujiahe Formation, western Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(4): 698-704. doi: 10.11781/sysydz202204698

烃源流体—储集岩协同演化模拟实验及地质启示——以川西地区上三叠统须家河组为例

doi: 10.11781/sysydz202204698
基金项目: 

国家自然科学基金 42072156

中国石化科技攻关项目 P19023

详细信息
    作者简介:

    马健飞(1993—), 男, 硕士, 实习研究员, 从事成烃成藏机理研究。E-mail: majianfei.syky@sinopec.com

    马中良(1984—), 男, 博士, 高级工程师, 从事石油实验地质、油气地球化学和非常规油气地质研究。E-mail: mazl.syky@sinopec.com

  • 中图分类号: TE122.3

Co-evolution simulation experiment of source rock fluid and reservoir rock and its geological implications: a case study of Upper Triassic Xujiahe Formation, western Sichuan Basin

  • 摘要: 流体—岩石相互作用是致密砂岩油气藏形成的重要影响因素,深入研究流体—岩石相互作用对储层致密化的影响机制对厘清优质储层的分布规律尤为重要。以川西上三叠统须家河组为例,开展了封闭环境条件下,Ⅲ型烃源流体—长石石英砂岩储层协同演化模拟实验。Ⅲ型烃源岩生成的大量CO2在140℃或170℃储层地温条件下会导致砂岩储层中碳酸盐胶结物发育,是砂岩储层致密化的主要影响因素;烃源流体的滞留效应对储层致密化至关重要;封闭成岩体系下,致密油气勘探应以寻找有利于原生孔隙形成与保存的有利沉积相砂体为指向,在半开放—开放体系成岩环境下,应以寻找酸性流体优势运聚区次生孔隙发育的储层为指向。

     

  • 图  1  川西地区上三叠统须家河组长石石英砂岩微观特征

    Figure  1.  Microscopic characteristics of feldspathic quartz sandstones from Upper Triassic Xujiahe Formation, western Sichuan Basin

    图  2  不同演化阶段烃源流体—砂岩反应后有机酸含量差别

    Figure  2.  Differences of organic acid content of fluids after source rock fluid-sandstone reaction in different evolution stages

    图  3  不同演化阶段烃源流体—砂岩反应后流体pH值变化

    B-0为注入地层水后暂未注入生烃流体的pH值

    Figure  3.  Changes in pH value of fluids from source rock fluid-sandstone reactions in different evolution stages

    图  4  川西地区上三叠统须家河组烃源岩不同演化阶段CO2产率

    Figure  4.  Yields of CO2 from source rocks at different evolution stages, Upper Triassic Xujiahe Formation, western Sichuan Basin

    图  5  不同演化阶段烃源岩流体—砂岩反应后流体CO2变化

    Figure  5.  Variation of CO2 content in fluid after source rock fluid-sandstone reaction in different evolution stages

    图  6  不同演化阶段烃源岩流体—砂岩反应后流体Ca2+变化

    Figure  6.  Variation of Ca2+ content in fluid after source rock fluid-sandstone reaction in different evolution stages

    图  7  不同演化阶段烃源流体—砂岩反应后孔隙度变化和渗透率变化

    Figure  7.  Porosity and permeability change of reservoir rock after source rock fluid-sandstone reaction in different evolution stages

    图  8  不同演化阶段烃源流体—砂岩反应后矿物组成变化

    Figure  8.  Changes in mineral composition of reservoir rocks after source rock fluid-sandstone reaction in different evolution stages

    图  9  四川盆地煤系储层孔隙度与碳酸盐矿物含量之间关系[17]

    Figure  9.  Relationship between porosity and carbonate content of coal measure reservoir in Sichuan Basin

    表  1  协同演化模拟实验温压参数

    Table  1.   Temperature and pressure parameters of simulation experiment

    烃源流体生成模拟 流体—储层相互作用模拟
    埋深/m Ro/% 模拟温度/℃ 静岩压力/MPa 流体压力/MPa 储层样品编号 储层地温/℃ 储层围压/MPa
    4 300 0.96 350 107.5 43.0~47.3 B-1 140 50
    6 000 1.80 400 150.0 60.0~78.0 B-2 170 50
    下载: 导出CSV

    表  2  川西地区上三叠统须家河组储集岩样品物性参数

    Table  2.   Physical parameters of reservoir rock samples from Upper Triassic Xujiahe Formation, western Sichuan Basin

    样品编号 岩性 孔隙度/% 视密度/(g·cm-3) 渗透率/(10-3 μm2)
    B-1 长石石英砂岩 22.33 2.06 91.9
    B-2 长石石英砂岩 21.51 2.08 60.1
    下载: 导出CSV
  • [1] GAO Shuai, MA Shizhong, LIU Yan, et al. Formation mechanism of fractures in tight sandstone reservoirs of the second member of Xujiahe Formation in the north of western Sichuan foreland basin[J]. Advanced Materials Research, 2013, 868: 26-29. doi: 10.4028/www.scientific.net/AMR.868.26
    [2] TANG Jianming, HUANG Yue, XU Xiangrong, et al. Application of converted-wave 3D/3-C data for fracture detection in a deep tight-gas reservoir[J]. The Leading Edge, 2009, 28(7): 826-837. doi: 10.1190/1.3167785
    [3] 李凤昱, 许天福, 杨磊磊, 等. 不同碎屑矿物CO2参与的水—岩作用效应数值模拟[J]. 石油学报, 2016, 37(9): 1116-1128. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201609005.htm

    LI Fengyu, XU Tianfu, YANG Leilei, et al. Numerical simulation for the water-rock interaction with the participation of CO2 in different clastic minerals[J]. Acta Petrolei Sinica, 2016, 37(9): 1116-1128. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201609005.htm
    [4] 刘忠群, 徐士林, 刘君龙, 等. 四川盆地川西坳陷深层致密砂岩气藏富集规律[J]. 天然气工业, 2020, 40(2): 31-40. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202002005.htm

    LIU Zhongqun, XU Shilin, LIU Junlong, et al. Enrichment laws of deep tight sandstone gas reservoirs in the Western Sichuan Depression, Sichuan Basin[J]. Natural Gas Industry, 2020, 40(2): 31-40. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202002005.htm
    [5] DAI Jinxing, NI Yunyan, ZOU Caineng, et al. Stable carbon isotopes of alkane gases from the Xujiahe coal measures and implication for gas-source correlation in the Sichuan Basin, SW China[J]. Organic Geochemistry, 2009, 40(5): 638-646. doi: 10.1016/j.orggeochem.2009.01.012
    [6] 叶素娟, 杨永剑, 蔡李梅, 等. 叠覆型致密砂岩气区储层致密化过程[J]. 天然气工业, 2019, 39(S1): 36-41. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG2019S1007.htm

    YE Sujuan, YANG Yongjian, CAI Limei, et al. Reservoir densification process in superimposed tight sandstone gas area[J]. Organic Geochemistry, 2019, 39(S1): 36-41. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG2019S1007.htm
    [7] 王强, 范明, 徐旭辉, 等. 一种生烃流体对岩石储层改造作用模拟实验装置: 中国, 201910138573.3[P]. 2020-09-01.

    WANG Qiang, FAN Ming, XU Xuhui, et al. A simulation experiment device for the effect of hydrocarbon-generating fluid on rock reservoir reformation: CN, 201910138573.3[P]. 2020-09-01.
    [8] 丁茜, 何治亮, 王静彬, 等. 生烃伴生酸性流体对碳酸盐岩储层改造效应的模拟实验[J]. 石油与天然气地质, 2020, 41(1): 223-234. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202001021.htm

    DING Qian, HE Zhiliang, WANG Jingbin, et al. Simulation experiment of carbonate reservoir modification by source rock-derived acidic fluids[J]. Oil & Gas Geology, 2020, 41(1): 223-234. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202001021.htm
    [9] 郑伦举, 马中良, 王强, 等. 烃源岩有限空间热解生油气潜力定量评价研究[J]. 石油实验地质, 2011, 33(5): 452-459. doi: 10.11781/sysydz201105452

    ZHENG Lunju, MA Zhongliang, WANG Qiang, et al. Quantitative evaluation of hydrocarbon yielding potential of source rock: application of pyrolysis in finite space[J]. Petroleum Geology & Experiment, 2011, 33(5): 452-459. doi: 10.11781/sysydz201105452
    [10] 关德范, 徐旭辉, 李志明, 等. 成盆成烃成藏理论思维与有限空间生烃模式[J]. 石油与天然气地质, 2008, 29(6): 709-715. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200806003.htm

    GUAN Defan, XU Xuhui, LI Zhiming, et al. A study on theories of basin evolution and hydrocarbon generation and accumulation and model of hydrocarbon generation in finite spaces[J]. Oil & Gas Geology, 2008, 29(6): 709-715. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200806003.htm
    [11] 李嵘, 张娣, 朱丽霞. 四川盆地川西坳陷须家河组砂岩致密化研究[J]. 石油实验地质, 2011, 33(3): 274-281. doi: 10.11781/sysydz201103274

    LI Rong, ZHANG Di, ZHU Lixia. Densification of Upper Triassic Xujiahe tight sandstones, western Sichuan, China[J]. Petroleum Geology & Experiment, 2011, 33(3): 274-281. doi: 10.11781/sysydz201103274
    [12] 蔡希源, 郭旭升, 何治亮, 等. 四川盆地天然气动态成藏[M]. 北京: 科学出版社, 2016.

    CAI Xiyuan, GUO Xusheng, HE Zhiliang, et al. Dynamic accumulation of natural gas in Sichuan Basin[M]. Beijing: Science Press, 2016.
    [13] 侯强, 李延飞, 周瑶, 等. 川西坳陷须家河组须三段烃源岩地化特征[J]. 天然气技术与经济, 2014, 8(2): 5-8. https://www.cnki.com.cn/Article/CJFDTOTAL-TRJJ201402005.htm

    HOU Qiang, LI Yanfei, ZHOU Yao, et al. Geochemical characteristics of source rock in Xujiahe 3 Member, Western Sichuan Depression[J]. Natural Gas Technology and Economy, 2014, 8(2): 5-8. https://www.cnki.com.cn/Article/CJFDTOTAL-TRJJ201402005.htm
    [14] 马中良, 郑伦举, 秦建中, 等. 盆地沉降、抬升过程中源储压差的生排烃效应[J]. 石油实验地质, 2011, 33(4): 402-407. doi: 10.11781/sysydz201104402

    MA Zhongliang, ZHENG Lunju, QIN Jianzhong, et al. Hydrocarbon generation and expulsion caused by pressure difference between source rock and reservoir during basin subsiding and uplifting[J]. Petroleum Geology & Experiment, 2011, 33(4): 402-407. doi: 10.11781/sysydz201104402
    [15] 柳广弟. 石油地质学[M]. 4版. 北京: 石油工业出版社, 2009: 345.

    LIU Guangdi. Petroleum geology[M]. 4th ed. Beijing: Petroleum Industry Press, 2009: 345.
    [16] 戴金星, 邹才能, 陶士振, 等. 中国大气田形成条件和主控因素[J]. 天然气地球科学, 2007, 18(4): 473-484. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200704001.htm

    DAI Jinxing, ZOU Caineng, TAO Shizhen, et al. Formation conditions and main controlling factors of large gas fields in China[J]. Natural Gas Geoscience, 2007, 18(4): 473-484. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200704001.htm
    [17] 帅燕华, 张水昌, 高阳, 等. 煤系有机质生气行为对储层致密化的可能影响及定量化评价[J]. 中国科学(地球科学), 2013, 43(7): 1149-1155. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201307009.htm

    SHUAI Yanhua, ZHANG Shuichang, GAO Yang, et al. Effect and quantitative evaluation of CO2 derived from organic matter in coal on the formation of tight sandstone reservoirs[J]. Science China Earth Sciences, 2013, 56(5): 756-762. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201307009.htm
    [18] 张雪花. 川西坳陷新场地区上三叠统须家河组长石溶解和保存机制的研究[D]. 成都: 成都理工大学, 2011.

    ZHANG Xuehua. The mechanism of feldspar dissolution and conservation in Upper Triassic Xujiahe Formation in Xinchang of Western Sichuan Depression[D]. Chengdu: Chengdu University of Technology, 2011.
    [19] SBORNE M J, SWARBRICK R E. Diagenesis in North Sea HPHT clastic reservoirs: consequences for porosity and overpressure prediction[J]. Marine and Petroleum Geology, 1999, 16(4): 337-353.
    [20] 远光辉, 操应长, 葸克来, 等. 东营凹陷北带古近系碎屑岩储层长石溶蚀作用及其物性响应[J]. 石油学报, 2013, 34(5): 853-866. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201305006.htm

    YUAN Guanghui, CAO Yingchang, XI Kelai, et al. Feldspar dissolution and its impact on physical properties of Paleogene clastic reservoirs in the northern slope zone of the Dongying Sag[J]. Acta Petrolei Sinica, 2013, 34(5): 853-866. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201305006.htm
    [21] 杨云坤, 刘波, 秦善, 等. 基于模拟实验的原位观察对碳酸盐岩深部溶蚀的再认识[J]. 北京大学学报(自然科学版), 2014, 50(2): 316-322. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201402015.htm

    YANG Yunkun, LIU Bo, QIN Shan, et al. Re-recognition of deep carbonate dissolution based on the observation of in-situ simulation experiment[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(2): 316-322. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201402015.htm
    [22] 张哨楠. 致密天然气砂岩储层: 成因和讨论[J]. 石油与天然气地质, 2008, 29(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200801002.htm

    ZHANG Shaonan. Tight sandstone gas reservoirs: their origin and discussion[J]. Oil & Gas Geology, 2008, 29(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200801002.htm
    [23] 范明, 何治亮, 李志明, 等. 碳酸盐岩溶蚀窗的形成及地质意义[J]. 石油与天然气地质, 2011, 32(4): 499-505. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201104005.htm

    FAN Ming, HE Zhiliang, LI Zhiming, et al. Dissolution window of carbonate rocks and its geological significance[J]. Oil & Gas Geology, 2011, 32(4): 499-505. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201104005.htm
    [24] 魏新善, 傅强, 淡卫东, 等. 鄂尔多斯盆地延长组成岩流体滞留效应与致密砂岩储层成因[J]. 石油学报, 2018, 39(8): 858-868. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201808002.htm

    WEI Xinshan, FU Qiang, DAN Weidong, et al. Diagenesis fluid stagnation effect and genesis of tight sandstone reservoir in Yanchang Formation, Ordos Basin[J]. Acta Petrolei Sinica, 2018, 39(8): 858-868. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201808002.htm
    [25] 张本健, 王兴志, 张楚越, 等. 中坝气田须二气藏致密砂岩储层特征及开发潜力再认识[J]. 油气藏评价与开发, 2019, 9(6): 10-15. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ201906002.htm

    ZHANG Benjian, WANG Xingzhi, ZHANG Chuyue, et al. Recognition of tight sandstone reservoir characteristics and development potential of the 2nd member of Xujiahe gas reservoir in Zhongba Gas Field[J]. Reservoir Evaluation and Development, 2019, 9(6): 10-15. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ201906002.htm
    [26] 王志康, 林良彪, 余瑜, 等. 川西新场地区须家河组第二段优质储层主控因素[J]. 成都理工大学学报(自然科学版), 2020, 47(6): 661-672. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG202006004.htm

    WANG Zhikang, LIN Liangbiao, YU Yu, et al. The main controlling factors of high quality reservoir in the second member of Xujiahe Formation in Xinchang area, western Sichuan, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2020, 47(6): 661-672. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG202006004.htm
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  424
  • HTML全文浏览量:  105
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-28
  • 修回日期:  2022-05-30
  • 刊出日期:  2022-07-28

目录

    /

    返回文章
    返回