Application of laser Raman spectroscopic parameters of coal maceral analysis with different maturity
-
摘要: 激光拉曼光谱在显微组分分析中已显示出良好的应用前景。对不同成熟度(Ro为0.49%~1.88%)煤样中的不同显微组分(镜质体、半丝质体、粗粒体)进行拉曼光谱分析后发现,不同显微组分的拉曼光谱参数存在明显差异,这在煤显微组分分析中有以下应用:(1)利用拉曼光谱参数组合可区分煤样中的显微组分,该研究中可区分的参数组合达21种,它们均可作为区分此类显微组分的参考标准;(2)可区分煤样中显微组分的参数组合中最关键的参数是峰位移WD1,使用时需考虑热演化程度影响,这可能对下古生界处于高—过成熟阶段且光学性质逐渐趋同的显微组分差异研究提供帮助。因此拉曼光谱参数可作为显微组分分析的一种有效方法。Abstract: Laser Raman spectroscopy has shown a good application prospect for maceral analysis. Raman spectroscopic analysis of different macerals (e.g., vitrinite, semifusinite and macrinite) in coal samples with different maturity (%Ro=0.49%-1.88%) was carried out in this study, and results show that three macerals have significantly different Raman spectrum parameters, which have the following implications for the macerals analysis of coal: (1) Macerals in coal samples can be distinguished by the combination of Raman spectrum parameters. There are 21 kinds of parameter combinations discussed in this study, which can be used as reference standard for the classification of these organic macerals; (2) Peak displacement (WD1) is the most critical parameter to distinguish the macerals of coal samples. The influence of thermal evolution should be considered, which may assistant for the study of maceral differences in the Lower Paleozoic which are in the high to over mature stage with optical properties gradually converging. Therefore, Raman spectrum parameters can be used as an effective method for maceral analysis.
-
Key words:
- macerals /
- maturity /
- Raman spectrum parameters /
- coal sample
-
表 1 拉曼光谱谱图预处理方法参数优选及结果
Table 1. Optimization of pretreatment parameters and results of laser Raman spectroscopy
参数优选及结果 平滑处理 基线校正 平滑窗口 多项式拟合阶次 平滑次数 多项式拟合阶次 固定参数 平滑窗口=9 多项式拟合阶次=3 平滑窗口=9,拟合阶次=6 用优选参数进行平滑处理 变化参数 平滑窗口=5~99 拟合阶次=2~8 平滑次数=1~10 拟合阶次=1~12 比较拟合效果 光谱谱图 处理谱图与原始谱图视觉比较 光谱参数/ 双峰拟合 ID/FWHM-D,IG/FWHM-G,RBS,R1,鞍座指数SI 参数优选结果 平滑窗口=9 拟合阶次=6 平滑次数=1 拟合阶次=3 注:ID1、IG分别为D1峰和G峰的峰强度;FWHM-D1、FWHM-G分别为D1峰和G峰的半峰宽高;位移差RBS=WG-WD1(WD1、WG分别为D1峰和G峰的峰位移);峰强度比R1=ID1/IG;SI为鞍座指数。 表 2 样品2中不同显微组分的拉曼光谱参数
Table 2. Raman spectroscopic parameters of different macerals in sample 2
显微组分 D1峰 G峰 RBS/cm-1 WD1/cm-1 FWHM-D1 WG/cm-1 FWHM-G 镜质体 1 364.32 112.89 1 597.07 68.32 232.75 半丝质体 1 357.74 108.27 1 598.93 63.54 241.20 粗粒体 1 350.03 101.95 1 597.02 67.04 246.99 表 3 不同成熟度样品中显微组分的拉曼光谱参数
Table 3. Raman spectroscopic parameters of macerals in different maturity samples
样品号 Ro/% 显微组分 WD1/cm-1 FWHM-D1 WG/cm-1 FWHM-G RBS/cm-1 1 0.55 粗粒体 1 349.95 121.35 1 598.37 69.28 248.42 半丝质体 1 358.20 119.56 1 598.66 65.77 240.46 镜质体 1 378.85 125.58 1 599.34 81.47 220.49 2 0.62 粗粒体 1 350.03 101.95 1 597.02 67.04 246.99 半丝质体 1 357.74 108.27 1 598.93 63.54 241.20 镜质体 1 364.32 112.89 1 597.07 68.32 232.75 3 0.71 半丝质体 1 358.08 117.01 1 595.66 63.89 237.58 4 0.82 粗粒体 1 351.68 127.99 1 598.52 63.75 246.84 镜质体 1 373.53 134.41 1 587.56 73.08 214.03 5 0.96 镜质体 1 368.28 104.56 1 597.78 68.66 229.50 6 1.08 粗粒体 1 352.35 110.36 1 598.30 63.85 245.95 半丝质体 1 357.83 101.52 1 598.74 65.93 240.91 镜质体 1 367.97 109.03 1 597.90 67.72 229.92 7 1.24 粗粒体 1 348.16 109.21 1 599.75 61.89 251.59 镜质体 1 365.59 100.59 1 597.66 63.81 232.07 8 1.35 粗粒体 1 343.26 121.59 1 599.48 63.50 256.22 镜质体 1 365.16 94.76 1 598.16 63.68 233.01 9 1.40 粗粒体 1 347.80 111.51 1 598.63 62.29 250.84 半丝质体 1 354.76 65.68 1 594.82 64.93 240.06 镜质体 1 359.56 94.57 1 595.57 62.26 236.01 10 1.57 粗粒体 1 342.28 119.04 1 599.25 59.26 256.97 半丝质体 1 352.23 89.18 1 599.60 57.44 247.36 11 1.66 粗粒体 1 341.46 117.85 1 600.30 58.52 258.84 半丝质体 1 357.41 86.01 1 600.08 60.35 242.67 12 1.88 粗粒体 1 351.09 90.00 1 598.33 57.40 247.24 半丝质体 1 355.38 92.07 1 600.55 57.61 245.17 表 4 区分显微组分的拉曼光谱参数组合(Ro=0.55%~1.88%)
Table 4. Combination of Raman spectral parameters for the classification of macerals(Ro=0.55%-1.88%)
交汇类型 参数 与Ro相关性 是否区分 交汇类型 与WD1相关性 交汇参数 是否区分 基本参数—Ro WD1 - 是 参数—参数 0 WG,FWHM-D1,FWHM-G,R1,AD1/AG WG,FWHM-D1,FWHM-G,R1,AD1/AG 否 WG + 否 ID1 -- 否 IG -- 否 AD1 -- 否 1 WD1,WD1/WG,RBS WG,FWHM-D1,FWHM-G,R1,AD1/AG 是 AG -- 否 FWHM-D1 - 否 FWHM-G - 否 衍生参数—Ro WD1/WG - 是 2 WD1,WD1/WG,RBS WD1,WD1/WG,RBS 是 RBS + 是 R1 + 否 AD1/AG + 否 注:①AD1、AG分别为D1峰和G峰的峰面积,峰强度比R1=ID1/IG;②与WD1相关性是指参数中含有WD1或者WD1的衍生参数(WD1/WG、RBS)的个数;③-指负相关,+指正相关,--指相关性较差;④交汇参数是指与热成熟度Ro具有相关性的拉曼光谱参数。 -
[1] 张慧, 焦淑静, 庞起发, 等. 中国南方早古生代页岩有机质的扫描电镜研究[J]. 石油与天然气地质, 2015, 36(4): 675-680. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201504019.htmZHANG Hui, JIAO Shujing, PANG Qifa, et al. SEM observation of organic matters in the Eopaleozoic shale in South China[J]. Oil & Gas Geology, 2015, 36(4): 675-680. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201504019.htm [2] 高凤琳, 宋岩, 梁志凯, 等. 陆相页岩有机质孔隙发育特征及成因: 以松辽盆地长岭断陷沙河子组页岩为例[J]. 石油学报, 2019, 40(9): 1030-1044. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201909002.htmGAO Fenglin, SONG Yan, LIANG Zhikai, et al. Development characteristics of organic pore in the continental shale and its genetic mechanism: a case study of Shahezi Formation shale in the Changling Fault Depression of Songliao Basin[J]. Acta Petrolei Sinica, 2019, 40(9): 1030-1044. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201909002.htm [3] 仰云峰, 鲍芳, 腾格尔, 等. 四川盆地不同成熟度下志留统龙马溪组页岩有机孔特征[J]. 石油实验地质, 2020, 42(3): 387-397. doi: 10.11781/sysydz202003387YANG Yunfeng, BAO Fang, BORJIGIN T, et al. Characteristics of organic matter hosted pores in Lower Silurian Longmaxi shale with different maturities, Sichuan Basin[J]. Petroleum Geology & Experiment, 2020, 42(3): 387-397. doi: 10.11781/sysydz202003387 [4] 焦淑静, 张慧, 薛东川, 等. 泥页岩有机显微组分的扫描电镜形貌特征及识别方法[J]. 电子显微学报, 2018, 37(2): 137-144. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV201802007.htmJIAO Shujing, ZHANG Hui, XUE Dongchuan, et al. Morphological structure and identify method of organic macerals of shale with SEM[J]. Journal of Chinese Electron Microscopy Society, 2018, 37(2): 137-144. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV201802007.htm [5] 高凤琳, 王成锡, 宋岩, 等. 氩离子抛光—场发射扫描电镜分析方法在识别有机显微组分中的应用[J]. 石油实验地质, 2021, 43(2): 360-367. doi: 10.11781/sysydz202102360GAO Fenglin, WANG Chengxi, SONG Yan, et al. Ar-ion polish-ing FE-SEM analysis of organic maceral identification[J]. Petroleum Geology & Experiment, 2021, 43(2): 360-367. doi: 10.11781/sysydz202102360 [6] 翟刚毅, 王玉芳, 包书景, 等. 我国南方海相页岩气富集高产主控因素及前景预测[J]. 地球科学, 2017, 42(7): 1057-1068. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201707002.htmZHAI Gangyi, WANG Yufang, BAO Shujing, et al. Major factors controlling the accumulation and high productivity of marine shale gas and prospect forecast in Southern China[J]. Earth Science, 2017, 42(7): 1057-1068. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201707002.htm [7] 徐学敏, 孙玮琳, 汪双清, 等. 南方下古生界海相页岩有机质成熟度评价[J]. 地球科学, 2019, 44(11): 3717-3724. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201911011.htmXU Xuemin, SUN Weilin, WANG Shuangqing, et al. Maturity evaluation of marine shale in the Lower Paleozoic in South China[J]. Earth Science, 2019, 44(11): 3717-3724. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201911011.htm [8] 陈尚斌, 左兆喜, 朱炎铭, 等. 页岩气储层有机质成熟度测试方法适用性研究[J]. 天然气地球科学, 2015, 26(3): 564-574. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201503020.htmCHEN Shangbin, ZUO Zhaoxi, ZHU Yanming, et al. Applicability of the testing method for the maturity of organic matter in shale gas reservoirs[J]. Natural Gas Geoscience, 2015, 26(3): 564-574. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201503020.htm [9] 程鹏, 肖贤明. 很高成熟度富有机质页岩的含气性问题[J]. 煤炭学报, 2013, 38(5): 737-741. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201305004.htmCHENG Peng, XIAO Xianming. Gas content of organic-rich shales with very high maturities[J]. Journal of China Coal Society, 2013, 38(5): 737-741. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201305004.htm [10] 罗情勇, 郝婧玥, 李可文, 等. 下古生界有机质成熟度评价新参数: 笔石表皮体光学特征再研究[J]. 地质学报, 2019, 93(9): 2362-2371. doi: 10.3969/j.issn.0001-5717.2019.09.017LUO Qingyong, HAO Jingyue, LI Kewen, et al. A new parameter for the thermal maturity assessment of organic matter from the Lower Palaeozoic sediments: a re-study on the optical characte-ristics of graptolite periderms[J]. Acta Geologica Sinica, 2019, 93(9): 2362-2371. doi: 10.3969/j.issn.0001-5717.2019.09.017 [11] HENRY D G, JARVIS I, GILLMORE G, et al. Raman spectroscopy as a tool to determine the thermal maturity of organic matter: application to sedimentary, metamorphic and structural geology[J]. Earth-Science Reviews, 2019, 198: 102936. [12] 鲍芳, 腾格尔, 仰云峰, 等. 不同成烃生物的拉曼光谱特征[J]. 高校地质学报, 2012, 18(1): 174-179. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201201018.htmBAO Fang, TENGGER, YANG Yunfeng, et al. Raman spectroscopic characteristics of different hydrocarbon-forming orga-nisms[J]. Geological Journal of China Universities, 2012, 18(1): 174-179. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201201018.htm [13] 鲍芳, 李志明, 张美珍, 等. 激光拉曼光谱在有机显微组分研究中的应用[J]. 石油实验地质, 2012, 34(1): 104-108. doi: 10.11781/sysydz201201104BAO Fang, LI Zhiming, ZHANG Meizhen, et al. Application of laser Raman spectrum in organic maceral studies[J]. Petroleum Geology & Experiment, 2012, 34(1): 104-108. doi: 10.11781/sysydz201201104 [14] HENRY D G, JARVIS I, GILLMORE G, et al. Assessing low-maturity organic matter in shales using Raman spectroscopy: effects of sample preparation and operating procedure[J]. International Journal of Coal Geology, 2018, 191: 135-151. [15] 刘德汉, 肖贤明, 田辉, 等. 固体有机质拉曼光谱参数计算样品热演化程度的方法与地质应用[J]. 科学通报, 2013, 58(13): 1228-1241. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201313010.htmLIU Dehan, XIAO Xianming, TIAN Hui, et al. Sample maturation calculated using Raman spectroscopic parameters for solid organics: methodology and geological applications[J]. Chinese Science Bulletin, 2013, 58(11): 1285-1298. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201313010.htm [16] 肖贤明, 周秦, 程鹏, 等. 高—过成熟海相页岩中矿物-有机质复合体(MOA)的显微激光拉曼光谱特征作为成熟度指标的意义[J]. 中国科学(地球科学), 2020, 50(9): 1228-1241. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202009006.htmXIAO Xianming, ZHOU Qin, CHENG Peng, et al. Thermal maturation as revealed by micro-Raman spectroscopy of mineral-organic aggregation (MOA) in marine shales with high and over maturities[J]. Science China Earth Sciences, 2020, 63(10): 1540-1552. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202009006.htm [17] WILKINS R W T, BOUDOU R, SHERWOOD N, et al. Thermal maturity evaluation from inertinites by Raman spectroscopy: the 'RaMM' technique[J]. International Journal of Coal Geology, 2014, 128-129: 143-152. [18] WILKINS R W T, WANG M, GAN H J, et al. A RaMM study of thermal maturity of dispersed organic matter in marine source rocks[J]. International Journal of Coal Geology, 2015, 150-151: 252-264. [19] WANG Ye, QIU Nansheng, BORJIGIN T, et al. Integrated assessment of thermal maturity of the Upper Ordovician-Lower Silurian Wufeng-Longmaxi shale in Sichuan Basin, China[J]. Marine and Petroleum Geology, 2019, 100: 447-465. [20] 王茂林, 肖贤明, 魏强, 等. 页岩中固体沥青拉曼光谱参数作为成熟度指标的意义[J]. 天然气地球科学, 2015, 26(9): 1712-1718. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201509013.htmWANG Maolin, XIAO Xianming, WEI Qiang, et al. Thermal matu-ration of solid bitumen in shale as revealed by Raman spectroscopy[J]. Natural Gas Geoscience, 2015, 26(9): 1712-1718. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201509013.htm [21] 左兆喜, 陈尚斌, 史乾, 等. 激光拉曼法在高—过成熟页岩及煤成熟度评价中的应用[J]. 岩矿测试, 2016, 35(2): 193-198. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201602012.htmZUO Zhaoxi, CHEN Shangbin, SHI Qian, et al. Application of laser Raman spectroscopy to the evaluation of the high- and overhigh-maturity of shale and coal[J]. Rock and Mineral Analysis, 2016, 35(2): 193-198. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201602012.htm [22] XU Chang, YAO Suping, SONG Di, et al. Types, chemical and porosity characteristics of hydrocarbon-generating organisms of the Lower Paleozoic, South China: taking Longmaxi Formation and Qiongzhusi Formation in Sichuan Basin as examples[J]. Marine and Petroleum Geology, 2020, 119: 104508. [23] 张聪, 夏响华, 杨玉茹, 等. 安页1井志留系龙马溪组页岩有机质拉曼光谱特征及其地质意义[J]. 岩矿测试, 2019, 38(1): 26-34. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201901003.htmZHANG Cong, XIA Xianghua, YANG Yuru, et al. Raman spectrum characteristics of organic matter in Silurian Longmaxi Formation shale of well Anye-1 and its geological significance[J]. Rock and Mineral Analysis, 2019, 38(1): 26-34. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201901003.htm [24] 田野, 田云涛. 石墨化碳质物质拉曼光谱温度计原理与应用[J]. 地球科学进展, 2020, 35(3): 259-274. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ202003004.htmTIAN Ye, TIAN Yuntao. Fundamentals and applications of Raman Spectroscopy of Carbonaceous Material (RSCM) thermometry[J]. Advances in Earth Science, 2020, 35(3): 259-274. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ202003004.htm [25] HAO Jingyue, ZHONG Ningning, LUO Qingyong, et al. Raman spectroscopy of graptolite periderm and its potential as an organic maturity indicator for the Lower Paleozoic in southwestern China[J]. International Journal of Coal Geology, 2019, 213: 103278. [26] 王强, 毛宁, 杨妍, 等. 宁夏庆华煤镜质组和惰质组显微组分的分子结构及对比分析[J]. 化工进展, 2020, 39(S2): 142-151. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ2020S2020.htmWANG Qiang, MAO Ning, YANG Yan, et al. Molecular structures and comparative analysis of macerals of vitrinite and inertinite for Qinghua coal, Ningxia[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 142-151. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ2020S2020.htm [27] 曹代勇, 魏迎春, 王安民, 等. 显微组分大分子结构演化差异性及其动力学机制: 研究进展与展望[J]. 煤田地质与勘探, 2021, 49(1): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202101002.htmCAO Daiyong, WEI Yingchun, WANG Anmin, et al. The evolution difference of macromolecular structures and its dynamic mechanism of coal macerals: research status and prospect[J]. Coal Geology & Exploration, 2021, 49(1): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202101002.htm [28] BOCKLITZ T, WALTER A, HARTMANN K, et al. How to pre-process Raman spectra for reliable and stable models?[J]. Analytica Chimica Acta, 2011, 704(1/2): 47-56. [29] SCHITO A, ROMANO C, CORRADO S, et al. Diagenetic thermal evolution of organic matter by Raman spectroscopy[J]. Organic Geochemistry, 2017, 106: 57-67. [30] FERRALIS N, MATYS E D, KNOLL A H, et al. Rapid, direct and non-destructive assessment of fossil organic matter via microRaman spectroscopy[J]. Carbon, 2016, 108: 440-449. [31] SAUERER B, CRADDOCK P R, ALJOHANI M D, et al. Fast and accurate shale maturity determination by Raman spectroscopy measurement with minimal sample preparation[J]. International Journal of Coal Geology, 2017, 173: 150-157. [32] 李苗春. 下古生界烃源岩有机岩石学特征及其地质意义: 以上扬子地区为例[D]. 南京: 南京大学, 2014.LI Miaochun. The organic petrology and geological significance of Lower Paleozoic source rock: a case study of what in Upper Yangtze region[D]. Nanjing: Nanjing University, 2014.