Geochemical characteristics and hydrocarbon generation potential of Lucaogou Formation source rocks in Fukang Sag, Junggar Basin
-
摘要: 准噶尔盆地阜康凹陷作为盆地内最大的富烃凹陷,其烃源岩地球化学特征、沉积环境和生烃母质等研究不足,限制了对该区探明资源量较低问题的理解。基于阜康凹陷东斜坡新钻揭的烃源岩样品实验分析结果,对阜康凹陷芦草沟组源岩进行了地质地球化学分析研究。阜康凹陷芦草沟组烃源岩总体属于中—很好质量的烃源岩,有机质类型为Ⅱ—Ⅲ型,主体处于低熟—成熟演化阶段;生物标志物特征显示,芦草沟组烃源岩的有机质为陆源高等植物和水生菌藻类的混合,可能具有类杜氏藻的绿藻贡献,总体沉积于贫氧—次富氧、淡水—半咸水的间歇性分层水体环境中,泥岩沉积特征明显。阜康凹陷芦草沟组烃源岩平面上地球化学特征变化较大,阜中凹槽和阜北凹槽显示出更大的生烃潜力。Abstract: As the largest hydrocarbon-rich sag in the Junggar Basin, the limited research on geochemical characteristics, sedimentary environment and bio-precursors of source rocks in the Fukang Sag has seriously restricted the understanding of the poor proven oil and gas resources in the sag. A combined geological and geochemical analysis on the Lucaogou Formation source rocks in the Fukang Sag was conducted based on the experimental analysis results of the newly drilled source rock samples on the Fudong Slope. The results show that the Lucaogou Formation source rocks in the Fukang Sag generally belong to source rocks of medium to very good quality, with organic matter of type Ⅱ to type Ⅲ, and mainly in the thermal maturity of early mature to mature stage. Biomarker characteristics show that the organic matter of Lucaogou Formation source rocks in the Fukang Sag is a mixture of terrestrial higher plants and aquatic algae and bacteria and maybe some Dunaliella-like green algae, which is generally deposited in the anoxic to oxic, fresh to brackish, intermittent stratified water environment, showing obvious mudstone sedimentary characteristics. The geochemical characteristics of the Lucaogou Formation source rocks in the Fukang Sag vary greatly on the plane, among which, the central and northern subsags show great hydrocarbon generation potential.
-
Key words:
- geochemical characteristics /
- bio-precursors /
- sedimentary environment /
- source rock /
- Lucaogou Formation /
- Permian /
- Fukang Sag /
- Junggar Basin
-
表 1 准噶尔盆地阜康凹陷东部3个凹槽区二叠系芦草沟组烃源岩地球化学分析数据
Table 1. Geochemical analysis data of Lucaogou Formation source rocks in three subsags of the east Fukang Sag, Junggar Basin
样品
来源样品数/
个ω(TOC)/% PG/(mg·g-1) Tmax/℃ IH/(mg·g-1) PG/ω(TOC)/
(mg·g-1)S1/ω(TOC)/
(mg·g-1)阜康凹陷 52 $\frac{0.15 \sim 16.80}{2.33(3.02)} $ $ \frac{0.14 \sim 44.66}{5.80(5.80)}$ $\frac{418 \sim 483}{446(16.26)} $ $\frac{15.87 \sim 431.25}{173.49(100.37)} $ $\frac{22.22 \sim 530.00}{232.24(123.85)} $ $\frac{6.35 \sim 145.00}{52.45(39.63)} $ 阜北凹槽 4 $\frac{0.88 \sim 3.76}{2.62(1.07)} $ $\frac{0.88 \sim 9.74}{6.71(3.54)} $ $\frac{439 \sim 480}{454(18.46)} $ $\frac{73.86 \sim 194.60}{149.82(45.48)} $ $\frac{100.00 \sim 309.21}{228.28(77.71)} $ $\frac{26.14 \sim 114.60}{78.46(32.32)} $ 阜中凹槽 27 $\frac{0.15 \sim 16.80}{3.64(3.68)} $ $\frac{0.16 \sim 44.66}{9.13(9.79)} $ $\frac{428 \sim 483}{451(15.47)} $ $\frac{50.76 \sim 392.40}{191.18(80.34)} $ $\frac{58.33 \sim 422.80}{247.28(99.62)} $ $\frac{7.58 \sim 141.79}{56.11(37.94)} $ 阜南凹槽 21 $\frac{0.24 \sim 2.24}{0.67(0.48)} $ $\frac{0.14 \sim 11.50}{1.37(2.35)} $ $\frac{418 \sim 455}{435(10.66)} $ $\frac{15.87 \sim 431.25}{148.14(133.51)} $ $\frac{22.22 \sim 530.00}{200.87(170.43)} $ $\frac{6.35 \sim 145.00}{35.01(38.32)} $ 注:表中分式意义为$\frac{\text { 最小值 ~ 最大值 }}{\text { 平均值(标准差) }} $;Tmax统计去除了小于400 ℃的数据,IH、PG/ω(TOC)、S1/ω(TOC)计算时去除了TOC小于0.5%的数据。 -
[1] WANG Yuce, CAO Jian, TAO Keyu, et al. Reevaluating the source and accumulation of tight oil in the Middle Permian Lucaogou Formation of the Junggar Basin, China[J]. Marine and Petroleum Geology, 2020, 117: 104384. doi: 10.1016/j.marpetgeo.2020.104384 [2] WU Haiguang, HU Wenxuan, WANG Yuce, et al. Depositional conditions and accumulation models of tight oils in the Middle Permian Lucaogou Formation in Junggar Basin, northwestern China: new insights from geochemical analysis[J]. AAPG Bulletin, 2021, 105(12): 2477-2518. doi: 10.1306/06222118094 [3] ZHANG Chenjia, CAO Jian, LI Erting, et al. Revisiting controls on shale oil accumulation in saline lacustrine basins: the Permian Lucaogou Formation mixed rocks, Junggar Basin[J]. Geofluids, 2021, 2021: 5206381. [4] 何海清, 支东明, 唐勇, 等. 准噶尔盆地阜康凹陷康探1井重大突破及意义[J]. 中国石油勘探, 2021, 26(2): 1-11. doi: 10.3969/j.issn.1672-7703.2021.02.001HE Haiqing, ZHI Dongming, TANG Yong, et al. A great disco-very of well Kangtan 1 in the Fukang Sag in the Junggar Basin and its significance[J]. China Petroleum Exploration, 2021, 26(2): 1-11. doi: 10.3969/j.issn.1672-7703.2021.02.001 [5] 李二庭, 王剑, 李际, 等. 源储一体烃源岩精确评价: 以准噶尔盆地吉木萨尔凹陷芦草沟组为例[J]. 石油实验地质, 2021, 43(2): 335-342. doi: 10.11781/sysydz202203413LI Erting, WANG Jian, LI Ji, et al. Accurate evaluation of source rocks in source-reservoir integration: a case study of source rocks in Lucaogou Formation, Jimsar Sag, Junggar Basin[J]. Petroleum Geology & Experiment, 2021, 43(2): 335-342. doi: 10.11781/sysydz202203413 [6] 马明伟, 祝健, 李嘉成, 等. 吉木萨尔凹陷芦草沟组页岩油储集层渗吸规律[J]. 新疆石油地质, 2021, 42(6): 702-708. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202106009.htmMA Mingwei, ZHU Jian, LI Jiacheng, et al. Imbibition law of shale oil reservoirs in the Lucaogou formation in Jimsar Sag[J]. Xinjiang Petroleum Geology, 2021, 42(6): 702-708. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202106009.htm [7] 彭寿昌, 查小军, 雷祥辉, 等. 吉木萨尔凹陷芦草沟组上"甜点"段页岩油储层演化特征及差异性评价[J]. 特种油气藏, 2021, 28(4): 30-38. doi: 10.3969/j.issn.1006-6535.2021.04.005PENG Shouchang, ZHA Xiaojun, LEI Xianghui, et al. Evolution characteristics and difference evaluation of shale oil reservoirs in the upper sweet spot interval of Lucaogou Formation in Jimusaer Sag[J]. Special Oil & Gas Reservoirs, 2021, 28(4): 30-38. doi: 10.3969/j.issn.1006-6535.2021.04.005 [8] 石善志, 邹雨时, 王俊超, 等. 吉木萨尔凹陷芦草沟组储集层脆性特征[J]. 新疆石油地质, 2022, 43(2): 169-176. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202202006.htmSHI Shanzhi, ZOU Yushi, WANG Junchao, et al. Brittle characteristics of Lucaogou formation reservoir in Jimsar Sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 2022, 43(2): 169-176. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202202006.htm [9] 王然, 何文军, 赵辛楣, 等. 准噶尔盆地吉174井芦草沟组页岩油地质剖面分析[J]. 油气藏评价与开发, 2022, 12(1): 192-203. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202201017.htmWANG Ran, HE Wenjun, ZHAO Xinmei, et al. Geological section analysis of shale oil in Lucaogou Formation of Well-Ji-174, Junggar Basin[J]. Reservoir Evaluation and Development, 2022, 12(1): 192-203. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202201017.htm [10] 王越, 熊伟, 于洪州, 等. 准噶尔盆地东部芦草沟组层序地层格架与沉积充填模式[J]. 油气地质与采收率, 2022, 29(4): 12-24. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202204002.htmWANG Yue, XIONG Wei, YU Hongzhou, et al. Sequence stratigraphic framework and sedimentary filling model of Lucaogou Formation in eastern Junggar Basin[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(4): 12-24. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202204002.htm [11] 王剑, 袁波, 刘金, 等. 准噶尔盆地吉木萨尔凹陷二叠系芦草沟组混积岩成因及其孔隙发育特征[J]. 石油实验地质, 2022, 44(3): 413-424. doi: 10.11781/sysydz202203413WANG Jian, YUAN Bo, LIU Jin, et al. Genesis and pore deve-lopment characteristics of Permian Lucaogou migmatites, Jimsar Sag, Junggar Basin[J]. Petroleum Geology & Experiment, 2022, 44(3): 413-424. doi: 10.11781/sysydz202203413 [12] 李正强, 田继军, 琚宜文, 等. 芦草沟组常规—非常规油气成藏特征及模式: 以准噶尔盆地山前冲断带为例[J]. 断块油气田, 2022, 29(6): 754-760. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202206006.htmLI Zhengqiang, TIAN Jijun, JU Yiwen, et al. Characteristics and models of conventional and unconventional hydrocarbon accumulation in Lucaogou Formation: a case study of piedmont thrust belt in Junggar Basin[J]. Fault-Block Oil and Gas Field, 2022, 29(6): 754-760. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202206006.htm [13] 石军, 邹艳荣, 余江, 等. 准噶尔盆地阜康凹陷芦草沟组高有机碳页岩发育的古环境[J]. 天然气地球科学, 2018, 29(8): 1138-1150. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201808008.htmSHI Jun, ZOU Yanrong, YU Jiang, et al. Paleoenvironment of organic-rich shale from the Lucaogou Fromation in the Fukang Sag, Junggar Basin, China[J]. Natural Gas Geoscience, 2018, 29(8): 1138-1150. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201808008.htm [14] 乔锦琪, 刘洛夫, 尚晓庆, 等. 泥页岩中微量元素V、Ni、V/Ni与有机质丰度及成岩演化关系研究: 以准噶尔盆地阜康凹陷为例[J]. 矿物岩石地球化学通报, 2016, 35(4): 756-768. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201604024.htmQIAO Jinqi, LIU Luofu, SHANG Xiaoqing, et al. The relationship between V, Ni or V/Ni ration and each of organic matter abundance and diagenetic evolution stages in shales: taking the shales in Fukang Sag of Junggar Basin for example[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(4): 756-768. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201604024.htm [15] MAKEEN Y M, HAKIMI M H, ABDULLAH W H. The origin, type and preservation of organic matter of the Barremian-Aptian organic-rich shales in the Muglad Basin, southern Sudan, and their relation to paleoenvironmental and paleoclimate conditions[J]. Marine and Petroleum Geology, 2015, 65: 187-197. http://www.sciencedirect.com/science/article/pii/S0264817215000823 [16] JARVIE D M. Shale resource systems for oil and gas: part 2: shale-oil resource systems[M]//BREYER J A. Shale reservoirs: giant resources for the 21st century. Texas: AAPG, 2012: 89-119. [17] 张水昌, 梁狄刚, 张大江. 关于古生界烃源岩有机质丰度的评价标准[J]. 石油勘探与开发, 2002, 29(2): 8-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200202001.htmZHANG Shuichang, LIANG Digang, ZHANG Dajiang. Evaluation criteria for Paleozoic effective hydrocarbon source rocks[J]. Petroleum Exploration and Development, 2002, 29(2): 8-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200202001.htm [18] MAIER C, DE KLUIJVER A, AGIS M, et al. Dynamics of nutrients, total organic carbon, prokaryotes and viruses in onboard incubations of cold-water corals[J]. Biogeosciences, 2011, 8(9): 2609-2620. http://www.vliz.be/imisdocs/publications/81/255081.pdf [19] PEI Lixin, GAO Gang, GANG Wenzhe, et al. Organic matter enrichment in the first member of the Xiagou Formation of the Lower Cretaceous in the Jiuquan Basin, China[J]. Acta Geochimica, 2016, 35(1): 95-103. doi: 10.1007/s11631-015-0082-2 [20] 成海燕, 李安龙, 龚建明. 陆相烃源岩评价参数浅析[J]. 海洋地质动态, 2008, 24(2): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT200802003.htmCHENG Haiyan, LI Anlong, GONG Jianming. Appraisal parameters of terrestrial hydrocarbon source rocks[J]. Marine Geology Letters, 2008, 24(2): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT200802003.htm [21] KOSTYREVA E A, SOTNICH I S. Geochemistry of organic matter of the Bazhenov Formation in the north of the Khantei anteclise[J]. Russian Geology and Geophysics, 2017, 58(3/4): 434-442. http://www.onacademic.com/detail/journal_1000039887892310_c787.html [22] 李艳红, 金奎励. 烃源岩成熟度评价指标及选取[J]. 地质地球化学, 2000, 28(2): 94-96. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200002014.htmLI Yanhong, JIN Kuili. Evaluation indices for maturity of hydrocarbon- source rocks[J]. Geology-Geochemistry, 2000, 28(2): 94-96. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200002014.htm [23] 王飞宇, 张水昌, 张宝民, 等. 塔里木盆地寒武系海相烃源岩有机成熟度及演化史[J]. 地球化学, 2003, 32(5): 461-468. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200305006.htmWANG Feiyu, ZHANG Shuichang, ZHANG Baomin, et al. Maturity and its history of Cambrian marine source rocks in the Tarim Basin[J]. Geochimica, 2003, 32(5): 461-468. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200305006.htm [24] HAROUNA M, PIGOTT J D, PHILP R P. Burial history and thermal maturity evolution of the Termit Basin, Niger[J]. Journal of Petroleum Geology, 2017, 40(3): 277-297. http://www.onacademic.com/detail/journal_1000039934652910_72e6.html [25] FARRIMOND P, TALBOT H M, WATSON D F, et al. Methylhopanoids: molecular indicators of ancient bacteria and a petro-leum correlation tool[J]. Geochimica et Cosmochimica Acta, 2004, 68(19): 3873-3882. http://www.onacademic.com/detail/journal_1000035386852310_4b34.html [26] TISSOT B P, WELTE D H. Petroleum formation and occurrence[M]. 2nd ed. Berlin Heidelberg: Springer, 1984: 1-699. [27] ERIK N Y, ÖZÇELIK O, ALTUNSOY M, et al. Source-rock hydrocarbon potential of the Middle Triassic-Lower Jurassic Cudi Group units, eastern southeast Turkey[J]. International Geology Review, 2005, 47(4): 398-419. http://www.researchgate.net/profile/Nazan_Erik/publication/232874433_Source-Rock_Hydrocarbon_Potential_of_the_Middle_TriassicLower_Jurassic_Cudi_Group_Units_Eastern_Southeast_Turkey/links/0c96052b9ac1dd720b000000 [28] HAKIMI M H, ABDULLAH W H. Organic geochemical characteristics and oil generating potential of the Upper Jurassic Safer shale sediments in the Marib-Shabowah Basin, western Yemen[J]. Organic Geochemistry, 2013, 54: 115-124. http://www.sciencedirect.com/science/article/pii/S0146638012002173 [29] SHANMUGAM G. Significance of coniferous rain forests and related organic matter in generating commercial quantities of oil, Gippsland Basin, Australia[J]. AAPG Bulletin, 1985, 69(8): 1241-1254. http://www.researchgate.net/profile/G_Shanmugam/publication/264739638_Significance_of_coniferous_rain_forests_and_related_organic_matter_in_generating_commerical_quantities_of_oil_Gippsland_Basin_Australia/links/545d80140cf295b5615e6d65.pdf [30] ROHRSSEN M, LOVE G D, FISCHER W, et al. Lipid biomarkers record fundamental changes in the microbial community structure of tropical seas during the Late Ordovician Hirnantian glaciation[J]. Geology, 2013, 41(2): 127-130. http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=geology&resid=41/2/127 [31] BOBROVSKIY I, HOPE J M, GOLUBKOVA E, et al. Food sources for the Ediacara biota communities[J]. Nature Communications, 2020, 11(1): 1261. http://doc.paperpass.com/foreign/rgArti2020129376854.html [32] BROCKS J J, JARRETT A J M, SIRANTOINE E, et al. The rise of algae in Cryogenian oceans and the emergence of animals[J]. Nature, 2017, 548(7669): 578-581. http://www.onacademic.com/detail/journal_1000040049085810_2d84.html [33] VOLKMAN J. Sterols in microorganisms[J]. Applied Microbiology and Biotechnology, 2003, 60(5): 495-506. [34] KODNER R B, PEARSON A, SUMMONS R E, et al. Sterols in red and green algae: quantification, phylogeny, and relevance for the interpretation of geologic steranes[J]. Geobiology, 2008, 6(4): 411-420. http://europepmc.org/abstract/MED/18410089 [35] FALKOWSKI P G, KATZ M E, KNOLL A H, et al. The evolution of modern eukaryotic phytoplankton[J]. Science, 2004, 305(5682): 354-360. [36] SCHWARK L, EMPT P. Sterane biomarkers as indicators of Palaeozoic algal evolution and extinction events[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 240(1/2): 225-236. http://www.onacademic.com/detail/journal_1000035428312910_ee6a.html [37] XIA Liuwen, CAO Jian, HU Wenxuan, et al. Coupling of paleoenvironment and biogeochemistry of deep-time alkaline lakes: a lipid biomarker perspective[J]. Earth-Science Reviews, 2021, 213: 103499. http://www.sciencedirect.com/science/article/pii/S0012825220305456 [38] TAO Keyu, CAO Jian, CHEN Xin, et al. Deep hydrocarbons in the northwestern Junggar Basin (NW China): geochemistry, origin, and implications for the oil vs. gas generation potential of post-mature saline lacustrine source rocks[J]. Marine and Petroleum Geology, 2019, 109: 623-640. http://www.sciencedirect.com/science/article/pii/S0264817219302934 [39] DIDYK B M, SIMONEIT B R T, BRASSELL S C, et al. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation[J]. Nature, 1978, 272(5650): 216-222. http://www.nature.com/articles/272216a0.pdf [40] FRANCAVILLA M, TROTTA P, LUQUE R. Phytosterols from Dunaliella tertiolecta and Dunaliella salina: a potentially novel industrial application[J]. Bioresource Technology, 2010, 101(11): 4144-4150. http://www.onacademic.com/detail/journal_1000034009790310_2631.html [41] DING Wenjing, HOU Dujie, JIANG Lian, et al. High abundance of carotanes in the brackish-saline lacustrine sediments: a possible cyanobacteria source?[J]. International Journal of Coal Geology, 2020, 219: 103373. http://www.sciencedirect.com/science/article/pii/S0166516219309000 [42] SINNINGHE DAMSTÉ J S, KENIG F, KOOPMANS M P, et al. Evidence for gammacerane as an indicator of water column stratification[J]. Geochimica et Cosmochimica Acta, 1995, 59(9): 1895-1900. http://www.onacademic.com/detail/journal_1000035675689410_7f81.html