留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于粒径分类的致密砂岩力学特性及破坏特征研究——以鄂尔多斯盆地二叠系下石盒子组为例

赵宁 王亮 张磊 司马立强 刘志远 温登峰

赵宁, 王亮, 张磊, 司马立强, 刘志远, 温登峰. 基于粒径分类的致密砂岩力学特性及破坏特征研究——以鄂尔多斯盆地二叠系下石盒子组为例[J]. 石油实验地质, 2022, 44(4): 720-729. doi: 10.11781/sysydz202204720
引用本文: 赵宁, 王亮, 张磊, 司马立强, 刘志远, 温登峰. 基于粒径分类的致密砂岩力学特性及破坏特征研究——以鄂尔多斯盆地二叠系下石盒子组为例[J]. 石油实验地质, 2022, 44(4): 720-729. doi: 10.11781/sysydz202204720
ZHAO Ning, WANG Liang, ZHANG Lei, SIMA Liqiang, LIU Zhiyuan, WEN Dengfeng. Mechanical properties and fracturing characteristics of tight sandstones based on granularity classification: a case study of Permian Lower Shihezi Formation, Ordos Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(4): 720-729. doi: 10.11781/sysydz202204720
Citation: ZHAO Ning, WANG Liang, ZHANG Lei, SIMA Liqiang, LIU Zhiyuan, WEN Dengfeng. Mechanical properties and fracturing characteristics of tight sandstones based on granularity classification: a case study of Permian Lower Shihezi Formation, Ordos Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(4): 720-729. doi: 10.11781/sysydz202204720

基于粒径分类的致密砂岩力学特性及破坏特征研究——以鄂尔多斯盆地二叠系下石盒子组为例

doi: 10.11781/sysydz202204720
基金项目: 

国家自然科学基金联合基金项目“热液作用下的深部含铀油蚀变砂岩地球物理响应及铀油兼探方法” U2003102

详细信息
    作者简介:

    赵宁(1992—), 男, 博士研究生, 从事岩石物理实验与复杂储集层测井评价研究。E-mail: zn126000_petrol@126.com

    通讯作者:

    王亮(1986—), 男, 教授, 从事油气测井方法、解释及地质应用方面的研究。E-mail: wangliang_swpu@163.com

  • 中图分类号: TE311

Mechanical properties and fracturing characteristics of tight sandstones based on granularity classification: a case study of Permian Lower Shihezi Formation, Ordos Basin

  • 摘要: 鄂尔多斯盆地二叠系下石盒子组致密砂岩具有物性差、地层压力异常、隔夹层发育等工程地质特征,储层压裂改造力学参数的选取及其破坏特征对油气田实现效益开采具有重要意义。针对下石盒子组致密砂岩,以平行试验为设计思路,开展抗张强度测试及模拟原地状态下的高温高压三轴力学试验,在粒径分类基础上,探索致密砂岩力学特性和变形破坏特征。该区下石盒子组致密砂岩可分为中—细粒岩屑砂岩、粗粒岩屑砂岩以及巨—粗粒岩屑砂岩,粒径越粗则物性越好,其石英含量越高则黏土含量越低;随着粒径由细至粗,力学强度和弹性参数逐渐减小,岩石抵抗变形以及保持结构完整性的能力降低,力学试验变形破坏呈脆性向基质混合型过渡的特征。在相同的地应力及施工作业条件下,岩石类型不同则储层压裂难易及改造效果均有差别,需根据地层实际情况选用不同的工程力学参数。

     

  • 图  1  鄂尔多斯盆地二叠系下石盒子组砂岩岩性与孔隙类型

    a.中—细粒岩屑砂岩,锦110井,3 011.61 m;b.粗粒岩屑砂岩,锦110井,3 167.99 m;c.巨—粗粒岩屑砂岩,锦110井,3 157.36 m;d.图 1a岩心柱塞样轴向断面;e.图 1b岩心柱塞样轴向断面;f.图 1c岩心柱塞样轴向断面;g.中—细粒岩屑砂岩铸体薄片,微裂缝;h.粗粒岩屑砂岩铸体薄片,杂基溶孔;i.巨—粗粒岩屑砂岩铸体薄片,粒间溶孔

    Figure  1.  Lithology and pore types of sandstones in Permian Lower Shihezi Formation, Hangjinqi area, Ordos Basin

    图  2  平行岩样切割示意

    Figure  2.  Parallel sample cutting

    图  3  鄂尔多斯盆地二叠系下石盒子组不同岩性致密砂岩法向力随时间变化曲线

    Figure  3.  Variation trend of normal force with time for different types of tight sandstones from Permian Lower Shihezi Formation, Ordos Basin

    图  4  鄂尔多斯盆地二叠系下石盒子组不同岩性致密砂岩三轴力学试验应力—应变曲线

    Figure  4.  Stress-strain curves during triaxial compression of different rock types in Permian Lower Shihezi Formation, Ordos Basin

    图  5  鄂尔多斯盆地二叠系下石盒子组致密砂岩矿物成分、物性与抗张强度交会图

    Figure  5.  Relationship among mineral composition, physical properties and tensile strength of tight sandstones from Permian Lower Shihezi Formation, Ordos Basin

    图  6  鄂尔多斯盆地二叠系下石盒子组不同岩性致密砂岩抗张试验破坏特征

    测试后岩样破坏特征:a.中—细粒岩屑砂岩,2 987.5 m;b.粗粒岩屑砂岩,3 102.7 m;c.巨—粗粒岩屑砂岩,3 026.82 m

    Figure  6.  Tensile-strength test induced fracture geometry of tight sandstones from Permian Lower Shihezi Formation, Ordos Basin

    图  7  鄂尔多斯盆地二叠系下石盒子组致密砂岩矿物成分含量、物性与三轴力学参数交会图

    Figure  7.  Relationship among mineral composition, physical properties and triaxial mechanical parameters of tight sandstones from Permian Lower Shihezi Formation, Ordos Basin

    图  8  鄂尔多斯盆地二叠系下石盒子组致密砂岩三轴力学试验破坏特征及轴向应力—应变曲线

    三轴破坏特征:a.中—细粒岩屑砂岩,3 102.7 m;b.粗粒岩屑砂岩,3 159.93 m;c.巨—粗粒岩屑砂岩,3 016.49 m

    Figure  8.  Triaxial compression test induced fracture geometry and stress-strain curves of tight sandstones from Permian Lower Shihezi Formation, Ordos Basin

    表  1  鄂尔多斯盆地二叠系下石盒子组试验岩样基础参数

    Table  1.   Basic parameters of tight sandstones from Permian Lower Shihezi Formation, Ordos Basin

    编号 孔隙度/% 渗透率/10-3 μm2 石英/% 黏土/% 长石/% 方解石/% 岩性
    50 4.88 0.040 3 51.4 38.7 9.9 0 中—细粒岩屑砂岩
    21 3.03 0.034 7 54.5 42.7 2.9 0
    69 4.65 0.030 2 62.3 34.9 2.9 0
    101 7.39 0.119 5 70.6 23.9 2.7 2.8 粗粒岩屑砂岩
    24 8.04 0.189 2 66.2 29.2 2.2 2.4
    80 9.44 0.219 1 63.3 30.4 2.3 3.9
    10 9.41 0.278 1 69.1 26.9 2.2 1.8
    5 10.59 0.183 7 76.7 13.7 2.2 7.4 巨—粗粒岩屑砂岩
    11 12.03 0.634 2 74.2 18.0 2.2 5.6
    12 12.96 0.454 3 80.2 13.1 2.6 4.1
    23 10.12 0.594 6 77.7 19.7 2.6 0
    下载: 导出CSV
  • [1] 邹才能, 陶士振, 侯连华, 等. 非常规油气地质学[M]. 北京: 地质出版社, 2014: 239-254.

    ZOU Caineng, TAO Shizhen, HOU Lianhua, et al. Unconventional oil and gas geology[M]. Beijing: Geology Press, 2014: 239-254.
    [2] 杨雷, 金之钧. 全球页岩油发展及展望[J]. 中国石油勘探, 2019, 24(5): 553-559. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201905002.htm

    YANG Lei, JIN Zhijun. Global shale oil development and prospects[J]. China Petroleum Exploration, 2019, 24(5): 553-559. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201905002.htm
    [3] 孙龙德, 邹才能, 贾爱林, 等. 中国致密油气发展特征与方向[J]. 石油勘探与开发, 2019, 46(6): 1015-1026. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201906002.htm

    SUN Longde, ZOU Caineng, JIA Ailin, et al. Development characte-ristics and orientation of tight oil and gas in China[J]. Petroleum Exploration and Development, 2019, 46(6): 1015-1026. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201906002.htm
    [4] 郑力会, 魏攀峰, 张峥, 等. 联探并采: 非常规油气资源勘探开发持续发展自我救赎之路[J]. 天然气工业, 2017, 37(5): 126-140. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201705026.htm

    ZHENG Lihui, WEI Panfeng, ZHANG Zheng, et al. Joint exploration and development: a self-salvation road to sustainable development of unconventional oil and gas resources[J]. Natural Gas Industry, 2017, 37(5): 126-140. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201705026.htm
    [5] 翟光明. 关于非常规油气资源勘探开发的几点思考[J]. 天然气工业, 2008, 28(12): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200812002.htm

    ZHAI Guangming. Speculations on the exploration and development of unconventional hydrocarbon resources[J]. Natural Gas Industry, 2008, 28(12): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200812002.htm
    [6] 雷群, 王红岩, 赵群, 等. 国内外非常规油气资源勘探开发现状及建议[J]. 天然气工业, 2008, 28(12): 7-10. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200812005.htm

    LEI Qun, WANG Hongyan, ZHAO Qun, et al. Status analysis and advices on exploration and development of unconventional hydrocarbon resources[J]. Natural Gas Industry, 2008, 28(12): 7-10. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200812005.htm
    [7] 胡素云, 陶士振, 闫伟鹏, 等. 中国陆相致密油富集规律及勘探开发关键技术研究进展[J]. 天然气地球科学, 2019, 30(8): 1083-1093. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201908002.htm

    HU Suyun, TAO Shizhen, YAN Weipeng, et al. Advances on continental tight oil accumulation and key technologies for exploration and development in China[J]. Natural Gas Geoscience, 2019, 30(8): 1083-1093. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201908002.htm
    [8] 佘诗刚, 董陇军. 从文献统计分析看中国岩石力学进展[J]. 岩石力学与工程学报, 2013, 32(3): 442-464. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201303004.htm

    SHE Shigang, DONG Longjun. Statistics and analysis of academic publications for development of rock mechanics in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(3): 442-464. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201303004.htm
    [9] 侯磊, 孙宝江, 李云, 等. 非常规油气开发对压裂设备和材料发展的影响[J]. 天然气工业, 2013, 33(12): 105-110. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201312017.htm

    HOU Lei, SUN Baojiang, LI Yun, et al. Impact of unconventional oil and gas exploitation on fracturing equipment and materials development[J]. Natural Gas Industry, 2013, 33(12): 105-110. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201312017.htm
    [10] 王道富, 付金华, 雷启鸿, 等. 鄂尔多斯盆地低渗透油气田勘探开发技术与展望[J]. 岩性油气藏, 2007, 19(3): 126-130. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX200703025.htm

    WANG Daofu, FU Jinhua, LEI Qihong, et al. Exploration technology and prospect of low permeability oil-gas field in Ordos Basin[J]. Lithologic Reservoirs, 2007, 19(3): 126-130. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX200703025.htm
    [11] 李宪文, 肖元相, 陈宝春, 等. 苏里格气田致密砂岩气藏多层分压开采面临的难题及对策[J]. 天然气工业, 2019, 39(8): 66-73. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201908011.htm

    LI Xianwen, XIAO Yuanxiang, CHEN Baochun, et al. Separate layer fracturing and multi-layer production of tight sandstone gas reservoirs in the Sulige Gas Field, Ordos Basin: problems and countermeasures[J]. Natural Gas Industry, 2019, 39(8): 66-73. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201908011.htm
    [12] 杨永明, 鞠杨, 陈佳亮, 等. 三轴应力下致密砂岩的裂纹发育特征与能量机制[J]. 岩石力学与工程学报, 2014, 33(4): 691-698. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201404005.htm

    YANG Yongming, JU Yang, CHEN Jialiang, et al. Cracks development features and energy mechanism of dense sandstone subjected to triaxial stress[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(4): 691-698. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201404005.htm
    [13] AL-SHAYEA N A. Crack propagation trajectories for rocks under mixed mode I-Ⅱ fracture[J]. Engineering Geology, 2005, 81(1): 84-97.
    [14] PARK C H, BOBET A. Crack initiation, propagation and coalescence from frictional flaws in uniaxial compression[J]. Engineering Fracture Mechanics, 2010, 77(14): 2727-2748.
    [15] 王云飞, 王立平, 焦华喆, 等. 不同围压下砂岩的变形力学特性与损伤机制[J]. 煤田地质与勘探, 2015, 43(4): 63-68. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT201504014.htm

    WANG Yunfei, WANG Liping, JIAO Huazhe, et al. Mechanical characteristics of deformation and damage mechanism of sandstone under different confining pressure[J]. Coal Geology & Exploration, 2015, 43(4): 63-68. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT201504014.htm
    [16] 孙国文, 李树刚, 余果. 不同围压下砂岩剪切面倾角的实验研究[J]. 西安科技大学学报, 2009, 29(4): 433-435. https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB200904014.htm

    SUN Guowen, LI Shugang, YU Guo. Experiment on the orientation of shear bands of sandstone under conventional triaxial compression[J]. Journal of Xi'an University of Science and Technology, 2009, 29(4): 433-435. https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB200904014.htm
    [17] 何明明, 陈蕴生, 韩铁林, 等. 不同应力路径下砂岩能耗特征的研究[J]. 岩石力学与工程学报, 2015, 34(S1): 2632-2638. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1006.htm

    HE Mingming, CHEN Yunsheng, HAN Tielin, et al. Study of energy properties of sandstone under different loading paths[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 2632-2638. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1006.htm
    [18] 周文, 高雅琴, 单钰铭, 等. 川西新场气田沙二段致密砂岩储层岩石力学性质[J]. 天然气工业, 2008, 28(2): 34-37. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200802012.htm

    ZHOU Wen, GAO Yaqin, SHAN Yuming, et al. Lithomechanical property of tight sand reservoirs in the second member of Shaximiao Formation in Xinchang Gas Field, West Sichuan Basin[J]. Natural Gas Industry, 2008, 28(2): 34-37. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200802012.htm
    [19] 许江, 吴慧, 陆丽丰, 等. 不同含水状态下砂岩剪切过程中声发射特性试验研究[J]. 岩石力学与工程学报, 2012, 31(5): 914-920. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201205008.htm

    XU Jiang, WU Hui, LU Lifeng, et al. Experimental study of acoustic emission characteristics during shearing process of sandstone under different water contents[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(5): 914-920. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201205008.htm
    [20] SWAN G. The observation of cracks propagating in rock plates[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1975, 12(11): 329-334.
    [21] CAMONES L A M, DO AMARAL VARGAS JR E, DE FIGUEIREDO R P, et al. Application of the discrete element method for modeling of rock crack propagation and coalescence in the step-path failure mechanism[J]. Engineering Geology, 2013, 153: 80-94.
    [22] SATO A, HIRAKAWA Y, SUGAWARA K. Mixed mode crack propagation of homogenized cracks by the two-dimensional DDM analysis[J]. Construction and Building Materials, 2001, 15(5/6): 247-261.
    [23] 李海波, 张天航, 邵蔚, 等. 三轴压缩情况下岩石变形特征的滑移型裂纹模拟[J]. 岩石力学与工程学报, 2005, 24(17): 3119-3124. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200517018.htm

    LI Haibo, ZHANG Tianhang, SHAO Wei, et al. Simulation of deformation behavior of rock material under triaxial compression based on sliding crack model[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3119-3124. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200517018.htm
    [24] 李洁. 鄂尔多斯盆地西北部下石盒子组沉积体系及层序—岩相古地理研究[D]. 成都: 成都理工大学, 2008.

    LI Jie. The study on the depositional system and sequence-based lithofacies-paleogeography of Xiashihezi Formation in northwest of Ordos Basin[D]. Chengdu: Chengdu University of Technology, 2008.
    [25] 李洁, 陈洪德, 侯中健, 等. 鄂尔多斯盆地东北部下石盒子组盒8段辫状河三角洲沉积特征[J]. 沉积与特提斯地质, 2008, 28(1): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD200801004.htm

    LI Jie, CHEN Hongde, HOU Zhongjian, et al. Sedimentary characteristics of the braided deltas in the eighth member of the Lower Shihezi Formation in the northeastern part of the Ordos Basin[J]. Sedimentary Geology and Tethyan Geology, 2008, 28(1): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD200801004.htm
    [26] 贺敬聪, 朱筱敏, 李明瑞, 等. 鄂尔多斯盆地陇东地区二叠系山西组—石盒子组母岩类型和构造背景[J]. 古地理学报, 2017, 19(2): 285-298. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201702009.htm

    HE Jingcong, ZHU Xiaomin, LI Mingrui, et al. Parent rock types and tectonic setting of the Permian Shanxi and Shihezi formations in Longdong area, Ordos Basin[J]. Journal of Palaeogeo-graphy, 2017, 19(2): 285-298. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201702009.htm
    [27] 徐快乐, 刘聪颖, 倪鑫, 等. 砂岩巴西劈裂抗拉强度的尺寸效应研究[J]. 长江科学院院报, 2020, 37(2): 126-129. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202002024.htm

    XU Kuaile, LIU Congying, NI Xin, et al. Size effect on Brazilian splitting tensile strength of sandstone[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(2): 126-129. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202002024.htm
    [28] 朱其志, 闵中泽, 王岩岩, 等. 粉砂岩三轴压缩试验中的试样尺寸效应研究[J]. 岩石力学与工程学报, 2019, 38(S2): 3296-3303. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S2003.htm

    ZHU Qizhi, MIN Zhongze, WANG Yanyan, et al. Study on the size effect of silty sandstone samples under conventional triaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S2): 3296-3303. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S2003.htm
    [29] 杨琦, 孙洁, 贾昱昕, 等. 鄂尔多斯盆地南部长8储层岩石力学实验研究[J]. 石油地质与工程, 2017, 31(4): 100-103. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN201704029.htm

    YANG Qi, SUN Jie, JIA Yuxin, et al. Experimental study on rock mechanics of reservoir Nanchang 8 in Ordos Basin[J]. Petroleum Geology and Engineering, 2017, 31(4): 100-103. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN201704029.htm
    [30] 邓辉, 张咪, 邓通海, 等. 高温高压作用下致密砂岩三轴压缩试验[J]. 石油与天然气地质, 2017, 38(6): 1172-1179. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201706020.htm

    DENG Hui, ZHANG Mi, DENG Tonghai, et al. A triaxial compression test of tight quartz sandstone under high temperature and high confining pressure[J]. Oil & Gas Geology, 2017, 38(6): 1172-1179. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201706020.htm
    [31] 周磊, 朱哲明, 董玉清, 等. 砂岩在不同应变率条件下的劈裂破坏特性[J]. 中南大学学报(自然科学版), 2021, 52(2): 555-567. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202102024.htm

    ZHOU Lei, ZHU Zheming, DONG Yuqing, et al. Fracture pro-perties of sandstone materials at different strain rates[J]. Journal of Central South University (Science and Technology), 2021, 52(2): 555-567. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202102024.htm
    [32] 吴兴杰, 靖洪文, 苏海健, 等. 煤系地层砂岩抗拉强度及其矿物粒径效应[J]. 煤矿安全, 2016, 47(7): 47-50. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201607013.htm

    WU Xingjie, JING Hongwen, SU Haijian, et al. Tensile strength of coal measures sandstone and its mineral particle size effect[J]. Safety in Coal Mines, 2016, 47(7): 47-50. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201607013.htm
    [33] 苏海健, 靖洪文, 赵洪辉, 等. 高温处理后红砂岩抗拉强度及其尺寸效应研究[J]. 岩石力学与工程学报, 2015, 34(S1): 2879-2887. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1035.htm

    SU Haijian, JING Hongwen, ZHAO Honghui, et al. Study on tensile strength and size effect of red sandstone after high temperature treatment[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 2879-2887. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1035.htm
    [34] 王少阳. 砂岩抗拉强度和断裂韧度测试方法研究[D]. 成都: 成都理工大学, 2019.

    WANG Shaoyang. Test method for tensile strength and fracture toughness of sandstone[D]. Chengdu: Chengdu University of Technology, 2019.
    [35] 殷有泉. 岩石的塑性、损伤及其本构表述[J]. 地质科学, 1995, 30(1): 63-70. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX501.007.htm

    YIN Youquan. On rock plasticity, damage and their constitutive formulation[J]. Scientia Geologica Sinica, 1995, 30(1): 63-70. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX501.007.htm
    [36] TANG Liansheng, SANG Haitao, SONG Jing, et al. Mechanical model for failure modes of rock and soil under compression[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(10): 2711-2723.
    [37] 孙清佩, 张志镇, 杜雷鸣, 等. 层理倾角对岩石力学与声发射特征的影响研究[J]. 金属矿山, 2017(2): 7-13. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201702003.htm

    SUN Qingpei, ZHANG Zhizhen, DU Leiming. Effect of bedding angle on mechanical and acoustic emission characteristics of layered rock[J]. Metal Mine, 2017(2): 7-13. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201702003.htm
    [38] THIERCELIN M, ROEGIERS J C. Fracture toughness determination with the modified ring test[M]//LI Chengxiang, YANG Ling. Proceedings of the International Symposium on Engineering in Complex Rock Formations. Amsterdam: Elsevier, 1988: 284-290.
    [39] 田永铭, 郭明传, 古智君. 宏观各向同性混杂岩力学特性及性状研究[J]. 岩土工程学报, 2006, 28(3): 363-371. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200603020.htm

    TIAN Yongming, GUO Mingchuan, GU Zhijun. Mechanical pro-perties and behaviors of macroscopically isotropic melange[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 363-371. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200603020.htm
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  386
  • HTML全文浏览量:  132
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-07
  • 修回日期:  2022-06-07
  • 刊出日期:  2022-07-28

目录

    /

    返回文章
    返回