New understanding on development conditions of lacustrine source rocks and characterization of high-quality source rocks in Songxi Sag, Qiongdongnan Basin
-
摘要: 针对琼东南盆地松西凹陷烃源岩发育机制不清、优质烃源岩分布不明的问题,根据已钻井原油地化特征、次洼沉积特征、地震相与属性特征、地震速度谱的对比分析,对松西凹陷东、西次洼始新统中深湖相烃源岩进行了预测,明确了松西凹陷沉降速率、物源注入点、凹陷结构三因素耦合控制了湖相烃源岩的发育与展布。松西凹陷西次洼紧邻大型物源注入点,为富砂沉积,从而导致较低的古生产力水平、较高的沉积速率和开放氧化的水体环境,不具备优质烃源岩形成的基本条件;东次洼远离大型物源注入点,仅发育小规模砂体,利于发育中—深湖相烃源岩。已钻井原油地化指标表明,研究区原油来自中深湖相烃源岩,证实松西凹陷存在优质烃源岩。始新统中深湖相烃源岩具有低频、连续、强反射地震特征,且具有低速异常,主要分布于东次洼的洼中及缓坡带。基于以上认识指导在东次洼部署钻井,首次在琼东南盆地钻遇始新统油页岩,且烃源岩指标好,提升了松西凹陷及琼东南盆地原油勘探前景。Abstract: With respect to the problems of unclear development mechanisms of source rocks and distribution of high-quality source rocks in the Songxi Sag, Qiongdongnan Basin, medium-deep lacustrine source rocks in eastern and western subsags of the Songxi Sag were predicted, according to geochemical characteristics of crude oil from drilled wells, sedimentary characteristics of these subsags, the characteristics of seismic facies and attributes, and comparison and analysis of seismic velocity spectrum. In this study, it was defined that the following three factors, namely, subsidence rate of the Songxi Sag, injection points in the provenance, and sag structure, coupled and controlled the development and distribution of lacustrine source rocks. Western subsag of the Songxi Sag was adjacent to large-scale injection points in the provenance as sand-rich sediments, and then led to low paleo-productivity level, high depositional rate, and open and oxidized water body setting. It had no fundamental conditions for the formation of high-quality source rocks. Eastern subsag was far from these large-scale injection points with the development of only small sand bodies, which was favorable for the development of medium-deep lacustrine source rocks. Geochemical indexes of crude oil from drilled wells indicated that the crude oil in the study area came from medium-deep lacustrine source rocks, which confirmed the occurrence of good source rocks in the Songxi Sag. Eocene medium-deep lacustrine source rocks had seismic characteristics of low frequency, continuous and strong reflectance in addition with low velocity anomalies that were mainly distributed in the center of eastern subsag and gentle slope zone. Above-mentioned understandings could guide well allocation in eastern subsag. Eocene oil shale was firstly encountered in the wells, Qiongdongnan Basin. These source rocks had good indexes and enhanced oil exploration prospect in the Songxi Sag, Qiongdongnan Basin.
-
Key words:
- high-quality source rocks /
- infill pattern /
- seismic characteristics /
- Songxi Sag /
- Qiongdongnan Basin
-
随着南海北部富生烃凹陷勘探程度的不断提高,加强边缘凹陷勘探领域探索势在必行。近年来,南海东部开平、阳江凹陷等边缘凹陷勘探均获得突破,更加体现边缘凹陷具有良好的勘探价值[1-4]。边缘凹陷通常具有面积小、埋藏浅、勘探程度较低的特点[5-7],烃源岩发育条件及预测是制约边缘凹陷勘探的关键问题。
琼东南盆地松西凹陷属于典型边缘凹陷,目前尚无井钻遇烃源岩。本文从构造背景、沉积充填等宏观角度,探讨松西凹陷烃源岩发育主控因素,并通过地震相、地震属性与地震速度谱特征对比分析,预测该区始新统中深湖相烃源岩分布。
1. 研究区位置及勘探现状
松西凹陷位于琼东南盆地北部坳陷带中部,北邻海南隆起,南靠松涛凸起,凹陷受5号断裂控制,形成北断南超的半地堑构造模式,按古近系沉积中心,可将凹陷进一步划分为东、西2个次洼(图 1)。
早在1979年在松西凹陷南坡钻探的Y9井获得12.8 m油层发现,后续围绕松西凹陷钻探4口井均遇失利,尤其是在西次洼近洼带钻探的A-6井,首次钻遇该区始新统,岩性为褐红色砂砾岩。松西凹陷烃源岩发育机制认识不清、优质烃源岩展布及勘探潜力不明是该区面临的主要问题。
2. 烃源岩发育背景
控制烃源岩发育的因素有很多,一般认为较高的沉降速率、温暖湿润的气候条件有利于优质烃源岩的发育[8-9]。本文从沉降速率、凹陷结构、物源注入、沉积充填等构造、沉积宏观角度进行分析,明确了烃源岩发育的主控因素,发现松西凹陷东、西次洼烃源岩发育条件差异大,松西凹陷东次洼具有良好的湖相烃源岩发育条件。
2.1 构造沉降特征
构造沉降控制了凹陷构造结构和沉积充填,构造分析是研究凹陷沉积充填的基础[10]。始新世,琼东南盆地在NW—SE向区域伸展应力作用下,进入初始裂陷期,NE向控凹断裂的强烈活动,控制了琼东南盆地北部坳陷带各凹陷的形成[11]。松西凹陷的形成受控于5号断裂的活动,具有典型的北断南超半地堑结构。始新世沉降中心位于北侧陡坡带,向南侧缓坡带地层逐渐减薄,为湖相沉积环境[12]。渐新统崖城组—陵水组二段沉积时期,松西凹陷进入强烈断陷期,沉降中心仍位于北部陡坡带,凹陷沉积范围大,此时发育海陆过渡相沉积。陵水组沉积晚期松西凹陷进入断—拗转换期,断裂规模小。中新世至今,松西凹陷进入拗陷期。始新世为松西凹陷湖相烃源岩发育的主要时期,该时期松西凹陷具有东次洼、西次洼2个沉降中心,西次洼厚度略大于东次洼,沉积厚度均大于1 km(图 2,图 3)。
图 3 琼东南盆地松西凹陷构造演化史剖面剖面位置见图 1的AA’。Figure 3. Structural evolution profile through Songxi Sag, Qiongdongnan Basin高沉降速率的欠补偿条件更有利于形成中深湖相沉积,从而为湖相优质烃源岩的发育创造条件。通过与南海北部已证实富生烃凹陷沉降速率对比发现,已证实的富生烃凹陷普遍具有较高的沉降速率,均大于150 m/Ma,松西凹陷始新世由于边界5号断层的剧烈活动,其中西次洼最大沉降速率208 m/Ma,东次洼最大沉降速率190 m/Ma,2个次洼均具有较高的沉降速率,具备优质烃源岩发育的构造背景(图 4)。
2.2 次洼沉积充填特征对比
松西凹陷北侧紧邻海南隆起盆外大型物源区,大型物源注入点的发育控制凹陷内的陆源碎屑物质沉积充填,进而控制着凹陷优质烃源岩的发育与展布。
5号断裂的分段式、差异性活动,控制了北侧海南隆起大型物源向松西凹陷的注入位置,松西凹陷北侧发育两类4个大型物源注入点(图 5):第一类为5号断层分段式活动形成的传递式断裂转换带,对应1、2号注入点;第二类为5号断裂末端形成的马尾状断阶,对应3、4号物源注入点。4个大型物源注入点控制了粗碎屑物质输入,同时在西次洼南侧松涛凸起之上发育3个小型盆内物源注入点。南北双向物源供给大量碎屑物质,使松西凹陷西次洼始新世为过充填状态,半深湖—深湖相烃源岩不发育。凹陷内钻探两口井,其中西次洼东侧的A-2井,完钻层位为陵水组。该井位于2号物源注入点前端,钻井岩性为砂砾岩,全井段砂岩含量超95%。西次洼西侧钻探的A-6井,完钻层位为始新统。该井位于1号物源注入点前端,其揭示的始新统为褐红色砂砾岩沉积。松西东次洼由于大型物源注入点发育在洼陷两侧,对洼陷内形成保护,陆源碎屑输入量少,有利于中深湖相沉积(图 6)。东、西次洼对比可以看出,即使构造沉降速率同样较高,东次洼较低的陆源碎屑输入提供了相对封闭、深度大而稳定的水体,为高古生产力和还原环境形成提供了有利条件,有利于优质烃源岩的发育。
图 6 琼东南盆地松西凹陷东次洼钻井地震剖面剖面位置见图 5的BB’和CC’。Figure 6. Well-seismic profile in eastern subsag of Songxi Sag, Qiongdongnan Basin2.3 油源特征对比
松西凹陷东次洼南坡Y9井已钻遇12.8m油层,原油密度0.855 g/cm3,具有高蜡、低密度特征,Pr/nC17、Ph/nC18值较低,与北部湾、珠江口原油特征相似[13-14],表明其烃源岩发育于弱氧化—弱还原的沉积环境。原油富含C30 4-甲基甾烷,与北部湾湖相源岩原油特征一致,表明松西凹陷发育中深湖相烃源岩(图 7)。
3. 优质烃源岩识别与精细刻画
综合速度特征、地震相、平面属性刻画等手段[15-19],对松西凹陷烃源岩进行识别与精细刻画,落实了烃源岩展布范围(图 8,图 9)。松西凹陷东次洼与西次洼始新统上部均发育一套强振幅地层,但其特征并不一致。从该套强振幅地层拾取速度谱特征对比来看,东次洼强振幅地层具有速度反转特征,地层速度低于上下围岩,与涠西南凹陷及乌石凹陷主力生油层系始新统流沙港组二段油页岩速度特征相似;从地震特征对比来看,东次洼始新统上部地层振幅异常更明显,且地震同相轴连续性更好,频率更低,与北部湾其他富生烃凹陷始新统湖相烃源岩具有可类比性。综合松西凹陷东次洼烃源岩发育条件的认识以及东、西次洼地震特征对比的差异,认为东次洼始新统上部强振幅地层为中深湖相优质油页岩。
图 8 琼东南盆地松西凹陷东、西次洼始新统地层速度谱对比剖面位置见图 5的BB’和DD’。Figure 8. Eocene stratigraphic velocity spectrum in eastern and western subsags, Songxi Sag, Qiongdongnan Basin图 9 琼东南盆地松西凹陷东、西次洼地震剖面剖面位置见图 5的EE’。Figure 9. Seismic profile across eastern and western subsags, Songxi Sag, Qiongdongnan Basin通过对松西凹陷东、西次洼烃源岩发育条件对比分析认为,受控于边界断裂的剧烈活动,始新统沉积期松西凹陷东、西次洼均具有较高的沉降速率,其中西次洼紧邻大型物源注入点,洼内发育大型三角洲沉积,东次洼远离大型物源注入点,发育中深湖相沉积(图 10)。结合地震相、地震属性特征(图 11a),精细落实东次洼中深湖相油页岩分布范围,中深湖相烃源岩面积102 km2,平均厚度165 m(图 11b)。
4. 应用成效
在该认识指导下,在松西凹陷东次洼缓坡近洼带部署钻探B-6井,该井钻遇始新统强震幅地层,证实该套地层为中深湖相油页岩。该井在始新统共钻遇75 m灰黑色页岩、油页岩(图 12)。地化指标分析显示,该套油页岩TOC含量为1.33%~7.48%,平均3.19%;S1+S2为6.43~52.41 mg/g,平均21.49 mg/g,为好—优质烃源岩。最新模拟显示,松西凹陷东洼总资源潜力为1.07×108 t,证实松西凹陷具有油气勘探潜力。
5. 结论
(1) 松西凹陷沉降速率—物源注入点—凹陷结构三因素耦合控制了其烃源岩发育机制。松西凹陷沉降速率大,东洼远离大型物源注入点,发育中深湖相烃源岩;受凹陷结构控制,烃源岩主要发育在东洼洼中及缓坡带一侧。
(2) 始新统优质湖相烃源岩地震上表现为低速特征,地震相表现为低频、连续强反射特征;精细落实松西凹陷东次洼中深湖相油页岩面积102 km2,平均厚度165 m。
(3) 最新钻井证实,油页岩TOC含量为1.33%~7.48%,平均3.19%;S1+S2为6.43~52.41 mg/g,平均21.49 mg/g,证实了松西凹陷具备油气勘探潜力,对琼东南北部坳陷带边缘凹陷下一步勘探具有重要参考意义。
-
图 3 琼东南盆地松西凹陷构造演化史剖面
剖面位置见图 1的AA’。
Figure 3. Structural evolution profile through Songxi Sag, Qiongdongnan Basin
图 6 琼东南盆地松西凹陷东次洼钻井地震剖面
剖面位置见图 5的BB’和CC’。
Figure 6. Well-seismic profile in eastern subsag of Songxi Sag, Qiongdongnan Basin
图 8 琼东南盆地松西凹陷东、西次洼始新统地层速度谱对比
剖面位置见图 5的BB’和DD’。
Figure 8. Eocene stratigraphic velocity spectrum in eastern and western subsags, Songxi Sag, Qiongdongnan Basin
图 9 琼东南盆地松西凹陷东、西次洼地震剖面
剖面位置见图 5的EE’。
Figure 9. Seismic profile across eastern and western subsags, Songxi Sag, Qiongdongnan Basin
-
[1] 徐长贵. 中国近海油气勘探新进展与勘探突破方向[J]. 中国海上油气, 2022, 34(1): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202201002.htmXU Changgui. New progress and breakthrough directions of oil and gas exploration in China offshore area[J]. China Offshore Oil and Gas, 2022, 34(1): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202201002.htm [2] 彭光荣, 张向涛, 许新明, 等. 南海北部珠江口盆地阳江凹陷油气勘探重要发现与认识[J]. 中国石油勘探, 2019, 24(3): 267-279. doi: 10.3969/j.issn.1672-7703.2019.03.001PENG Guangrong, ZHANG Xiangtao, XU Xinming, et al. Important discoveries and understandings of oil and gas exploration in Yangjiang Sag of the Pearl River Mouth Basin, northern South China Sea[J]. China Petroleum Exploration, 2019, 24(3): 267-279. doi: 10.3969/j.issn.1672-7703.2019.03.001 [3] 熊万林, 龙祖烈, 朱俊章, 等. 珠江口盆地阳江凹陷不同成藏期次原油成因及混源比例分析[J]. 石油实验地质, 2021, 43(2): 315-324. doi: 10.11781/sysydz202102315XIONG Wanlin, LONG Zulie, ZHU Junzhang, et al. Origin and mixing ratio of crude oils in different charging episodes of Yangjiang Sag of Pearl River Mouth Basin[J]. Petroleum Geology & Experiment, 2021, 43(2): 315-324. doi: 10.11781/sysydz202102315 [4] 梁卫, 闫正和, 杨勇, 等. 南海东部西江油田低阻油层识别及主控因素研究[J]. 特种油气藏, 2022, 29(1): 10-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202201002.htmLIANG Wei, YAN Zhenghe, YANG Yong, et al. Study on identification and main controlling factors of low-resistivity oil reservoirs in Xijiang Oilfield, Eastern South China Sea[J]. Special Oil & Gas Reservoirs, 2022, 29(1): 10-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202201002.htm [5] 张树林, 费琪, 叶加仁. 断陷盆地边缘凹陷类型及其成因[J]. 石油实验地质, 2007, 29(1): 47-51. doi: 10.3969/j.issn.1001-6112.2007.01.008ZHANG Shulin, FEI Qi, YE Jiaren. Types and structural characteristics of brink sags in faulted basin[J]. Petroleum Geology & Experiment, 2007, 29(1): 47-51. doi: 10.3969/j.issn.1001-6112.2007.01.008 [6] 王军, 王德英, 冯冲, 等. 渤海海域辽西凹陷南洼烃源岩发育主控因素[J]. 成都理工大学学报(自然科版), 2019, 46(6): 678-689. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201906005.htmWANG Jun, WANG Deying, FENG Chong, et al. Main controlling factors of source rock development in the south sag of Liaoxi Depression, Bohai Sea, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2019, 46(6): 678-689. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201906005.htm [7] 田兵, 郑有伟, 赵俊梅. 南海白云凹陷渐新统珠海组沉积相及其演化[J]. 断块油气田, 2022, 29(6): 800-806, 836. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202206013.htmTIAN Bing, ZHENG Youwei, ZHAO Junmei. Sedimentary facies and evolution of Oligocene Zhuhai Formation in Baiyun Sag, South China Sea[J]. Fault-Block Oil and Gas Field, 2022, 29(6): 800-806, 836. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202206013.htm [8] 刘占红, 李思田, 辛仁臣, 等. 地层记录中的古气候信息及其与烃源岩发育的相关性: 以渤海黄河口凹陷古近系为例[J]. 地质通报, 2007, 26(7): 830-840. doi: 10.3969/j.issn.1671-2552.2007.07.006LIU Zhanhong, LI Sitian, XIN Renchen, et al. Paleoclimatic information in stratigraphic records and its relation to the formation of hydrocarbon source rocks: a case study of the Paleogene strata in the Huanghekou subbasin of the Bohai Bay Basin, China[J]. Geological Bulletin of China, 2007, 26(7): 830-840. doi: 10.3969/j.issn.1671-2552.2007.07.006 [9] 姜雪, 吴克强, 刘丽芳, 等. 构造活动对富生油凹陷烃源岩的定量控制: 以中国近海古近系为例[J]. 石油学报, 2014, 35(3): 455-461. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201403008.htmJIANG Xue, WU Keqiang, LIU Lifang, et al. Quantitative control of tectonic activity for source rocks in rich oil kitchen sags: a case study of Paleogene in China offshore[J]. Acta Petrolei Sinica, 2014, 35(3): 455-461. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201403008.htm [10] 李绪宣, 刘宝明, 赵俊青. 琼东南盆地古近纪层序结构、充填样式及生烃潜力[J]. 中国海上油气, 2007, 19(4): 217-223. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD200704000.htmLI Xuxuan, LIU Baoming, ZHAO Junqing. Paleogene sequence configuration, depositional filling pattern and hydrocarbon-generation potential in Qiongdongnan Basin[J]. China Offshore Oil and Gas, 2007, 19(4): 217-223. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD200704000.htm [11] 张伟, 何家雄, 李晓唐, 等. 南海北部大陆边缘琼东南盆地含油气系统[J]. 地球科学与环境学报, 2015, 37(5): 80-92. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201505008.htmZHANG Wei, HE Jiaxiong, LI Xiaotang, et al. Petroleum system in Qiongdongnan Basin of the continental margin, the northern South China Sea[J]. Journal of Earth Sciences and Environment, 2015, 37(5): 80-92. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201505008.htm [12] 邵磊, 李昂, 吴国瑄, 等. 琼东南盆地沉积环境及物源演变特征[J]. 石油学报, 2010, 31(4): 548-552. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201004004.htmSHAO Lei, LI Ang, WU Guoxuan, et al. Evolution of sedimentary environment and provenance in Qiongdongnan Basin in the northern South China Sea[J]. Acta Petrolei Sinica, 2010, 31(4): 548-552. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201004004.htm [13] 陆江, 周刚, 郑榕芬, 等. 珠江口盆地文昌A凹陷中深层原油来源及成藏特征[J]. 中国海上油气, 2016, 28(1): 20-28. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201601003.htmLU Jiang, ZHOU Gang, ZHENG Rongfen, et al. Oil orgin and accumulation characteristics in middle-deep strata of Wenchang A Sag, Pearl River Mouth Basin[J]. China Offshore Oil and Gas, 2016, 28(1): 20-28. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201601003.htm [14] 杨希冰, 金秋月, 胡林, 等. 北部湾盆地涠西南凹陷原油成因类型及分布特征[J]. 西南石油大学学报(自然科学版), 2019, 41(3): 51-60. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201903005.htmYANG Xibing, JIN Qiuyue, HU Lin, et al. Genetic types and distribution of crude oil in Weixi'nan Depression, Beibuwan Basin[J]. Journal of Southwest Petroleum University (Science & Techno-logy Edition), 2019, 41(3): 51-60. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201903005.htm [15] 权永彬. 珠江口盆地珠三坳陷湖相烃源岩发育机理及其成藏贡献[D]. 武汉: 中国地质大学, 2018.QUAN Yongbin. Lacustrine source rock development mechanism and its contribution to hydrocarbon accumulation in Zhu Ⅲ Sub-basin, Pearl River Mouth Basin[D]. Wuhan: China University of Geosciences, 2018. [16] 曹强, 叶加仁, 石万忠. 地震属性法在南黄海北部盆地勘探新区烃源岩厚度预测中的应用[J]. 海洋地质与第四纪地质, 2008, 28(5): 109-114. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200805021.htmCAO Qiang, YE Jiaren, SHI Wanzhong. Application of the method of seismic attribution to prediction of source rock thickness in new exploration areas of North Depression in South Yellow Sea Basin[J]. Marine Geology & Quaternary Geology, 2008, 28(5): 109-114. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200805021.htm [17] 吴玉坤, 胡明毅, 柯岭, 等. 利用地震相识别优质烃源岩: 以辽中凹陷沙三段为例[J]. 沉积学报, 2013, 31(2): 366-373. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201302016.htmWU Yukun, HU Mingyi, KE Ling, et al. Identification of high-quality source rocks by seismic facies: taking the third member of Shahejie Formation in Liaozhong Depression as an example[J]. Acta Sedimentologica Sinica, 2013, 31(2): 366-373. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201302016.htm [18] 彭光荣, 龙祖烈, 史玉玲, 等. 低钻揭洼陷有利烃源岩空间展布地质与地球物理综合识别方法: 以珠江口盆地珠一坳陷恩平17洼为例[J]. 石油实验地质, 2022, 44(6): 1116-1122. doi: 10.11781/sysydz2022061116PENG Guangrong, LNOG Zulie, SHI Yuling, et al. Discussion on integrated geological and geophysical identification method for spatial distribution of favorable source rocks in depression with lack of drilling data: a case study of Enping 17 Sag, Zhu Ⅰ Depression, Pearl River Mouth Basin[J]. Petroleum Geology & Experiment, 2022, 44(6): 1116-1122. doi: 10.11781/sysydz2022061116 [19] 张晶玉, 范廷恩, 王海峰, 等. 海相薄砂岩储层精细描述及地震沉积学认识: 以南海珠江口盆地H油田为例[J]. 油气藏评价与开发, 2021, 11(5): 680-687. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202105003.htmZHANG Jingyu, FAN Tingen, WANG Haifeng, et al. Marine thin sandstone reservoir prediction method and seismic sedimentology study: a case study of H Oilfield in the Pearl River Mouth Basin of the South China Sea[J]. Reservoir Evaluation and Development, 2021, 11(5): 680-687. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202105003.htm 期刊类型引用(12)
1. 曲星宇. 东营凹陷梁东地区古近系沙三中亚段层序地层划分及石油地质意义. 岩性油气藏. 2025(02): 166-177 . 百度学术
2. 吴宇翔,柳保军,张春生,丁琳,谢世文,李小平,龙更生. 珠江口盆地白云凹陷古近纪挠曲缓坡带三角洲沉积过程响应水槽模拟. 石油实验地质. 2022(03): 476-486 . 本站查看
3. 杨田,操应长,田景春. 浅谈陆相湖盆深水重力流沉积研究中的几点认识. 沉积学报. 2021(01): 88-111 . 百度学术
4. 宋明水,茆书巍,林会喜,郝雪峰,巩建强,张鹏飞,邱贻博,王园园. 断陷湖盆湖底扇砂岩体沉积特征及主控因素分析——以东营凹陷民丰地区沙三段中亚段为例. 油气地质与采收率. 2021(03): 1-13 . 百度学术
5. 路智勇,吴孔友. 东营凹陷滑动及滑塌扇体特征及分布模式. 特种油气藏. 2020(03): 8-13 . 百度学术
6. 周学文,姜在兴,汤望新,许文茂,胡晨林,贾超尘. 牛庄洼陷沙三中亚段三角洲—重力流体系沉积特征与模式. 沉积学报. 2018(02): 376-389 . 百度学术
7. 宋光永,朱超,李森明,王艳清,夏志远,潘科. 油砂山地区浅水三角洲-滨浅湖沉积及其对储层的控制. 断块油气田. 2018(02): 146-150 . 百度学术
8. 赵一璇. 塔东南坳陷侏罗系康苏组沉积特征. 特种油气藏. 2018(03): 37-43 . 百度学术
9. 姜超. 断陷湖盆斜坡带重力流砂体沉积特征及沉积模式——以沾化凹陷渤南洼陷南部斜坡带沙三段为例. 油气地质与采收率. 2018(01): 6-13 . 百度学术
10. 宋洪亮,李云鹏,刘宗宾,柴秋会,陈善斌,颜冠山. 辫状河三角洲前缘亚相储层分布模式分析及应用——以JX油田东块沙河街组为例. 油气地质与采收率. 2018(01): 37-42 . 百度学术
11. 孙乐,王志章,于兴河,王辉,杨丽,曹茜. 克拉玛依油田五2东区克上组沉积相及砂体展布特征. 断块油气田. 2017(04): 474-480 . 百度学术
12. 马英俊. 苏北盆地金湖凹陷阜二段砂岩物性影响因素分析. 石油实验地质. 2017(04): 477-483 . 本站查看
其他类型引用(5)
-