New progress and prospect of oil and gas accumulation research in deep to ultra-deep strata
-
摘要: 我国深层—超深层油气资源丰富,但勘探程度较低。深层—超深层具有比浅层更高的温度和压力,并且来自于深部的流体在深层的作用更强,因此,深层—超深层油气藏与浅层油气藏具有不同的成藏机理。通过广泛调研国内外相关研究,较为系统地总结了深层—超深层油气藏在成烃、成储和成藏方面的特殊性及其主控因素。提出深层—超深层环境中存在促进烃源灶继续生烃的物质和能量,能进一步促进油气形成;起源于深层—超深层储层之下的流体可以发挥建设性作用,从而在深层形成优质规模储层;流经烃源岩和储层的深部富CO2流体对深层烃类具有促排作用,并在浅层发挥促藏作用。尽管前人归纳的这些理论对指导发现规模油气藏尚存一些争议,但应该看到,在深层—超深层独特的地质条件下,在总结油气成藏规律时,全面、充分考虑各种因素,有助于提高深层—超深层探井成功率,降低勘探成本。Abstract: There are abundant deep to ultra-deep oil and gas resources in China, but the degree of exploration is low. The deep to ultra-deep reservoirs have higher temperature and pressure than the shallow ones, and the fluid from the deep strata plays a stronger role in the deep formations. Therefore, the deep to ultra-deep reservoirs have different accumulation mechanism from the shallow ones. Through extensive research at home and abroad, the particularity and main control factors of hydrocarbon generation, reservoir-forming and hydrocarbon accumulation of deep to ultra-deep oil and gas reservoirs were systematically summarized. It was suggested that there are materials and energy in the deep to ultra-deep environment that can promote the continuous hydrocarbon generation of hydrocarbon kitchens, which can further promote oil and gas accumulation. Fluids originating from deep to ultra-deep reservoirs can play a constructive role in forming high-quality large-scale reservoirs in deep strata. The deep CO2-rich fluid flowing through source rocks and reservoirs can promote the hydrocarbon expulsion in deep strata and the hydrocarbon accumulation in shallow strata. Although these theories summarized by predecessors are still controversial in guiding the discovery of large-scale oil and gas reservoirs, it should be seen that under the unique geological conditions of deep to ultra-deep strata, when summarizing the law of oil and gas accumulation, comprehensive and full consideration of various factors will help to improve the success rate of deep to ultra-deep exploration wells and reduce exploration costs.
-
Key words:
- deep strata /
- ultra-deep strata /
- CO2-rich fluid /
- oil and gas accumulation
-
图 2 外源氢参与下有机质生烃模式(b) 与传统生烃模式(a)的异同
据参考文献[15]修改。
Figure 2. Differences and similarities between organic matter hydrocarbon generation model with the participation of exogenous hydrogen (b) and traditional hydrocarbon generation model (a)
图 3 外源氢作用下烃源岩生烃新模式
据参考文献[19]修改。
Figure 3. A new hydrocarbon generation model of source rocks under the action of exogenous hydrogen
图 4 沉积盆地基底之下的流体影响储层孔隙度演化
据参考文献[36]修改。
Figure 4. Fluid under the basement of sedimentary basin affects the evolution of reservoir porosity
图 5 深源CO2—原油耦合成藏模式
据参考文献[53]修改。
Figure 5. Deep source CO2 and crude oil coupling reservoir formation model
-
[1] 何治亮, 马永生, 朱东亚, 等. 深层—超深层碳酸盐岩储层理论技术进展与攻关方向[J]. 石油与天然气地质, 2021, 42(3): 533-546. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202103002.htmHE Zhiliang, MA Yongsheng, ZHU Dongya, et al. Theoretical and technological progress and research direction of deep and ultra-deep carbonate reservoirs[J]. Oil & Gas Geology, 2021, 42(3): 533-546. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202103002.htm [2] 云露, 邓尚. 塔里木盆地深层走滑断裂差异变形与控储控藏特征: 以顺北油气田为例[J]. 石油学报, 2022, 43(6): 770-787. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202206003.htmYUN Lu, DENG Shang. Structural styles of deep strike-slip faults in Tarim Basin and the characteristics of their control on reservoir formation and hydrocarbon accumulation: a case study of Shunbei oil and gas field[J]. Acta Petrolei Sinica, 2022, 43(6): 770-787. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202206003.htm [3] 杨海军, 陈永权, 田军, 等. 塔里木盆地轮探1井超深层油气勘探重大发现与意义[J]. 中国石油勘探, 2020, 25(2): 62-72. doi: 10.3969/j.issn.1672-7703.2020.02.007YANG Haijun, CHEN Yongquan, TIAN Jun, et al. Great discovery and its significance of ultra-deep oil and gas exploration in well Luntan-1 of the Tarim Basin[J]. China Petroleum Exploration, 2020, 25(2): 62-72. doi: 10.3969/j.issn.1672-7703.2020.02.007 [4] 金之钧, 胡文瑄, 张刘平, 等. 深部流体活动及油气成藏效应[M]. 北京: 科学出版社, 2007: 66-76.JIN Zhijun, HU Wenxuan, ZHANG Liuping, et al. Deep fluid activity and hydrocarbon accumulation effect[M]. Beijing: Science Press, 2007: 66-76. [5] TISSOT B P, WELTE D H. Petroleum formation and occurrence[M]. 2nd ed. New York: Springer-Verlag, 1984. [6] LEWAN M D, WINTERS J C, MCDONALD J H. Generation of oil-like pyrolyzates from organic-rich shales[J]. Science, 1979, 203(4383): 897-899. doi: 10.1126/science.203.4383.897 [7] LEWAN M D. Experiments on the role of water in petroleum formation[J]. Geochimica et Cosmochimica Acta, 1997, 61(17): 3691-3723. doi: 10.1016/S0016-7037(97)00176-2 [8] BURNHAM A. Comments on "Experiments on the role of water in petroleum formation" by M. D. Lewan[J]. Geochim et Cosmochimica Acta, 1998, 62: 2209-2212. http://www.sciencedirect.com/science?_ob=PdfExcerptURL&_imagekey=1-s2.0-S0016703798001495-main.pdf&_piikey=S0016703798001495&_cdi=271865&_orig=article&_zone=centerpane&_fmt=abst&_eid=1-s2.0-S0016703798001495&_user=12975512&md5=5b3df1cb7da0e87b82bbee2b5f45e7e2&ie=/excerpt.pdf [9] LEWAN M D. Reply to the comment by A. K. Burnham on "Experiments on the role of water in petroleum formation"[J]. Geochimica et Cosmochimica Acta, 1998, 62: 2211-2216. doi: 10.1016/S0016-7037(98)00150-1 [10] ZHOU Jianwei, LI Shuyuan, ZHONG Ningning. Study on hydropyrolysis of sedimentary organic matter and geochemical information of hydropyrolysates[J]. Journal of Fuel Chemistry and Technology, 2007, 35(6): 648-654. doi: 10.1016/S1872-5813(08)60002-X [11] WU Liangliang, LIAO Yuhong, FANG Yunxin, et al. The comparison of biomarkers released by hydropyrolysis and Soxhlet extraction from source rocks of different maturities[J]. Chinese Science Bulletin, 2013, 58(3): 373-383. doi: 10.1007/s11434-012-5377-7 [12] FERNANDO F L P. Recent advances on fast hydropyrolysis of biomass[J]. Catalysis Today, 2016, 269: 148-155. doi: 10.1016/j.cattod.2016.01.004 [13] JIN Qiang, XIONG Shousheng, LU Peide. Catalysis and hydrogenation: volcanic activity and hydrocarbon generation in rift basins, Eastern China[J]. Applied Geochemistry, 1999, 14(5): 547-558. doi: 10.1016/S0883-2927(98)00086-9 [14] 金之钧, 张刘平, 杨雷, 等. 沉积盆地深部流体的地球化学特征及油气成藏效应初探[J]. 地球科学, 2002, 27(6): 659-665. doi: 10.3321/j.issn:1000-2383.2002.06.001JIN Zhijun, ZHANG Liuping, YANG Lei, et al. Primary study of geochemical features of deep fluids and their effectiveness on oil/gas reservoir formation in sedimental basins[J]. Earth Science, 2002, 27(6): 659-665. doi: 10.3321/j.issn:1000-2383.2002.06.001 [15] SEEWALD J S. Organic-inorganic interactions in petroleum-producing sedimentary basins[J]. Nature, 2003, 426(6964): 327-333. doi: 10.1038/nature02132 [16] BELL D R, ROSSMAN G R. Water in Earth's mantle: the role of nominally anhydrous minerals[J]. Science, 1992, 255(5050): 1391-1397. doi: 10.1126/science.255.5050.1391 [17] MURAKAMI M, HIROSE K, YURIMOTO H, et al. Water in Earth's lower mantle[J]. Science, 2002, 295(5561): 1885-1887. doi: 10.1126/science.1065998 [18] HALLIS L J, HUSS G R, NAGASHIMA K, et al. Evidence for primordial water in Earth's deep mantle[J]. Science, 2015, 350(6262): 795-797. doi: 10.1126/science.aac4834 [19] HE Kun, ZHANG Shuichang, MI Jingkui, et al. Carbon and hydrogen isotope fractionation for methane from non-isothermal pyrolysis of oil in anhydrous and hydrothermal conditions[J]. Energy Exploration & Exploitation, 2019, 37(5): 1558-1576. http://www.xueshufan.com/publication/2949732735 [20] HUANG Xiaowei, JIN Zhijun, LIU Quanyou, et al. Geochemical characteristics of catalytic hydrogenation of low-mature kerogen under deep fluids[J]. Frontiers in Earth Science, 2022, 10: 885860. doi: 10.3389/feart.2022.885860 [21] HUANG Xiaowei, JIN Zhijun, LIU Quanyou, et al. Catalytic hydrogenation of post-mature hydrocarbon source rocks under deep-derived fluids: an example of Early Cambrian Yurtus Formation, Tarim Basin, NW China[J]. Frontiers in Earth Science, 2021, 9: 626111. doi: 10.3389/feart.2021.626111 [22] 孟庆强. 地质体中天然氢气成因识别方法初探[J]. 石油实验地质, 2022, 44(3): 552-558. doi: 10.11781/sysydz202203552MENG Qingqiang. Identification method for the origin of natural hydrogen gas in geological bodies[J]. Petroleum Geology & Experiment, 2022, 44(3): 552-558. doi: 10.11781/sysydz202203552 [23] 孟庆强, 金之钧, 孙冬胜, 等. 高含量氢气赋存的地质背景及勘探前景[J]. 石油实验地质, 2021, 43(2): 208-216. doi: 10.11781/sysydz202102208MENG Qingqiang, JIN Zhijun, SUN Dongsheng, et al. Geological background and exploration prospects for the occurrence of high-content hydrogen[J]. Petroleum Geology & Experiment, 2021, 43(2): 208-216. doi: 10.11781/sysydz202102208 [24] 马永生, 蔡勋育, 赵培荣. 深层、超深层碳酸盐岩油气储层形成机理研究综述[J]. 地学前缘, 2011, 18(4): 181-192. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201104014.htmMA Yongsheng, CAI Xunyu, ZHAO Peirong. The research status and advances in porosity evolution and diagenesis of deep carbonate reservoir[J]. Earth Science Frontiers, 2011, 18(4): 181-192. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201104014.htm [25] 张抗. 塔河油田的发现及其地质意义[J]. 石油与天然气地质, 1999, 20(2): 120-124. doi: 10.3321/j.issn:0253-9985.1999.02.005ZHANG Kang. The discovery of Tahe oilfield and its geologic significance[J]. Oil & Gas Geology, 1999, 20(2): 120-124. doi: 10.3321/j.issn:0253-9985.1999.02.005 [26] 周新源, 王招明, 杨海军, 等. 中国海相油气田勘探实例之五: 塔中奥陶系大型凝析气田的勘探和发现[J]. 海相油气地质, 2006, 11(1): 45-51. doi: 10.3969/j.issn.1672-9854.2006.01.008ZHOU Xinyuan, WANG Zhaoming, YANG Haijun, et al. Cases of discovery and exploration of marine fields in China (Part 5): Tazhong Ordovician condensate field in Tarim Basin[J]. Marine Origin Petroleum Geology, 2006, 11(1): 45-51. doi: 10.3969/j.issn.1672-9854.2006.01.008 [27] 马永生, 郭旭升, 郭彤楼, 等. 四川盆地普光大型气田的发现与勘探启示[J]. 地质论评, 2005, 51(4): 477-480. doi: 10.3321/j.issn:0371-5736.2005.04.017MA Yongsheng, GUO Xusheng, GUO Tonglou, et al. Discovery of the large-scale Puguang gas field in the Sichuan Basin and its enlightenment for hydrocarbon prospecting[J]. Geological Review, 2005, 51(4): 477-480. doi: 10.3321/j.issn:0371-5736.2005.04.017 [28] 赵贤正, 金凤鸣, 王权, 等. 中国东部超深超高温碳酸盐岩潜山油气藏的发现及关键技术: 以渤海湾盆地冀中坳陷牛东1潜山油气藏为例[J]. 海相油气地质, 2011, 16(4): 1-10. doi: 10.3969/j.issn.1672-9854.2011.04.001ZHAO Xianzheng, JIN Fengming, WANG Quan, et al. A superdeep and superhigh temperature carbonate buried-hill reservoir in eastern China: discovery and the key exploration technology of Nudong-1 buried-hill oil and gas reservoir in Jizhong Depression, Bohaiwan Basin[J]. Marine Origin Petroleum Geology, 2011, 16(4): 1-10. doi: 10.3969/j.issn.1672-9854.2011.04.001 [29] SCHMOKER J W, HALLEY R B. Carbonate porosity versus depth: a predictable relation for South Florida[J]. AAPG Bulletin, 1982, 66(12): 2561-2570. doi: 10.1306/03b5ac73-16d1-11d7-8645000102c1865d [30] ZHU Dongya, JIN Zhujun, HU Wenxuan. Hydrothermal recrystallization of the Lower Ordovician dolomite and its significance to reservoir in northern Tarim Basin[J]. Science China Earth Sciences, 2010, 53(3): 368-381. doi: 10.1007/s11430-010-0028-9 [31] JIN Zhijun, ZHU Dongya, HU Wenxuan, et al. Mesogenetic dissolution of the Middle Ordovician limestone in the Tahe oilfield of Tarim Basin, NW China[J]. Marine and Petroleum Geology, 2009, 26(6): 753-763. doi: 10.1016/j.marpetgeo.2008.08.005 [32] MENG Qingqiang, ZHU Dongya, HU Wenxuan, et al. Dissolution-filling mechanism of atmospheric precipitation controlled by both thermodynamics and kinetics[J]. Science China Earth Sciences, 2013, 56(12): 2150-2159. doi: 10.1007/s11430-013-4711-5 [33] 朱东亚, 孟庆强, 金之钧, 等. 富CO2深部流体对碳酸盐岩的溶蚀-充填作用的热力学分析[J]. 地质科学, 2012, 47(1): 187-201. doi: 10.3969/j.issn.0563-5020.2012.01.016ZHU Dongya, MENG Qingqiang, JIN Zhijun, et al. Thermo-dynamic analysis for carbonate dissolution-filling under influence of CO2-rich deep fluid[J]. Chinese Journal of Geology, 2012, 47(1): 187-201. doi: 10.3969/j.issn.0563-5020.2012.01.016 [34] 朱东亚, 孟庆强, 胡文瑄, 等. 塔里木盆地塔北和塔中地区流体作用环境差异性分析[J]. 地球化学, 2013, 42(1): 82-94. doi: 10.3969/j.issn.0379-1726.2013.01.010ZHU Dongya, MENG Qingqiang, HU Wenxuan, et al. Differences between fluid activities in the central and north Tarim Basin[J]. Geochimica, 2013, 42(1): 82-94. doi: 10.3969/j.issn.0379-1726.2013.01.010 [35] 朱东亚, 金之钧, 孙冬胜, 等. 南方震旦系灯影组热液白云岩化及其对储层形成的影响研究: 以黔中隆起为例[J]. 地质科学, 2014, 49(1): 161-175. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201401012.htmZHU Dongya, JIN Zhijun, SUN Dongsheng, et al. Hydrothermally dolomitized reservoir bed in Sinian Dengying Formation, northern China: an example from Central Guizhou Uplift[J]. Chinese Journal of Geology, 2014, 49(1): 161-175. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201401012.htm [36] 孟庆强, 朱东亚, 解启来, 等. 塔中和巴楚地区深部流体活动控制因素及有利区预测[J]. 石油实验地质, 2011, 33(6): 597-601. doi: 10.11781/sysydz201106597MENG Qingqiang, ZHU Dongya, JIE Qilai, et al. Controlling factors for deep fluid activity and prediction of positive effect area in middle Tarim and Bachu regions[J]. Petroleum Geology & Experiment, 2011, 33(6): 597-601. doi: 10.11781/sysydz201106597 [37] 马永生, 蔡勋育, 赵培荣. 元坝气田长兴组-飞仙关组礁滩相储层特征和形成机理[J]. 石油学报, 2014, 35(6): 1001-1011. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201406001.htmMA Yongsheng, CAI Xunyu, ZHAO Peirong. Characteristics and formation mechanisms of reef-shoal carbonate reservoirs of Changxing-Feixianguan formations, Yuanba gas field[J]. Acta Petrolei Sinica, 2014, 35(6): 1001-1011. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201406001.htm [38] 蒋小琼, 管宏林, 郑和荣, 等. 四川盆地普光气田飞仙关组白云岩储层成因探讨[J]. 石油实验地质, 2014, 36(3): 332-336. doi: 10.11781/sysydz201403332JIANG Xiaoqiong, GUAN Honglin, ZHENG Herong, et al. Discussion on origin of dolomite reservoirs in Feixianguan Formation, Puguang Gas Field, Sichuan Basin[J]. Petroleum Geology & Experiment, 2014, 36(3): 332-336. doi: 10.11781/sysydz201403332 [39] 黄善炳. 金湖凹陷阜宁组砂岩中片钠铝石特征及对物性的影响[J]. 石油勘探与开发, 1996, 23(2): 32-34. doi: 10.3321/j.issn:1000-0747.1996.02.009HUANG Shanbing. The character of dawsonite in sandstone reservoirs of the Funing Formation in Jinhu Sag and its influence on reservoir properties[J]. Petroleum Exploration and Development, 1996, 23(2): 32-34. doi: 10.3321/j.issn:1000-0747.1996.02.009 [40] 高玉巧, 刘立, 杨会东, 等. 松辽盆地孤店二氧化碳气田片钠铝石的特征及成因[J]. 石油学报, 2007, 28(4): 62-67. doi: 10.3321/j.issn:0253-2697.2007.04.012GAO Yuqiao, LIU Li, YANG Huidong, et al. Characteristics and origin of dawsonite in Gudian carbon dioxide gas field of Songliao Basin[J]. Acta Petrolei Sinica, 2007, 28(4): 62-67. doi: 10.3321/j.issn:0253-2697.2007.04.012 [41] 董林森, 刘立, 曲希玉, 等. 松辽盆地南部红岗油田青山口组片钠铝石的结晶特征及成因探讨[J]. 吉林大学学报(地球科学版), 2009, 39(6): 1031-1041. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200906012.htmDONG Linsen, LIU Li, QU Xiyu, et al. Crystal characteristics and genesis of dawsonite of the Qingshankou Formation in the Honggang oilfield in the southern Songliao Basin[J]. Journal of Jilin University(Earth Science Edition), 2009, 39(6): 1031-1041. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200906012.htm [42] 孟庆强, 张刘平, 邹安德. 富CO2流体对深部碎屑储层影响机制模拟研究[J]. 石油天然气学报, 2007, 29(2): 45-49. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX200702010.htmMENG Qingqiang, ZHANG Liuping, ZOU Ande. Simulation study on the mechanism of effect of CO2 enriched fluid on deep clastic reservoirs[J]. Journal of Oil and Gas Technology, 2007, 29(2): 45-49. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX200702010.htm [43] 卢焕章, 范宏瑞, 倪培, 等. 流体包裹体[M]. 北京: 科学出版社, 2004: 48.LU Huanzhang, FAN Hongrui, NI Pei, et al. Fluid inclusions[M]. Beijing: Science Press, 2004: 48. [44] HYATT J A. Liquid and supercritical carbon dioxide as organic solvents[J]. The Journal of Organic Chemistry, 1984, 49(26): 5097-5101. doi: 10.1021/jo00200a016 [45] STAHL E, SCHUETZ E, MANGOLD H K. Extraction of seed oils with liquid and supercritical carbon dioxide[J]. Journal of Agricultural and Food Chemistry, 1980, 28(6): 1153-1157. http://www.onacademic.com/detail/journal_1000036027701810_d6e8.html [46] BEVERIDGE T, HARRISON J E. Microscopic structural components of sea buckthorn (Hippophae rhamnoides L. ) juice prepared by centrifugation[J]. LWT-Food Science and Technology, 2001, 34(7): 458-461. http://www.onacademic.com/detail/journal_1000035270597410_2490.html [47] KAZARIAN S G. Enhancing high-throughput technology and micro-fluidics with FTIR spectroscopic imaging[J]. Analytical and Bioanalytical Chemistry, 2007, 388(3): 529-532. http://www.onacademic.com/detail/journal_1000034439769710_db83.html [48] SUBRAMANIAM V, KIRSCH A K, RIVERA-POMAR R V, et al. Scanning near-field optical microscopy and microspectroscopy of green fluorescent protein in intact Escherichia coli bacteria[J]. Journal of Fluorescence, 1997, 7(4): 381-385. http://www.onacademic.com/detail/journal_1000034821027510_b32c.html [49] BONDAR E, KOEL M. Application of supercritical fluid extraction to organic geochemical studies of oil shales[J]. Fuel, 1998, 77(3): 211-213. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0016236197001889&originContentFamily=serial&_origin=article&_ts=1432048411&md5=63943f9633b350a135b3ccbae812d154 [50] OKAMOTO I, LI Xiaochun, OHSUMI T. Effect of supercritical CO2 as the organic solvent on cap rock sealing performance for underground storage[J]. Energy, 2005, 30(11/12): 2344-2351. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0360544204003901&originContentFamily=serial&_origin=article&_ts=1487682898&md5=4c0fd5aa772c1aa8a9d186e2d4410a20 [51] DIEP P, JORDAN K D, JOHNSON J K, et al. CO2-fluorocarbon and CO2-hydrocarbon interactions from first-principles calculations[J]. The Journal of Physical Chemistry A, 1998, 102(12): 2231-2236. doi: 10.1021/jp9730306 [52] 谷丽冰, 李治平, 欧瑾. 利用二氧化碳提高原油采收率研究进展[J]. 中国矿业, 2007, 16(10): 66-69. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA200710021.htmGU Libing, LI Zhiping, OU Jin. The existing state of enhanced oil recovery by utilizing carbon dioxide[J]. China Mining Magazine, 2007, 16(10): 66-69. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA200710021.htm [53] HOFFMANN C F, HENLEY R W, HIGGINS N C, et al. Biogenic hydrocarbons in fluid inclusions from the aberfoyle tin-tungsten deposit, Tasmania, Australia[J]. Chemical Geology, 1988, 70(4): 287-299. http://www.onacademic.com/detail/journal_1000035295950010_6ce4.html [54] DUTKIEWICZ A, RIDLEY J, BUICK R. Oil-bearing CO2-CH4-H2O fluid inclusions: oil survival since the Palaeoproterozoic after high temperature entrapment[J]. Chemical Geology, 2003, 194(1/3): 51-79. http://www.onacademic.com/detail/journal_1000035460657410_5a76.html [55] 孙樯, 谢鸿森, 郭捷, 等. 地球深部流体与油气生成及运移浅析[J]. 地球科学进展, 2000, 15(3): 283-288. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200003007.htmSUN Qiang, XIE Hongsen, GUO Jie, et al. Fluids in deep earth and origin and migration of oil and gas[J]. Advances in Earth Science, 2000, 15(3): 283-288. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200003007.htm [56] 马安来, 孙红军, 郑磊, 等. 桑托斯盆地Jupiter油气田富含CO2油气藏形成机制[J]. 石油与天然气地质, 2017, 38(2): 371-378. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201702020.htmMA Anlai, SUN Hongjun, ZHENG Lei, et al. A study on forming mechanisms of CO2-rich reservoirs in Jupiter oilfield, Santos Basin, Brazil[J]. Oil & Gas Geology, 2017, 38(2): 371-378. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201702020.htm [57] 何家雄, 祝有海, 翁荣南, 等. 南海北部边缘盆地泥底辟及泥火山特征及其与油气运聚关系[J]. 地球科学(中国地质大学学报), 2010, 35(1): 75-86. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201001011.htmHE Jiaxiong, ZHU Youhai, WENG R N, et al. Characters of north-west mud diapirs volcanoes in South China Sea and relationship between them and accumulation and migration of oil and gas[J]. Earth Science(Journal of China University of Geosciences), 2010, 35(1): 75-86. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201001011.htm [58] LIU Quanyou, ZHU Dongya, JIN Zhijun, et al. Carbon capture and storage for long-term and safe sealing with constrained natural CO2 analogs[J]. Renewable and Sustainable Energy Reviews, 2023, 171: 113000.