留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

拉曼光谱参数在不同成熟度煤显微组分分析中的应用

高志伟 张聪 李美俊 方镕慧 腾格尔 肖洪 朱志立

高志伟, 张聪, 李美俊, 方镕慧, 腾格尔, 肖洪, 朱志立. 拉曼光谱参数在不同成熟度煤显微组分分析中的应用[J]. 石油实验地质, 2022, 44(4): 705-711. doi: 10.11781/sysydz202204705
引用本文: 高志伟, 张聪, 李美俊, 方镕慧, 腾格尔, 肖洪, 朱志立. 拉曼光谱参数在不同成熟度煤显微组分分析中的应用[J]. 石油实验地质, 2022, 44(4): 705-711. doi: 10.11781/sysydz202204705
GAO Zhiwei, ZHANG Cong, LI Meijun, FANG Ronghui, BORJIGIN Tenger, XIAO Hong, ZHU Zhili. Application of laser Raman spectroscopic parameters of coal maceral analysis with different maturity[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(4): 705-711. doi: 10.11781/sysydz202204705
Citation: GAO Zhiwei, ZHANG Cong, LI Meijun, FANG Ronghui, BORJIGIN Tenger, XIAO Hong, ZHU Zhili. Application of laser Raman spectroscopic parameters of coal maceral analysis with different maturity[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(4): 705-711. doi: 10.11781/sysydz202204705

拉曼光谱参数在不同成熟度煤显微组分分析中的应用

doi: 10.11781/sysydz202204705
基金项目: 

全国地质调查评价专项项目“油气地质调查钻井岩心保存参数采集与应用” DD20201114

详细信息
    作者简介:

    高志伟(1996—), 男, 硕士, 从事油气地球化学研究。E-mail: 2019215032@student.cup.edu.cn

    通讯作者:

    李美俊(1972—), 男, 博士, 教授, 从事油气地球化学研究。E-mail: meijunli@cup.edu.cn

  • 中图分类号: TE135

Application of laser Raman spectroscopic parameters of coal maceral analysis with different maturity

  • 摘要: 激光拉曼光谱在显微组分分析中已显示出良好的应用前景。对不同成熟度(Ro为0.49%~1.88%)煤样中的不同显微组分(镜质体、半丝质体、粗粒体)进行拉曼光谱分析后发现,不同显微组分的拉曼光谱参数存在明显差异,这在煤显微组分分析中有以下应用:(1)利用拉曼光谱参数组合可区分煤样中的显微组分,该研究中可区分的参数组合达21种,它们均可作为区分此类显微组分的参考标准;(2)可区分煤样中显微组分的参数组合中最关键的参数是峰位移WD1,使用时需考虑热演化程度影响,这可能对下古生界处于高—过成熟阶段且光学性质逐渐趋同的显微组分差异研究提供帮助。因此拉曼光谱参数可作为显微组分分析的一种有效方法。

     

  • 图  1  样品2中粗粒体的拉曼光谱分峰拟合结果

    Figure  1.  Fitting results of Raman spectra of macrinite in sample 2

    图  2  样品2中不同有机显微组分的镜下照片

    A.半丝质体;B.粗粒体;C.镜质体

    Figure  2.  Micrographs of various organic macerals in sample 2

    图  3  样品2中不同有机显微组分的拉曼光谱

    Figure  3.  Raman spectra of different organic macerals in sample 2

    图  4  区分显微组分的拉曼光谱参数组合

    Figure  4.  Combination of Raman spectral parameters for the classification of macerals

    图  5  文献中不同显微组分的参数特征

    Figure  5.  Parameter characteristics of different macerals in literature

    表  1  拉曼光谱谱图预处理方法参数优选及结果

    Table  1.   Optimization of pretreatment parameters and results of laser Raman spectroscopy

    参数优选及结果 平滑处理 基线校正
    平滑窗口 多项式拟合阶次 平滑次数 多项式拟合阶次
    固定参数 平滑窗口=9 多项式拟合阶次=3 平滑窗口=9,拟合阶次=6 用优选参数进行平滑处理
    变化参数 平滑窗口=5~99 拟合阶次=2~8 平滑次数=1~10 拟合阶次=1~12
    比较拟合效果 光谱谱图 处理谱图与原始谱图视觉比较
    光谱参数/ 双峰拟合 ID/FWHM-D,IG/FWHM-G,RBSR1,鞍座指数SI
    参数优选结果 平滑窗口=9 拟合阶次=6 平滑次数=1 拟合阶次=3
    注:ID1IG分别为D1峰和G峰的峰强度;FWHM-D1、FWHM-G分别为D1峰和G峰的半峰宽高;位移差RBS=WG-WD1(WD1WG分别为D1峰和G峰的峰位移);峰强度比R1=ID1/IGSI为鞍座指数。
    下载: 导出CSV

    表  2  样品2中不同显微组分的拉曼光谱参数

    Table  2.   Raman spectroscopic parameters of different macerals in sample 2

    显微组分 D1峰 G峰 RBS/cm-1
    WD1/cm-1 FWHM-D1 WG/cm-1 FWHM-G
    镜质体 1 364.32 112.89 1 597.07 68.32 232.75
    半丝质体 1 357.74 108.27 1 598.93 63.54 241.20
    粗粒体 1 350.03 101.95 1 597.02 67.04 246.99
    下载: 导出CSV

    表  3  不同成熟度样品中显微组分的拉曼光谱参数

    Table  3.   Raman spectroscopic parameters of macerals in different maturity samples

    样品号 Ro/% 显微组分 WD1/cm-1 FWHM-D1 WG/cm-1 FWHM-G RBS/cm-1
    1 0.55 粗粒体 1 349.95 121.35 1 598.37 69.28 248.42
    半丝质体 1 358.20 119.56 1 598.66 65.77 240.46
    镜质体 1 378.85 125.58 1 599.34 81.47 220.49
    2 0.62 粗粒体 1 350.03 101.95 1 597.02 67.04 246.99
    半丝质体 1 357.74 108.27 1 598.93 63.54 241.20
    镜质体 1 364.32 112.89 1 597.07 68.32 232.75
    3 0.71 半丝质体 1 358.08 117.01 1 595.66 63.89 237.58
    4 0.82 粗粒体 1 351.68 127.99 1 598.52 63.75 246.84
    镜质体 1 373.53 134.41 1 587.56 73.08 214.03
    5 0.96 镜质体 1 368.28 104.56 1 597.78 68.66 229.50
    6 1.08 粗粒体 1 352.35 110.36 1 598.30 63.85 245.95
    半丝质体 1 357.83 101.52 1 598.74 65.93 240.91
    镜质体 1 367.97 109.03 1 597.90 67.72 229.92
    7 1.24 粗粒体 1 348.16 109.21 1 599.75 61.89 251.59
    镜质体 1 365.59 100.59 1 597.66 63.81 232.07
    8 1.35 粗粒体 1 343.26 121.59 1 599.48 63.50 256.22
    镜质体 1 365.16 94.76 1 598.16 63.68 233.01
    9 1.40 粗粒体 1 347.80 111.51 1 598.63 62.29 250.84
    半丝质体 1 354.76 65.68 1 594.82 64.93 240.06
    镜质体 1 359.56 94.57 1 595.57 62.26 236.01
    10 1.57 粗粒体 1 342.28 119.04 1 599.25 59.26 256.97
    半丝质体 1 352.23 89.18 1 599.60 57.44 247.36
    11 1.66 粗粒体 1 341.46 117.85 1 600.30 58.52 258.84
    半丝质体 1 357.41 86.01 1 600.08 60.35 242.67
    12 1.88 粗粒体 1 351.09 90.00 1 598.33 57.40 247.24
    半丝质体 1 355.38 92.07 1 600.55 57.61 245.17
    下载: 导出CSV

    表  4  区分显微组分的拉曼光谱参数组合(Ro=0.55%~1.88%)

    Table  4.   Combination of Raman spectral parameters for the classification of macerals(Ro=0.55%-1.88%)

    交汇类型 参数 Ro相关性 是否区分 交汇类型 WD1相关性 交汇参数 是否区分
    基本参数—Ro WD1 - 参数—参数 0 WG,FWHM-D1,FWHM-G,R1AD1/AG WG,FWHM-D1,FWHM-G,R1AD1/AG
    WG +
    ID1 --
    IG --
    AD1 -- 1 WD1WD1/WGRBS WG,FWHM-D1,FWHM-G,R1AD1/AG
    AG --
    FWHM-D1 -
    FWHM-G -
    衍生参数—Ro WD1/WG - 2 WD1WD1/WGRBS WD1WD1/WGRBS
    RBS +
    R1 +
    AD1/AG +
    注:①AD1AG分别为D1峰和G峰的峰面积,峰强度比R1=ID1/IG;②与WD1相关性是指参数中含有WD1或者WD1的衍生参数(WD1/WGRBS)的个数;③-指负相关,+指正相关,--指相关性较差;④交汇参数是指与热成熟度Ro具有相关性的拉曼光谱参数。
    下载: 导出CSV
  • [1] 张慧, 焦淑静, 庞起发, 等. 中国南方早古生代页岩有机质的扫描电镜研究[J]. 石油与天然气地质, 2015, 36(4): 675-680. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201504019.htm

    ZHANG Hui, JIAO Shujing, PANG Qifa, et al. SEM observation of organic matters in the Eopaleozoic shale in South China[J]. Oil & Gas Geology, 2015, 36(4): 675-680. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201504019.htm
    [2] 高凤琳, 宋岩, 梁志凯, 等. 陆相页岩有机质孔隙发育特征及成因: 以松辽盆地长岭断陷沙河子组页岩为例[J]. 石油学报, 2019, 40(9): 1030-1044. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201909002.htm

    GAO Fenglin, SONG Yan, LIANG Zhikai, et al. Development characteristics of organic pore in the continental shale and its genetic mechanism: a case study of Shahezi Formation shale in the Changling Fault Depression of Songliao Basin[J]. Acta Petrolei Sinica, 2019, 40(9): 1030-1044. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201909002.htm
    [3] 仰云峰, 鲍芳, 腾格尔, 等. 四川盆地不同成熟度下志留统龙马溪组页岩有机孔特征[J]. 石油实验地质, 2020, 42(3): 387-397. doi: 10.11781/sysydz202003387

    YANG Yunfeng, BAO Fang, BORJIGIN T, et al. Characteristics of organic matter hosted pores in Lower Silurian Longmaxi shale with different maturities, Sichuan Basin[J]. Petroleum Geology & Experiment, 2020, 42(3): 387-397. doi: 10.11781/sysydz202003387
    [4] 焦淑静, 张慧, 薛东川, 等. 泥页岩有机显微组分的扫描电镜形貌特征及识别方法[J]. 电子显微学报, 2018, 37(2): 137-144. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV201802007.htm

    JIAO Shujing, ZHANG Hui, XUE Dongchuan, et al. Morphological structure and identify method of organic macerals of shale with SEM[J]. Journal of Chinese Electron Microscopy Society, 2018, 37(2): 137-144. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV201802007.htm
    [5] 高凤琳, 王成锡, 宋岩, 等. 氩离子抛光—场发射扫描电镜分析方法在识别有机显微组分中的应用[J]. 石油实验地质, 2021, 43(2): 360-367. doi: 10.11781/sysydz202102360

    GAO Fenglin, WANG Chengxi, SONG Yan, et al. Ar-ion polish-ing FE-SEM analysis of organic maceral identification[J]. Petroleum Geology & Experiment, 2021, 43(2): 360-367. doi: 10.11781/sysydz202102360
    [6] 翟刚毅, 王玉芳, 包书景, 等. 我国南方海相页岩气富集高产主控因素及前景预测[J]. 地球科学, 2017, 42(7): 1057-1068. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201707002.htm

    ZHAI Gangyi, WANG Yufang, BAO Shujing, et al. Major factors controlling the accumulation and high productivity of marine shale gas and prospect forecast in Southern China[J]. Earth Science, 2017, 42(7): 1057-1068. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201707002.htm
    [7] 徐学敏, 孙玮琳, 汪双清, 等. 南方下古生界海相页岩有机质成熟度评价[J]. 地球科学, 2019, 44(11): 3717-3724. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201911011.htm

    XU Xuemin, SUN Weilin, WANG Shuangqing, et al. Maturity evaluation of marine shale in the Lower Paleozoic in South China[J]. Earth Science, 2019, 44(11): 3717-3724. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201911011.htm
    [8] 陈尚斌, 左兆喜, 朱炎铭, 等. 页岩气储层有机质成熟度测试方法适用性研究[J]. 天然气地球科学, 2015, 26(3): 564-574. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201503020.htm

    CHEN Shangbin, ZUO Zhaoxi, ZHU Yanming, et al. Applicability of the testing method for the maturity of organic matter in shale gas reservoirs[J]. Natural Gas Geoscience, 2015, 26(3): 564-574. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201503020.htm
    [9] 程鹏, 肖贤明. 很高成熟度富有机质页岩的含气性问题[J]. 煤炭学报, 2013, 38(5): 737-741. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201305004.htm

    CHENG Peng, XIAO Xianming. Gas content of organic-rich shales with very high maturities[J]. Journal of China Coal Society, 2013, 38(5): 737-741. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201305004.htm
    [10] 罗情勇, 郝婧玥, 李可文, 等. 下古生界有机质成熟度评价新参数: 笔石表皮体光学特征再研究[J]. 地质学报, 2019, 93(9): 2362-2371. doi: 10.3969/j.issn.0001-5717.2019.09.017

    LUO Qingyong, HAO Jingyue, LI Kewen, et al. A new parameter for the thermal maturity assessment of organic matter from the Lower Palaeozoic sediments: a re-study on the optical characte-ristics of graptolite periderms[J]. Acta Geologica Sinica, 2019, 93(9): 2362-2371. doi: 10.3969/j.issn.0001-5717.2019.09.017
    [11] HENRY D G, JARVIS I, GILLMORE G, et al. Raman spectroscopy as a tool to determine the thermal maturity of organic matter: application to sedimentary, metamorphic and structural geology[J]. Earth-Science Reviews, 2019, 198: 102936.
    [12] 鲍芳, 腾格尔, 仰云峰, 等. 不同成烃生物的拉曼光谱特征[J]. 高校地质学报, 2012, 18(1): 174-179. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201201018.htm

    BAO Fang, TENGGER, YANG Yunfeng, et al. Raman spectroscopic characteristics of different hydrocarbon-forming orga-nisms[J]. Geological Journal of China Universities, 2012, 18(1): 174-179. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201201018.htm
    [13] 鲍芳, 李志明, 张美珍, 等. 激光拉曼光谱在有机显微组分研究中的应用[J]. 石油实验地质, 2012, 34(1): 104-108. doi: 10.11781/sysydz201201104

    BAO Fang, LI Zhiming, ZHANG Meizhen, et al. Application of laser Raman spectrum in organic maceral studies[J]. Petroleum Geology & Experiment, 2012, 34(1): 104-108. doi: 10.11781/sysydz201201104
    [14] HENRY D G, JARVIS I, GILLMORE G, et al. Assessing low-maturity organic matter in shales using Raman spectroscopy: effects of sample preparation and operating procedure[J]. International Journal of Coal Geology, 2018, 191: 135-151.
    [15] 刘德汉, 肖贤明, 田辉, 等. 固体有机质拉曼光谱参数计算样品热演化程度的方法与地质应用[J]. 科学通报, 2013, 58(13): 1228-1241. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201313010.htm

    LIU Dehan, XIAO Xianming, TIAN Hui, et al. Sample maturation calculated using Raman spectroscopic parameters for solid organics: methodology and geological applications[J]. Chinese Science Bulletin, 2013, 58(11): 1285-1298. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201313010.htm
    [16] 肖贤明, 周秦, 程鹏, 等. 高—过成熟海相页岩中矿物-有机质复合体(MOA)的显微激光拉曼光谱特征作为成熟度指标的意义[J]. 中国科学(地球科学), 2020, 50(9): 1228-1241. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202009006.htm

    XIAO Xianming, ZHOU Qin, CHENG Peng, et al. Thermal maturation as revealed by micro-Raman spectroscopy of mineral-organic aggregation (MOA) in marine shales with high and over maturities[J]. Science China Earth Sciences, 2020, 63(10): 1540-1552. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202009006.htm
    [17] WILKINS R W T, BOUDOU R, SHERWOOD N, et al. Thermal maturity evaluation from inertinites by Raman spectroscopy: the 'RaMM' technique[J]. International Journal of Coal Geology, 2014, 128-129: 143-152.
    [18] WILKINS R W T, WANG M, GAN H J, et al. A RaMM study of thermal maturity of dispersed organic matter in marine source rocks[J]. International Journal of Coal Geology, 2015, 150-151: 252-264.
    [19] WANG Ye, QIU Nansheng, BORJIGIN T, et al. Integrated assessment of thermal maturity of the Upper Ordovician-Lower Silurian Wufeng-Longmaxi shale in Sichuan Basin, China[J]. Marine and Petroleum Geology, 2019, 100: 447-465.
    [20] 王茂林, 肖贤明, 魏强, 等. 页岩中固体沥青拉曼光谱参数作为成熟度指标的意义[J]. 天然气地球科学, 2015, 26(9): 1712-1718. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201509013.htm

    WANG Maolin, XIAO Xianming, WEI Qiang, et al. Thermal matu-ration of solid bitumen in shale as revealed by Raman spectroscopy[J]. Natural Gas Geoscience, 2015, 26(9): 1712-1718. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201509013.htm
    [21] 左兆喜, 陈尚斌, 史乾, 等. 激光拉曼法在高—过成熟页岩及煤成熟度评价中的应用[J]. 岩矿测试, 2016, 35(2): 193-198. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201602012.htm

    ZUO Zhaoxi, CHEN Shangbin, SHI Qian, et al. Application of laser Raman spectroscopy to the evaluation of the high- and overhigh-maturity of shale and coal[J]. Rock and Mineral Analysis, 2016, 35(2): 193-198. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201602012.htm
    [22] XU Chang, YAO Suping, SONG Di, et al. Types, chemical and porosity characteristics of hydrocarbon-generating organisms of the Lower Paleozoic, South China: taking Longmaxi Formation and Qiongzhusi Formation in Sichuan Basin as examples[J]. Marine and Petroleum Geology, 2020, 119: 104508.
    [23] 张聪, 夏响华, 杨玉茹, 等. 安页1井志留系龙马溪组页岩有机质拉曼光谱特征及其地质意义[J]. 岩矿测试, 2019, 38(1): 26-34. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201901003.htm

    ZHANG Cong, XIA Xianghua, YANG Yuru, et al. Raman spectrum characteristics of organic matter in Silurian Longmaxi Formation shale of well Anye-1 and its geological significance[J]. Rock and Mineral Analysis, 2019, 38(1): 26-34. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201901003.htm
    [24] 田野, 田云涛. 石墨化碳质物质拉曼光谱温度计原理与应用[J]. 地球科学进展, 2020, 35(3): 259-274. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ202003004.htm

    TIAN Ye, TIAN Yuntao. Fundamentals and applications of Raman Spectroscopy of Carbonaceous Material (RSCM) thermometry[J]. Advances in Earth Science, 2020, 35(3): 259-274. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ202003004.htm
    [25] HAO Jingyue, ZHONG Ningning, LUO Qingyong, et al. Raman spectroscopy of graptolite periderm and its potential as an organic maturity indicator for the Lower Paleozoic in southwestern China[J]. International Journal of Coal Geology, 2019, 213: 103278.
    [26] 王强, 毛宁, 杨妍, 等. 宁夏庆华煤镜质组和惰质组显微组分的分子结构及对比分析[J]. 化工进展, 2020, 39(S2): 142-151. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ2020S2020.htm

    WANG Qiang, MAO Ning, YANG Yan, et al. Molecular structures and comparative analysis of macerals of vitrinite and inertinite for Qinghua coal, Ningxia[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 142-151. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ2020S2020.htm
    [27] 曹代勇, 魏迎春, 王安民, 等. 显微组分大分子结构演化差异性及其动力学机制: 研究进展与展望[J]. 煤田地质与勘探, 2021, 49(1): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202101002.htm

    CAO Daiyong, WEI Yingchun, WANG Anmin, et al. The evolution difference of macromolecular structures and its dynamic mechanism of coal macerals: research status and prospect[J]. Coal Geology & Exploration, 2021, 49(1): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202101002.htm
    [28] BOCKLITZ T, WALTER A, HARTMANN K, et al. How to pre-process Raman spectra for reliable and stable models?[J]. Analytica Chimica Acta, 2011, 704(1/2): 47-56.
    [29] SCHITO A, ROMANO C, CORRADO S, et al. Diagenetic thermal evolution of organic matter by Raman spectroscopy[J]. Organic Geochemistry, 2017, 106: 57-67.
    [30] FERRALIS N, MATYS E D, KNOLL A H, et al. Rapid, direct and non-destructive assessment of fossil organic matter via microRaman spectroscopy[J]. Carbon, 2016, 108: 440-449.
    [31] SAUERER B, CRADDOCK P R, ALJOHANI M D, et al. Fast and accurate shale maturity determination by Raman spectroscopy measurement with minimal sample preparation[J]. International Journal of Coal Geology, 2017, 173: 150-157.
    [32] 李苗春. 下古生界烃源岩有机岩石学特征及其地质意义: 以上扬子地区为例[D]. 南京: 南京大学, 2014.

    LI Miaochun. The organic petrology and geological significance of Lower Paleozoic source rock: a case study of what in Upper Yangtze region[D]. Nanjing: Nanjing University, 2014.
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  542
  • HTML全文浏览量:  115
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-07
  • 修回日期:  2022-06-14
  • 刊出日期:  2022-07-28

目录

    /

    返回文章
    返回