留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

塔里木盆地下寒武统西山布拉克组—西大山组沉积环境演化

郭婷婷 朱碧 杨涛 陈永权

郭婷婷, 朱碧, 杨涛, 陈永权. 塔里木盆地下寒武统西山布拉克组—西大山组沉积环境演化[J]. 石油实验地质, 2023, 45(2): 252-265. doi: 10.11781/sysydz202302252
引用本文: 郭婷婷, 朱碧, 杨涛, 陈永权. 塔里木盆地下寒武统西山布拉克组—西大山组沉积环境演化[J]. 石油实验地质, 2023, 45(2): 252-265. doi: 10.11781/sysydz202302252
GUO Tingting, ZHU Bi, YANG Tao, CHEN Yongquan. Evolution of sedimentary environment of the Lower Cambrian Xishanbulake-Xidashan formations in the Tarim Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(2): 252-265. doi: 10.11781/sysydz202302252
Citation: GUO Tingting, ZHU Bi, YANG Tao, CHEN Yongquan. Evolution of sedimentary environment of the Lower Cambrian Xishanbulake-Xidashan formations in the Tarim Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(2): 252-265. doi: 10.11781/sysydz202302252

塔里木盆地下寒武统西山布拉克组—西大山组沉积环境演化

doi: 10.11781/sysydz202302252
基金项目: 

中央高校基本科研业务费专项资金 B200202009

详细信息
    作者简介:

    郭婷婷(1994-), 女, 硕士, 从事古海洋沉积环境研究。E-mail: 983484681@qq.com

    通讯作者:

    朱碧(1985-), 女, 博士, 副研究员, 从事同位素地球化学、古海洋沉积环境研究。E-mail: 61744432@qq.com

  • 中图分类号: TE121.31

Evolution of sedimentary environment of the Lower Cambrian Xishanbulake-Xidashan formations in the Tarim Basin

  • 摘要: 寒武纪是生命与环境演化的关键时期,重建该时期的海洋沉积环境尤其是氧化还原状态,对探讨古海洋化学时空演化特征以及理解生物与环境之间的关系具有重要意义。通过对塔里木盆地塔东2井下寒武统西山布拉克组—西大山组开展主微量元素和有机碳含量(TOC)分析,对该地层的沉积环境进行了重构。该地层沉积时水体处于较弱的局限条件,底水氧化还原状态以缺氧为主,但缺氧程度存在明显的变化。其中,西山布拉克组中部相对上下部缺氧硫化程度明显增加,而西大山组中下部到上部缺氧程度逐渐减弱,底水氧化性总体增加,这种动态变化与前人提出的早寒武世海洋氧化还原状态存在动态变化的观点一致。对塔东2井西山布拉克组—西大山组有机质富集机制的分析显示,该地层中有机质积累并非受控于单一因素,西山布拉克组中下部缺氧/硫化的环境更有利于有机质的保存,而西山布拉克组上部—西大山组沉积过程中较高水平的初级生产力是有机质富集的主要控制因素。

     

  • 图  1  塔里木盆地早寒武世古地理[10](a)及塔东2井地层柱状图[11](b)

    Figure  1.  Paleogeography during Early Cambrian, Tarim Basin (a) and stratigraphic column of well Tadong 2 (b)

    图  2  塔里木盆地塔东2井下寒武统西山布拉克组—西大山组元素纵向变化

    Figure  2.  Chemostratigraphy of Lower Cambrian Xishanbulak-Xidashan formations in well Tadong 2, Tarim Basin

    图  3  塔里木盆地塔东2井下寒武统西山布拉克组—西大山组Mo—TOC图解[22](a)和MoEF—UEF共变图[23](b)

    图 3a中虚线的数据为Mo/TOC值,单位为10-4;图 3b中蓝色空心圆和蓝色空心三角分别为华南早寒武世沉积于缺氧硫化和缺氧非硫化水体的地层数据[24-28]

    Figure  3.  Mo-TOC diagram (a) and MoEF-UEF (b) covariant diagrams of Lower Cambrian Xishanbulak-Xidashan formations in well Tadong 2, Tarim Basin

    图  4  塔里木盆地塔东2井下寒武统西山布拉克组—西大山组Cd/Mo—Co×Mn[24](a)、CoEF×MnEF—Al[24](b)、Co—Al (c)和MnO—Al(d)图解

    a和b为塔东2井海洋系统中盆地受限和上升流情况

    Figure  4.  Cd/Mo-Co×Mn (a), CoEF×MnEF-Al (b), Co-Al (c) and MnO-Al (d) diagrams of Lower Cambrian Xishanbulak-Xidashan formations in well Tadong 2, Tarim Basin

    图  5  塔里木盆地塔东2井下寒武统西山布拉克组—西大山组与华南下寒武统缺氧硫化和缺氧非硫化沉积物中Mo含量对比[25-28, 31, 41]

    Figure  5.  Mo concentrations of Lower Cambrian Xishanbulak-Xidashan formations in well Tadong 2 in the Tarim Basin and South China Lower Cambrian successions deposited in anoxic euxinic and anoxic non-euxinic conditions, respectively

    图  6  塔里木盆地塔东2井下寒武统西山布拉克组—西大山组P2O5、Ni、Cu、Zn与TOC(a-d)及Ni、Cu、Zn与V/Al(e-g)、Mo/Al(h-j)相关图

    Figure  6.  Diagrams of P2O5, Ni, Cu and Zn vs. TOC (a-d), Ni, Cu and Zn vs. V/Al (e-g) and Mo/Al (h-j) of Lower Cambrian Xishanbulak-Xidashan formations in well Tadong 2, Tarim Basin

    图  7  塔里木盆地塔东2井下寒武统西山布拉克组(a)—西大山组(b)沉积模式

    Figure  7.  Sedimentary patterns of Lower Cambrian Xishanbulak (a) and Xidashan (b) formations in well Tadong 2, Tarim Basin

    表  1  塔里木盆地塔东2井下寒武统西山布拉克组—西大山组主、微量元素和有机碳含量数据

    Table  1.   Major, trace elements and TOC data of Lower Cambrian Xishanbulak-Xidashan formations in well Tadong 2, Tarim Basin

    序号 地层 深度/m ω(TOC)/% ω(Al2O3)/% ω(P2O5)/% ω(MnO)/% Co/10-6 Cd/10-6 Ni/10-6 Cu/10-6 Zn/10-6 Mo /10-6 U/10-6 V/10-6 Cd/Mo
    1 西大山组 4 887 0.47 2.62 0.04 7.17 4.91 0.18 21.90 7.86 14.10 3.80 2.41 23.90 0.05
    2 4 889 1.72 9.46 0.09 6.42 14.5 7.88 94.90 39.70 181.00 29.71 14.70 679.00 0.27
    3 4 891 1.97 7.86 0.06 3.98 12.6 5.71 68.40 46.40 68.90 26.65 3.63 460.00 0.21
    4 4 893 1.80 6.56 0.05 3.55 10.5 1.68 54.60 34.30 70.80 22.08 7.63 374.00 0.08
    5 4 895 1.46 7.22 0.07 5.90 11.2 0.78 53.30 33.90 69.20 25.65 8.80 295.00 0.03
    6 4 897 2.01 7.31 0.06 3.76 11.8 1.16 64.30 43.10 85.90 28.27 9.91 500.00 0.04
    7 4 898 1.93 6.65 0.06 3.55 10.9 0.94 63.70 38.60 77.10 30.28 9.81 488.00 0.03
    8 4 901 2.20 5.64 0.06 5.44 10.9 0.42 55.50 33.10 41.20 34.71 14.00 175.00 0.01
    9 4 903 2.29 6.98 0.06 5.88 13.7 1.72 80.90 48.70 68.70 48.35 18.80 358.00 0.04
    10 4 905 2.43 6.42 0.06 5.00 13.2 1.40 91.40 48.90 94.90 55.09 20.20 396.00 0.03
    11 4 907 1.18 3.81 0.05 5.95 7.18 0.54 43.00 21.80 35.90 23.69 7.57 198.00 0.02
    12 4 909 0.84 1.70 0.03 2.18 5.33 4.20 34.30 12.40 19.30 15.93 5.38 71.90 0.26
    13 4 911 0.72 1.93 0.04 3.50 7.29 0.27 31.10 13.30 28.20 15.71 4.72 81.70 0.02
    14 4 912 0.73 1.80 0.04 3.44 5.19 0.26 26.70 12.80 19.40 15.47 4.55 52.30 0.02
    15 4 914 1.13 1.82 0.06 1.31 5.67 0.31 35.80 22.80 19.70 29.52 8.38 79.80 0.01
    16 4 917 1.50 3.71 0.07 1.72 11.1 0.53 54.90 39.90 46.10 34.75 10.10 186.00 0.02
    17 4 919 1.30 1.86 0.06 1.33 5.73 0.36 36.70 26.90 21.90 29.72 8.55 77.40 0.01
    18 4 921 0.92 2.19 0.06 5.64 6.41 0.45 29.70 24.00 38.40 81.20 4.65 56.50 0.01
    19 4 924 1.34 2.63 0.05 4.10 6.63 0.36 37.60 21.50 24.50 35.98 8.37 84.20 0.01
    20 4 925 1.53 3.69 0.05 2.77 8.74 0.45 53.40 32.60 38.00 37.42 11.20 186.00 0.01
    21 4 927 1.25 4.13 0.06 5.30 10.2 0.56 47.70 37.00 38.40 57.95 11.20 116.00 0.01
    22 4 928 1.42 4.98 0.07 3.25 11 1.16 40.40 39.40 38.80 46.45 11.40 95.00 0.03
    23 4 931 1.58 5.72 0.07 1.36 17.1 0.62 52.70 45.10 50.70 40.62 12.40 152.00 0.02
    24 4 933 2.09 3.53 0.08 1.07 9.48 1.09 103.00 34.20 63.50 53.69 16.00 413.00 0.02
    25 4 935 1.11 2.73 0.06 5.42 7.15 0.53 55.30 20.20 27.70 26.50 10.60 152.00 0.02
    26 4 937 1.21 3.66 0.07 2.30 9.47 1.09 74.60 35.60 60.30 66.02 11.60 380.00 0.02
    27 4 939 1.36 3.19 0.06 2.03 7.4 0.90 70.40 27.20 45.60 44.57 12.50 286.00 0.02
    28 4 941 1.58 3.23 0.05 4.17 7.34 0.77 68.10 25.20 41.10 44.02 11.90 258.00 0.02
    29 4 943 1.02 2.40 0.05 8.48 5.88 0.47 43.40 17.40 23.10 21.02 6.64 135.00 0.02
    30 4 945 0.78 2.07 0.04 3.75 5.43 0.36 38.70 17.90 24.40 14.68 5.15 125.00 0.02
    31 4 947 0.52 1.89 0.05 3.19 5.5 0.19 35.20 14.20 16.90 13.24 4.40 121.00 0.01
    32 西山布拉克组 4 949 1.16 3.34 0.05 3.64 7.57 0.61 58.30 25.10 54.30 30.04 10.70 228.00 0.02
    33 4 951 1.57 4.54 0.05 3.36 9.06 0.89 63.50 35.00 68.20 38.65 11.40 331.00 0.02
    34 4 956 2.15 5.92 0.06 0.69 7.58 1.40 86.48 44.67 140.57 61.27 16.84 432.65 0.02
    35 4 959 4.47 10.59 0.13 2.52 15.40 2.34 242.90 63.34 241.11 126.85 36.72 811.93 0.02
    36 4 960 10.21 8.00 0.23 1.84 12.05 5.79 410.53 71.47 473.00 288.32 95.14 1 913.25 0.02
    37 4 961 9.06 5.86 0.25 0.78 8.43 2.49 254.69 56.08 190.60 260.66 136.29 612.43 0.01
    38 4 963 6.99 5.32 0.22 0.37 6.65 5.86 167.39 67.90 471.27 168.37 97.68 703.85 0.03
    39 4 965 6.06 7.24 0.54 0.56 11.79 2.45 204.82 64.23 255.63 165.11 72.63 1 191.69 0.01
    40 4 969 0.44 2.64 7.01 9.77 6.89 1.73 45.80 30.90 388.00 12.10 21.90 263.00 0.14
    41 4 977 0.58 2.89 0.81 14.46 6.5 1.01 46.10 19.80 152.00 35.22 10.40 233.00 0.03
    序号 地层 深度/m Co×Mn/10-8 Mo/Al/10-4 U/Al/10-4 V/Al/10-4 MoEF UEF VEF ZnEF CuEF NiEF MnEF OCAR Corg/P
    1 西大山组 4 887 0.11 2.74 1.74 17.24 27.39 5.61 1.15 1.20 1.13 2.87 1.92 6.01 62.78
    2 4 889 0.28 5.93 2.94 135.63 59.37 9.48 9.05 4.26 1.59 3.45 0.46 22.25 107.33
    3 4 891 0.24 6.40 0.87 110.52 64.07 2.82 7.37 1.95 2.23 2.99 0.54 25.45 190.19
    4 4 893 0.16 6.35 2.20 107.62 63.57 7.09 7.18 2.40 1.98 2.86 0.53 23.30 213.29
    5 4 895 0.26 6.71 2.30 77.20 67.17 7.43 5.15 2.13 1.78 2.54 0.72 18.82 118.84
    6 4 897 0.19 7.30 2.56 129.16 73.08 8.26 8.62 2.61 2.23 3.02 0.50 26.00 205.12
    7 4 898 0.19 8.61 2.79 138.70 86.12 9.00 9.25 2.58 2.20 3.29 0.58 24.97 193.43
    8 4 901 0.21 11.63 4.69 58.64 116.37 15.14 3.91 1.63 2.22 3.38 0.77 28.43 208.60
    9 4 903 0.26 13.08 5.09 96.87 130.90 16.42 6.46 2.19 2.64 3.98 0.60 29.64 222.70
    10 4 905 0.23 16.22 5.95 116.57 162.26 19.19 7.78 3.29 2.88 4.89 0.60 31.44 243.63
    11 4 907 0.13 11.74 3.75 98.08 117.43 12.10 6.54 2.09 2.16 3.88 1.08 15.22 138.93
    12 4 909 0.05 17.74 5.99 80.07 177.46 19.34 5.34 2.53 2.76 6.95 1.32 10.84 176.71
    13 4 911 0.10 15.37 4.62 79.96 153.82 14.91 5.33 3.25 2.60 5.54 1.63 9.31 97.92
    14 4 912 0.07 16.25 4.78 54.93 162.57 15.42 3.66 2.40 2.69 5.10 1.69 9.46 111.22
    15 4 914 0.07 30.65 8.70 82.88 306.71 28.09 5.53 2.41 4.74 6.76 1.45 14.59 106.56
    16 4 917 0.15 17.69 5.14 94.68 177.01 16.59 6.32 2.76 4.06 5.08 0.81 19.39 133.30
    17 4 919 0.07 30.18 8.68 78.61 302.01 28.03 5.24 2.62 5.47 6.78 1.49 16.83 124.14
    18 4 921 0.39 70.14 4.02 48.80 701.80 12.96 3.26 3.90 4.15 4.67 6.23 11.84 91.15
    19 4 924 0.13 25.82 6.01 60.42 258.30 19.38 4.03 2.07 3.09 4.91 1.68 17.31 162.23
    20 4 925 0.12 19.16 5.74 95.26 191.75 18.51 6.35 2.29 3.34 4.98 0.83 19.74 166.85
    21 4 927 0.33 26.53 5.13 53.10 265.42 16.55 3.54 2.07 3.39 3.97 1.76 16.09 123.03
    22 4 928 0.27 17.63 4.33 36.06 176.40 13.97 2.41 1.73 2.99 2.79 1.11 18.38 129.04
    23 4 931 0.26 13.41 4.09 50.18 134.16 13.21 3.35 1.97 2.98 3.17 0.59 20.35 130.63
    24 4 933 0.09 28.74 8.57 221.10 287.58 27.65 14.75 4.00 3.66 10.03 0.57 26.96 160.39
    25 4 935 0.12 18.31 7.32 105.02 183.20 23.64 7.01 2.25 2.79 6.95 1.33 14.32 112.01
    26 4 937 0.31 34.03 5.98 195.86 340.48 19.30 13.07 3.66 3.67 7.00 1.97 15.59 102.92
    27 4 939 0.13 26.41 7.41 169.44 264.22 23.90 11.30 3.18 3.22 7.59 1.20 17.52 138.18
    28 4 941 0.12 25.70 6.95 150.65 257.17 22.43 10.05 2.83 2.94 7.23 1.11 20.41 199.16
    29 4 943 0.11 16.55 5.23 106.32 165.64 16.88 7.09 2.14 2.74 6.22 1.77 13.21 133.10
    30 4 945 0.10 13.37 4.69 113.91 133.82 15.15 7.60 2.62 3.26 6.42 1.90 10.07 125.05
    31 4 947 0.17 13.22 4.39 120.81 132.23 14.18 8.06 1.99 2.84 6.39 3.72 6.77 61.21
    32 西山布拉克组 4 949 0.19 16.98 6.05 128.87 169.89 19.52 8.60 3.61 2.84 5.99 1.64 131.12
    33 4 951 0.22 16.10 4.75 137.87 161.08 15.33 9.20 3.34 2.92 4.81 1.20 170.55
    34 4 956 0.07 19.55 5.37 138.07 195.65 17.34 9.21 5.28 2.85 5.02 0.35 221.29
    35 4 959 0.34 22.64 6.55 144.89 226.50 21.15 9.66 5.06 2.26 7.89 0.47 208.49
    36 4 960 0.31 68.07 22.46 451.72 681.12 72.50 30.13 13.15 3.38 17.63 0.71 267.47
    37 4 961 0.14 84.08 43.96 197.55 841.32 141.90 13.18 7.24 3.62 14.95 0.61 210.78
    38 4 963 0.08 59.82 34.70 250.07 598.54 112.01 16.68 19.71 4.83 10.82 0.51 184.39
    39 4 965 0.19 43.10 18.96 311.12 431.30 61.20 20.75 7.86 3.36 9.73 0.50 65.75
    40 4 969 0.56 8.66 15.67 188.21 86.64 50.59 12.55 32.69 4.43 5.96 6.85 0.37
    41 4 977 0.63 22.99 6.79 152.11 230.06 21.91 10.15 11.68 2.59 5.48 7.47 4.24
    下载: 导出CSV
  • [1] 朱茂炎, 杨爱华, 袁金良, 等. 中国寒武纪综合地层和时间框架[J]. 中国科学(地球科学), 2019, 49(1): 26-65. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201901004.htm

    ZHU Maoyan, YANG Aihua, YUAN Jinliang, et al. Cambrian integrative stratigraphy and timescale of China[J]. Science China(Earth Sciences), 2019, 62(1): 25-60. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201901004.htm
    [2] JIN Chengsheng, LI Chao, ALGEO T J, et al. A highly redox-heterogeneous ocean in South China during the early Cambrian(~529-514 Ma): implications for biota-environment co-evolution[J]. Earth and Planetary Science Letters, 2016, 441: 38-51. doi: 10.1016/j.epsl.2016.02.019
    [3] LI Chao, JIN Chengsheng, PLANAVSKY N J, et al. Coupled oceanic oxygenation and metazoan diversification during the early-middle Cambrian?[J]. Geology, 2017, 45(8): 743-746. http://www.onacademic.com/detail/journal_1000039922806510_3e61.html
    [4] CHEN Xi, LING Hongfei, VANCE D, et al. Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals[J]. Nature Communications, 2015, 6: 7142. doi: 10.1038/ncomms8142
    [5] WEI Guangyi, PLANAVSKY N J, HE Tianchen, et al. Global marine redox evolution from the Late Neoproterozoic to the Early Paleozoic constrained by the integration of Mo and U isotope records[J]. Earth-Science Reviews, 2021, 214: 103506. doi: 10.1016/j.earscirev.2021.103506
    [6] HAMMARLUND E U, GAINES R R, PROKOPENKO M G, et al. Early Cambrian oxygen minimum zone-like conditions at Chengjiang[J]. Earth and Planetary Science Letters, 2017, 475: 160-168. doi: 10.1016/j.epsl.2017.06.054
    [7] 杨赟昊, 高志前, 樊太亮, 等. 下寒武统黑色岩系沉积环境与控烃差异: 以塔里木盆地西北缘和东北缘为例[J]. 断块油气田, 2022, 29(1): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202201008.htm

    YANG Yunhao, GAO Zhiqian, FAN Tailiang, et al. The diffe-rences of sedimentary environment and hydrocarbon control of Lower Cambrian black rock series: a case study of northwestern and northeastern margin, Tarim Basin[J]. Fault-Block Oil & Gas Field, 2022, 29(1): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202201008.htm
    [8] 郑见超, 李斌, 袁倩, 等. 塔里木盆地巴楚-塔北地区深层寒武系油气成藏过程与勘探方向[J]. 石油与天然气地质, 2022, 43(1): 79-91. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202201006.htm

    ZHENG Jianchao, LI Bin, YUAN Qian, et al. Hydrocarbon accumulation process and exploration direction of the deep Cambrian in Bachu-Tabei area, Tarim Basin[J]. Oil & Gas Geology, 2022, 43(1): 79-91. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202201006.htm
    [9] 曹自成, 徐勤琪, 余腾孝, 等. 二次生烃与古油藏原油裂解对油气成藏的意义: 以塔里木盆地巴楚-麦盖提地区寒武系烃源岩为例[J]. 新疆石油地质, 2021, 42(2): 143-151. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202102003.htm

    CAO Zicheng, XU Qinqi, YU Tengxiao, et al. Significance of secon-dary hydrocarbon generation and crude oil cracking in paleo-reservoirs to hydrocarbon accumulation: a case study of Cambrian source rocks in Bachu-Maigaiti area of Tarim Basin[J]. Xinjiang Petroleum Geology, 2021, 42(2): 143-151. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202102003.htm
    [10] 李峥. 塔里木盆地中、下寒武统沉积演化与沉积相研究[D]. 北京: 中国石油大学(北京), 2016.

    LI Zheng. The research of sedimentary evolution and sedimentary facies in Middle and Lower Cambrian in Tarim Basin[D]. Beijing: China University of Petroleum (Beijing), 2016.
    [11] 陈永权, 张艳秋, 周鹏, 等. 塔里木盆地寒武系苗岭统碳同位素地层学与等时对比[J]. 地层学杂志, 2019, 43(3): 324-332. doi: 10.19839/j.cnki.dcxzz.2019.03.009

    CHEN Yongquan, ZHANG Yanqiu, ZHOU Peng, et al. Carbon isotope stratigraphy and correlation of the Cambrian Miaolingian strata, Tarim Basin[J]. Journal of Stratigraphy, 2019, 43(3): 324-332. doi: 10.19839/j.cnki.dcxzz.2019.03.009
    [12] 贾承造, 魏国齐, 姚慧君, 等. 盆地构造演化与区域构造地质[M]. 北京: 石油工业出版社, 1995: 1-50.

    JIA Chengzao, WEI Guoqi, YAO Huijun, et al. Tectonic evolution and regional tectonic geology of Tarim Basin[M]. Beijing: Petroleum Industry Press, 1995: 1-50.
    [13] 杨永剑, 刘家铎, 田景春, 等. 塔里木盆地寒武纪层序岩相古地理特征[J]. 天然气地球科学, 2011, 22(3): 450-459. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201103012.htm

    YANG Yongjian, LIU Jiaduo, TIAN Jingchun, et al. Sequence lithofacies paleogeography of Cambrian in Tarim Basin[J]. Natural Gas Geoscience, 2011, 22(3): 450-459. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201103012.htm
    [14] 刘伟, 张光亚, 潘文庆, 等. 塔里木地区寒武纪岩相古地理及沉积演化[J]. 古地理学报, 2011, 13(5): 529-538. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201105012.htm

    LIU Wei, ZHANG Guangya, PAN Wenqing, et al. Lithofacies palaeogeography and sedimentary evolution of the Cambrian in Tarim area[J]. Journal of Palaeogeography, 2011, 13(5): 529-538. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201105012.htm
    [15] 田雷, 崔海峰, 刘军, 等. 塔里木盆地早、中寒武世古地理与沉积演化[J]. 石油与天然气地质, 2018, 39(5): 1011-1021. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805016.htm

    TIAN Lei, CUI Haifeng, LIU Jun, et al. Early-Middle Cambrian paleogeography and depositional evolution of Tarim Basin[J]. Oil & Gas Geology, 2018, 39(5): 1011-1021. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805016.htm
    [16] 朱光有, 闫慧慧, 陈玮岩, 等. 塔里木盆地东部南华系-寒武系黑色岩系地球化学特征及形成与分布[J]. 岩石学报, 2020, 36(11): 3442-3462. doi: 10.18654/1000-0569/2020.11.12

    ZHU Guangyou, YAN Huihui, CHEN Weiyan, et al. Geochemical characteristics, formation and distribution of the Nanhua-Cambrian black rockseries in the eastern Tarim Basin[J]. Acta Petrologica Sinica, 2020, 36(11): 3442-3462. doi: 10.18654/1000-0569/2020.11.12
    [17] YAO Jinxian, XIAO Shuhai, YIN Leiming, et al. Basal Cambrian microfossils from the Yurtus and Xishanblaq formations (Tarim, North-west China): systematic revision and biostratigraphic correlation of Micrhystridium-like acritarchs[J]. Palaeontology, 2005, 48(4): 687-708. doi: 10.1111/j.1475-4983.2005.00484.x
    [18] 蔡习尧, 窦丽玮, 蒋华山, 等. 塔里木盆地塔东地区寒武系划分与对比[J]. 石油实验地质, 2014, 36(5): 539-545. doi: 10.11781/sysydz201405539

    CAI Xiyao, DOU Liwei, JIANG Huashan, et al. Classification and correlation of Cambrian in eastern Tarim Basin[J]. Petroleum Geology & Experiment, 2014, (5): 539-545. doi: 10.11781/sysydz201405539
    [19] 钟端, 郝永祥. 寒武系[M]//石油管理局南疆石油勘探公司, 滇黔桂石油勘探局石油地质科学研究所. 塔里木盆地震旦纪至二叠纪地层古生物(I). 南京: 南京大学出版社, 1990: 16-40.

    ZHONG Duan, HAO Yongxiang. Cambrian[M]//Nanjiang Petroleum Exploration Company of Petroleum Administration Bureau, Institute of Petroleum Geology, Yunnan-Guizhou-Guangxi Petroleum Exploration Bureau. Stratigraphy and palaeontology seismic from Sinian to Permian in the Tarim Basin(I). Nanjing: Nanjing University Press, 1990: 16-40.
    [20] TAYLOR S R, MCLENNAN S M. The continental crust: its composition and evolution, an examination of the geochemical record preserved in sedimentary rocks[J]. Journal of Geology, 1985, 94(4): 632-633. http://docgbr785.firebaseapp.com/aa558/the-continental-crust-its-composition-and-evolution-an-examination-of-the-geochemical-record-preserved-in-sedimentary-rocks-by-stuart-r-taylor-scott-m-mclennan-0632011483.pdf
    [21] SCHOEPFER S D, SHEN Jun, WEI Hengye, et al. Total organic carbon, organic phosphorus, and biogenic barium fluxes as pro-xies for paleomarine productivity[J]. Earth-Science Reviews, 2015, 149: 23-52. http://www.researchgate.net/profile/Jun_Shen7/publication/296294808_2015-Schoepfer-etal-ESR/links/56d4094d08ae66f3498efd44.pdf
    [22] ALGEO T J, LYONS T W. Mo-total organic carbon covariation in modern anoxic marine environments: implications for analysis of paleoredox and paleohydrographic conditions[J]. Paleoceanography and Paleoclimatology, 2006, 21(1): PA1016. doi: 10.1029/2004PA001112/full
    [23] ALGEO T J, TRIBOVILLARD N. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation[J]. Chemical Geology, 2009, 268(3/4): 211-225. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0009254109003805&originContentFamily=serial&_origin=article&_ts=1430274688&md5=530cf4a7f0f5b85872808855ee9901a9
    [24] SWEERE T, VAN DEN BOORN S, DICKSON A J, et al. Definition of new trace-metal proxies for the controls on organic matter enrichment in marine sediments based on Mn, Co, Mo and Cd concentrations[J]. Chemical Geology, 2016, 441: 235-245.
    [25] CHENG Meng, LI Chao, ZHOU Lian, et al. Marine Mo biogeochemistry in the context of dynamically euxinic mid-depth waters: a case study of the Lower Cambrian Niutitang shales, South China[J]. Geochimica et Cosmochimica Acta, 2016, 183: 79-93. http://smartsearch.nstl.gov.cn/paper_detail.html?id=c485f771e33f1dc1b8c7f22432b6e37f
    [26] XU Lingang, LEHMANN B, MAO Jingwen, et al. Mo isotope and trace element patterns of Lower Cambrian black shales in South China: multi-proxy constraints on the paleoenvironment[J]. Chemical Geology, 2012, 318-319: 45-59. http://lmr.imr.net.cn/UploadFiles/2014_5_22/2012%20%20Mo%20isotope%20and%20trace%20element%20patterns%20of%20Lower%20Cambrian%20black%20shales%20in%20South%20China%20Multi-proxy%20constraints%20on%20the%20paleoenvironment.pdf
    [27] WEN Hanjie, FAN Haifeng, ZHANG Yuxu, et al. Reconstruction of Early Cambrian ocean chemistry from Mo isotopes[J]. Geochimica et Cosmochimica Acta, 2015, 164: 1-16. http://www.onacademic.com/detail/journal_1000037719210310_7577.html
    [28] 金承胜. 华南寒武纪早期海洋氧化还原状态时空波动及其与早期动物的协同演化[D]. 武汉: 中国地质大学, 2017.

    JIN Chengsheng. Spatiotemporal variations of ocean redox conditions and its Co-evolution with early animals during the Early Cambrian, South China[D]. Wuhan: China University of Geosciences, 2017.
    [29] WILLE M, NÄGLER T F, LEHMANN B, et al. Hydrogen sulphide release to surface waters at the Precambrian/Cambrian boundary[J]. Nature, 2008, 453(7196): 767-769. http://www.nature.com/nature/journal/v453/n7196/pdf/nature07072.pdf
    [30] YU Bingsong, DONG Hailiang, WIDOM E, et al. Geochemistry of basal Cambrian black shales and cherts from the northern Tarim Basin, Northwest China: implications for depositional setting and tectonic history[J]. Journal of Asian Earth Sciences, 2009, 34(3): 418-436. http://www.sciencedirect.com/science/article/pii/S1367912008001065
    [31] OCH L M, SHIELDS-ZHOU G A, POULTON S W, et al. Redox changes in Early Cambrian black shales at Xiaotan section, Yunnan Province, South China[J]. Precambrian Research, 2013, 225: 166-189. http://www.researchgate.net/profile/Lawrence_Och/publication/235428471_Redox_changes_in_Early_Cambrian_black_shales_at_Xiaotan_section_Yunnan_Province_South_China/links/0912f5118c58a6fe4f000000
    [32] CHENG Meng, LI Chao, ZHOU Lian, et al. Transient deep-water oxygenation in the Early Cambrian Nanhua Basin, South China[J]. Geochimica et Cosmochimica Acta, 2017, 210: 42-58. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0016703717302557&originContentFamily=serial&_origin=article&_ts=1493701554&md5=c73141ebff36e54ffa6af4c7394d7a8f
    [33] CALVERT S E, PEDERSEN T F. Sedimentary geochemistry of manganese: implications for the environment of formation of manganiferous black shales[J]. Economic Geology, 1996, 91(1): 36-47. http://www.onacademic.com/detail/journal_1000035953375210_bce2.html
    [34] HÄUSLER K, DELLWIG O, SCHNETGER B, et al. Massive Mn carbonate formation in the Landsort Deep (Baltic Sea): hydro-graphic conditions, temporal succession, and Mn budget calculations[J]. Marine Geology, 2018, 395: 260-270. http://www.onacademic.com/detail/journal_1000040118999410_f4d2.html
    [35] TRIBOVILLARD N, ALGEO T J, LYONS T, et al. Trace metals as paleoredox and paleoproductivity proxies: an update[J]. Chemical Geology, 2006, 232(1/2): 12-32.
    [36] BENNETT W W, CANFIELD D E. Redox-sensitive trace metals as paleoredox proxies: a review and analysis of data from modern sediments[J]. Earth-Science Reviews, 2020, 204: 103175.
    [37] ALGEO T J, INGALL E. Sedimentary Corg: P ratios, paleocean ventilation, and Phanerozoic atmospheric pO2[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 256(3/4): 130-155. http://www.researchgate.net/profile/Thomas_Algeo/publication/223428502_Sedimentary_CorgP_ratios_paleocean_ventilation_and_Panerozoic_atmospheric_pO2/links/0c96051c53df9c7a41000000.pdf
    [38] ALGEO T J, LI Chao. Redox classification and calibration of redox thresholds in sedimentary systems[J]. Geochimica et Cosmochimica Acta, 2020, 287: 8-26. http://www.sciencedirect.com/science/article/pii/S0016703720300788
    [39] LENZ C, JILBERT T, CONLEY D J, et al. Are recent changes in sediment manganese sequestration in the euxinic basins of the Baltic Sea linked to the expansion of hypoxia?[J]. Biogeosciences, 2015, 12(16): 4875-4894. http://discovery.ucl.ac.uk/1470535/1/Lenz_et_al_20015_bg-12-4875-2015.pdf
    [40] SCOTT C, LYONS T W. Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: refining the paleoproxies[J]. Chemical Geology, 2012, 324-325: 19-27. http://www.onacademic.com/detail/journal_1000035622213210_81c5.html
    [41] ZHANG Yuying, HE Zhiliang, JIANG Shu, et al. Marine redox stratification during the Early Cambrian (ca. 529-509 Ma) and its control on the development of organic-rich shales in Yangtze Platform[J]. Journal of Technology & Science, 2017, 18(6): 2354-2369. doi: 10.1002/2017GC006864
    [42] 邓倩. 震旦系-下寒武统沉积地球化学记录及有机质富集保存机制探讨: 以华南和塔里木盆地研究为例[D]. 广州: 中国科学院大学(中国科学院广州地球化学研究所), 2021.

    DENG Qian. Sedimentary geochemical records and organic matter accumulation mechanisms in the Sinian-Lower Cambrian strata: case studies in South China and the Tarim Basin, NW China[D]. Guangzhou: University of Chinese Academy of Sciences (Guangzhou Institute of Geochemistry, Chinese Academy of Sciences), 2021.
    [43] WOOD R, ERWIN D H. Innovation not recovery: dynamic redox promotes metazoan radiations[J]. Biological Reviews, 2018, 93(2): 863-873. http://repository.si.edu/bitstream/handle/10088/33999/2017%20Wood%20%26%20Erwin%20BiolRev%20Dynamic%20redox%20promotes%20metazoan%20innovation.pdf?sequence=1&isAllowed=y
    [44] MURPHY A E, SAGEMAN B B, HOLLANDER D J, et al. Black shale deposition and faunal overturn in the Devonian Appalachian Basin: clastic starvation, seasonal water-column mixing, and efficient biolimiting nutrient recycling[J]. Paleoceanography and Paleoclimatology, 2000, 15(3): 280-291. doi: 10.1029/1999PA000445
    [45] IVERSEN M H, PLOUG H. Ballast minerals and the sinking carbon flux in the ocean: carbon-specific respiration rates and sinking velocity of marine snow aggregates[J]. Biogeosciences, 2010, 7(9): 2613-2624. http://epic.awi.de/22376/1/Ive2010b.pdf
    [46] TYSON R V. The "productivity versus preservation" controversy: cause, flaws, and resolution[M]//HARRIS N B. The deposition of organic-carbon-rich sediments: models, mechanisms, and consequences. Tulsa, Okla: SEPM, 2005: 17-33.
    [47] LITTLE S H, VANCE D, LYONS T W. Controls on trace metal authigenic enrichment in reducing sediments: insights from modern oxygen-deficient settings[J]. American Journal of Science, 2015, 315(2): 77-119.
    [48] GUILBAUD R, SLATER B J, POULTON S W, et al. Oxygen minimum zones in the Early Cambrian ocean[J]. Geochemical Perspectives Letters, 2018, 6: 33-38.
    [49] LI Chao, LOVE G D, LYONS T W, et al. A stratified redox model for the Ediacaran ocean[J]. Science, 2010, 328(5974): 80-83. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.725.9428&rep=rep1&type=pdf
    [50] 张水昌, WANG R L, 金之钧, 等. 塔里木盆地寒武纪-奥陶纪优质烃源岩沉积与古环境变化的关系: 碳氧同位素新证据[J]. 地质学报, 2006, 80(3): 459-466. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200603020.htm

    ZHANG Shuichang, WANG R L, JIN Zhijun. The relationship between the Cambrian-Ordovician high-TOC source rock deve-lopment and paleoenvironment variations in the Tariam Basin, Western China: carbon and oxygen isotope evidence[J]. Acta Geologica Sinica, 2006, 80(3): 459-466. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200603020.htm
    [51] 谢巍, 李一凡, 刘旺威. 塔里木盆地东北缘下寒武统泥页岩古气候与物源背景研究[J/OL]. 沉积学报, 2021-12-22: 1-20. https://doi.org/10.14027/j.issn.1000-0550.2021.159.

    XIE Wei, LI Yifan, LIU Wangwei. Paleoclimate and provenance of Lower Cambrian shales in northeastern margin of Tarim Basin[J/OL]. Acta Sedimentologica Sinica, 2021-12-22: 1-20. https://doi.org/10.14027/j.issn.1000-0550.2021.159.
    [52] ZHU Bi, YANG Tao, WANG Jin, et al. Multiple controls on the paleoenvironment of the Early Cambrian black shale-chert in the northwest Tarim Basin, NW China: trace element, iron speciation and Mo isotopic evidence[J]. Marine and Petroleum Geology, 2022, 136: 105434.
    [53] LI Chao, SHI Wei, CHENG Meng, et al. The redox structure of Ediacaran and Early Cambrian oceans and its controls[J]. Science Bulletin, 2020, 65(24): 2141-2149. http://www.sciengine.com/doi/pdf/10123AE9C2344B559820A833DBF2C4F3
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  426
  • HTML全文浏览量:  204
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-03
  • 修回日期:  2023-01-31
  • 刊出日期:  2023-03-28

目录

    /

    返回文章
    返回