留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

致密储层中石油充注特征的在线显微成像研究

江文滨 林缅 姬莉莉 曹高辉 张立宽 窦文超 郑思平 陈卓 邱鑫

江文滨, 林缅, 姬莉莉, 曹高辉, 张立宽, 窦文超, 郑思平, 陈卓, 邱鑫. 致密储层中石油充注特征的在线显微成像研究[J]. 石油实验地质, 2023, 45(2): 366-377. doi: 10.11781/sysydz202302366
引用本文: 江文滨, 林缅, 姬莉莉, 曹高辉, 张立宽, 窦文超, 郑思平, 陈卓, 邱鑫. 致密储层中石油充注特征的在线显微成像研究[J]. 石油实验地质, 2023, 45(2): 366-377. doi: 10.11781/sysydz202302366
JIANG Wenbin, LIN Mian, JI Lili, CAO Gaohui, ZHANG Likuan, DOU Wenchao, ZHENG Siping, CHEN Zhuo, QIU Xin. On-line microscopic imaging investigation on oil charging characteristics in tight reservoirs[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(2): 366-377. doi: 10.11781/sysydz202302366
Citation: JIANG Wenbin, LIN Mian, JI Lili, CAO Gaohui, ZHANG Likuan, DOU Wenchao, ZHENG Siping, CHEN Zhuo, QIU Xin. On-line microscopic imaging investigation on oil charging characteristics in tight reservoirs[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(2): 366-377. doi: 10.11781/sysydz202302366

致密储层中石油充注特征的在线显微成像研究

doi: 10.11781/sysydz202302366
基金项目: 

中国科学院A类战略性先导科技专项 XDA14010304

国家自然科学基金项目 42030808

国家自然科学基金项目 41690132

国家自然科学基金项目 41872163

中国科学院仪器设备功能开发技术创新项目 2020BA19

详细信息
    作者简介:

    江文滨(1984-), 男, 博士, 副研究员, 从事非常规油气赋存与渗流研究。E-mail: jiangwenbin@imech.ac.cn

    通讯作者:

    林缅(1960-), 女, 博士, 研究员, 从事非常规油气跨尺度输运问题研究。E-mail: linmian@imech.ac.cn

  • 中图分类号: TE122.2

On-line microscopic imaging investigation on oil charging characteristics in tight reservoirs

  • 摘要: 致密储层岩石渗透率低,储集空间受其微纳米级孔隙控制,毛管力作用显著增强。认识油气的微观充注特征是分析运聚成藏的基础。利用自研的岩心流体驱替在线三维显微成像系统,开展致密储层样品油充注过程观测,提出样品整体和孔隙两级的含油特征综合定量分析方法。以相同流程的驱替在线核磁共振测试为对照,揭示不同时刻在线二维直接数字化摄影(Digital Radiography,DR)的平均差值,可用于评价样品整体含油量变化;基于高精度孔隙网络抽提的孔隙级流体饱和度计算方法,实现了图像可分辨的孔隙与孔喉油充注程度的定量评价。通过多层次数据、不同方法的组合,可满足不同研究对动态特征捕捉、孔隙分辨能力及成像视野等差异化需要。分析结果表明,鄂尔多斯盆地不同致密储层两块岩石样品的含油饱和度随注油量的增加,均呈现开始上升较快、后期减缓的特点;相同注入流速下,相对高渗样品油充注初期含油饱和度上升速度更快,最终含油饱和度较高;随着注油量的增加,较高渗样品的大孔隙含油饱和度持续增加,低渗样品大孔隙的含油饱和度呈U形变化,表现出油、水反复占据孔隙的特点。

     

  • 图  1  岩心流体驱替在线显微成像系统示意

    Figure  1.  Diagram of core fluid flooding on-line microscopic imaging system

    图  2  岩心流体驱替在线三维显微成像系统

    a.驱替模块; b.安装于微米CT内部转台上的非金属夹持器; c.微米CT外部

    Figure  2.  Core fluid flooding on-line three-dimensional microscopic imaging system

    图  3  孔隙级流体饱和度定量分析流程

    Figure  3.  Flow chart of quantitative analysis of pore-level fluid saturation

    图  4  致密储层油充注实验样品铸体薄片镜下(单偏光)特征

    Figure  4.  Microscopic (monopolarized) characteristics of casting thin sections of the tested samples

    图  5  致密储层油充注实验样品的核磁共振T2

    Figure  5.  Nuclear magnetic resonance T2 spectrums of the tested samples

    图  6  致密储层油充注实验样品油充注过程的压力、流量曲线

    Figure  6.  Curves of pressure and flux during oil charging of the tested samples

    图  7  致密储层油充注实验样品JT403油充注在线DR图像分析

    Figure  7.  Analysis of on-line DR images of the JT403 sample during oil charging

    图  8  致密储层油充注实验样品JT403充注前后三维数字岩心及充注后三维差值图像

    a. 静态三维数字岩心; b. 注入0.79 PV油三维数字岩心; c. 注入9.10 PV油三维数字岩心; d. 注入0.79 PV油差值图像; e. 注入9.10 PV油差值图像

    Figure  8.  3D digital core and 3D differential CT images of different steps of the JT403 sample during oil charging

    图  9  不同充注步的样品横截面灰度图像

    a.未饱和KI溶液;b.饱和KI溶液后;c.油充注后;d.孔隙两相流体划分

    Figure  9.  Cross-sectional gray scale images of different steps

    图  10  JT403样品静态孔隙网络和不同充注步的孔隙级含油饱和度

    Figure  10.  Static pore network and pore-level oil saturation of different charging steps of the JT403 sample

    图  11  0.1 mL/min注入流速下实验样品JT403(a)和Y4(b)含油饱和度随注油量变化

    Figure  11.  Variations of oil saturation with oil charging volume of the JT403 sample (a) and Y4 sample (b) with a injection rate of 0.1 mL/min

    图  12  样品JT403(a)和Y4(b)最后充注步的孔隙与孔喉数量、孔隙体积占比及含油饱和度—孔径分布

    Figure  12.  Number, volume fraction, oil saturation vs. pore/throat radius distribution of the last charging step of the JT403 (a) and Y4 (b) samples

    图  13  样品JT403(a,b)和Y4(c,d)不同充注步、不同孔径区间孔隙的含油增量及含油饱和度变化

    Figure  13.  Variation of incremental oil amount (a, c) and oil saturation (b, d) in different pore radius ranges of the JT403 (a, b) and Y4 (c, d) samples during charging

    图  14  实验样品JT403主要孔隙簇(a及最大孔隙体(b)的油水两相分布)

    Figure  14.  Distribution of oil and water in the main pore clusters (a) and largest pore body (b) of the JT403 sample

    表  1  致密储层油充注实验样品的孔隙度、渗透率以及薄片鉴定结果

    Table  1.   Porosity, permeability and thin section identification results of the tested samples

    样品 孔隙度/% 孔隙体积/mL 渗透率/10-3 μm2 矿物含量/%
    石英 长石 塑性岩屑 刚性岩屑 云母 石英胶结 黏土胶结 面孔率
    JT403 13.93 2.77 33.36 41.2 6 2.0 20.0 1.2 4.8 6.8 18.0
    Y4 10.86 2.22 1.47 33.6 18 7.2 12.8 10.0 3.2 3.6 11.6
    注:孔隙度由氦气孔隙度测定方法测定;渗透率为洗油后氦气脉冲法所测,孔压为150 kPa,净围压为3 000 kPa。
    下载: 导出CSV

    表  2  致密储层油充注实验样品采用的油充注步骤

    Table  2.   Steps of oil charging for the tested samples

    步骤 样品JT403 样品Y4
    注入流速/(mL·min-1) 样品累积注油量/PV 注入流速/(mL·min-1) 样品累积注油量/PV
    1 0.1 0.07 0.1 0.09
    2 0.1 0.79 0.1 0.99
    3 0.1 1.52 0.1 1.89
    4 0.1 4.12 0.1 3.69
    5 1.0 9.10 0.1 12.70
    下载: 导出CSV
  • [1] 朱如凯, 邹才能, 吴松涛, 等. 中国陆相致密油形成机理与富集规律[J]. 石油与天然气地质, 2019, 40(6): 1168-1184. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201906002.htm

    ZHU Rukai, ZOU Caineng, WU Songtao, et al. Mechanism for generation and accumulation of continental tight oil in China[J]. Oil & Gas Geology, 2019, 40(6): 1168-1184. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201906002.htm
    [2] 胡渤, 蒲军, 苟斐斐. 基于数字岩心的致密砂岩微观孔喉结构定量表征[J]. 油气地质与采收率, 2022, 29(3): 102-112. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202203013.htm

    HU Bo, PU Jun, GOU Feifei. Quantitative characterization of pore throat microstructure of tight sandstone based on digital core technology[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(3): 102-112. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202203013.htm
    [3] 孙龙德, 邹才能, 贾爱林, 等. 中国致密油气发展特征与方向[J]. 石油勘探与开发, 2019, 46(6): 1015-1026. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201906002.htm

    SUN Longde, ZOU Caineng, JIA Ailin, et al. Development characteristics and orientation of tight oil and gas in China[J]. Petroleum Exploration and Development, 2019, 46(6): 1015-1026. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201906002.htm
    [4] 金之钧, 张金川, 唐玄. 非常规天然气成藏体系[J]. 天然气工业, 2021, 41(8): 58-68. doi: 10.3787/j.issn.1000-0976.2021.08.006

    JIN Zhijun, ZHANG Jinchuan, TANG Xuan. Unconventional natural gas accumulation system[J]. Natural Gas Industry, 2021, 41(8): 58-68. doi: 10.3787/j.issn.1000-0976.2021.08.006
    [5] 邓亚仁, 任战利, 马文强, 等. 鄂尔多斯盆地富县地区长8层段致密砂岩储层特征及充注下限[J]. 石油实验地质, 2018, 40(2): 288-294. doi: 10.11781/sysydz201802288

    DENG Yaren, REN Zhanli, MA Wenqiang, et al. Reservoir pro-perties and hydrocarbon charging threshold of Chang 8 tight sandstones in Fuxian area, Ordos Basin[J]. Petroleum Geology & Experiment, 2018, 40(2): 288-294. doi: 10.11781/sysydz201802288
    [6] 王洋, 陈海峰, 王凤启. 结合高温高压物性实验确定致密油储层充注物性下限新方法[J]. 地质与资源, 2019, 28(1): 66-71. doi: 10.3969/j.issn.1671-1947.2019.01.011

    WANG Yang, CHEN Haifeng, WANG Fengqi. Determination of the physical property lower limit of tight oil reservoir by high-temperature and high-pressure experiment[J]. Geology and Resources, 2019, 28(1): 66-71. doi: 10.3969/j.issn.1671-1947.2019.01.011
    [7] 王浩男, 肖晖, 苗晨阳, 等. 致密砂岩储层油充注下限综合确定方法及其应用: 以鄂尔多斯盆地马岭地区长8油藏为例[J]. 大庆石油地质与开发, 2020, 39(2): 147-156. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202002021.htm

    WANG Haonan, XIAO Hui, MIAO Chenyang, et al. Comprehensive determining method of the lower limit of the oil-charging in tight sandstone reservoirs and its application: a case of Chang-8 oil reservoir in Maling area of Ordos Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(2): 147-156. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202002021.htm
    [8] 刘震, 刘静静, 王伟, 等. 低孔渗砂岩石油充注临界条件实验: 以西峰油田为例[J]. 石油学报, 2012, 33(6): 996-1002. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201206011.htm

    LIU Zhen, LIU Jingjing, WANG Wei, et al. Experimental analyses on critical conditions of oil charge for low-permeability sandstones: a case study of Xifeng Oilfield, Ordos Basin[J]. Acta Petrolei Sinica, 2012, 33(6): 996-1002. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201206011.htm
    [9] 徐轩, 胡勇, 邵龙义, 等. 低渗致密砂岩储层充注模拟实验及含气性变化规律: 以鄂尔多斯盆地苏里格气藏为例[J]. 中国矿业大学学报, 2017, 46(6): 1323-1331. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201706016.htm

    XU Xuan, HU Yong, SHAO Longyi, et al. Experimental simulation of gas accumulation mechanism in sandstone reservoir: a case study of Sulige Gas Field, Ordos Basin[J]. Journal of China University of Mining & Technology, 2017, 46(6): 1323-1331. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201706016.htm
    [10] 白国帅, 蒋有录, 赵承锦, 等. 元坝地区须二下亚段砂岩储层致密化与天然气充注关系[J]. 断块油气田, 2022, 29(1): 20-25. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202201004.htm

    BAI Guoshuai, JIANG Youlu, ZHAO Chengjin, et al. The relationship between densification of sandstone reservoir and natural gas charging in the lower part of the second member of Xujiahe Formation in Yuanba area[J]. Fault-Block Oil and Gas Field, 2022, 29(1): 20-25. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202201004.htm
    [11] 张安达, 王成, 乔睿. 致密砂岩储层物性下限确定新方法及系统分类[J]. 岩性油气藏, 2014, 26(5): 5-8. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201405002.htm

    ZHANG Anda, WANG Cheng, QIAO Rui. A new method for determining physical property lower limit of tight sandstone reservoir and reservoir system classification[J]. Lithologic Reservoirs, 2014, 26(5): 5-8. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201405002.htm
    [12] 周妍, 孙卫, 白诗筠. 鄂尔多斯盆地致密油地质特征及其分布规律[J]. 石油地质与工程, 2013, 27(3): 27-29. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN201303007.htm

    ZHOU Yan, SUN Wei, BAI Shiyun. Research on dense oil geologic characteristics and distribution regularity in Ordos Basin[J]. Petro-leum Geology and Engineering, 2013, 27(3): 27-29. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN201303007.htm
    [13] 葸克来. 松辽盆地南部白垩系泉头组四段致密砂岩油气成储机制[D]. 青岛: 中国石油大学(华东), 2016.

    XI Kelai. Genetic mechanism of tight sandstone oil and gas reservoir of the Cretaceous Quantou Formation fourth member in the southern Songliao Basin, China[D]. Qingdao: China University of Petro-leum (East China), 2016.
    [14] QIAO Juncheng, ZENG Jianhui, JIANG Shu, et al. Heterogeneity of reservoir quality and gas accumulation in tight sandstone reservoirs revealed by pore structure characterization and physical simulation[J]. Fuel, 2019, 253: 1300-1316. http://www.sciencedirect.com/science/article/pii/S0016236119308658
    [15] 韩小琴, 房涛, 曹军, 等. 鄂尔多斯盆地延安气田山西组致密砂岩储层天然气充注模拟实验及含气性变化规律[J]. 天然气地球科学, 2019, 30(12): 1721-1731. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201912006.htm

    HAN Xiaoqin, FANG Tao, CAO Jun, et al. Simulation experiment of gas charging and gas-bearing change of tight sandstone reservoir of Shanxi Formation in Yan'an gas field, Ordos Basin[J]. Natural Gas Geoscience, 2019, 30(12): 1721-1731. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201912006.htm
    [16] 李超正. 鄂尔多斯盆地长7段致密砂岩储层石油充注有效性研究[D]. 北京: 中国石油大学(北京), 2020.

    LI Chaozheng. Research on effectiveness of oil charging in the tight sandstone reservoir of the Chang 7 Member, Ordos Basin[D]. Beijing: China University of Petroleum (Beijing), 2020.
    [17] 谢增业, 杨春龙, 李剑, 等. 致密砂岩气藏充注模拟实验及气藏特征: 以川中地区上三叠统须家河组砂岩气藏为例[J]. 天然气工业, 2020, 40(11): 31-40. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202011007.htm

    XIE Zengye, YANG Chunlong, LI Jian, et al. Charging simulation experiment and characteristics of tight sandstone gas reservoirs: a case study of the Upper Triassic Xujiahe Formation sandstone gas reservoir in the central Sichuan Basin[J]. Natural Gas Industry, 2020, 40(11): 31-40. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202011007.htm
    [18] SINGH K, BIJELJIC B, BLUNT M J. Imaging of oil layers, curvature and contact angle in a mixed-wet and a water-wet carbonate rock[J]. Water Resources Research, 2016, 52(3): 1716-1728. http://www.onacademic.com/detail/journal_1000038767068910_8c4c.html
    [19] DALTON L E, KLISE K A, FUCHS S, et al. Methods to measure contact angles in scCO2-brine-sandstone systems[J]. Advances in Water Resources, 2018, 122: 278-290. http://www.onacademic.com/detail/journal_1000041580604099_2edb.html
    [20] SCANZIANI A, SINGH K, BLUNT M J, et al. Automatic method for estimation of in situ effective contact angle from X-ray micro tomography images of two-phase flow in porous media[J]. Journal of Colloid and Interface Science, 2017, 496: 51-59. http://www.researchgate.net/profile/Alessio_Scanziani/publication/313504460_Automatic_method_for_estimation_of_in_situ_effective_contact_angle_from_X-ray_micro_tomography_images_of_two-phase_flow_in_porous_media/links/58a5eb5292851cf0e3a143a9/Automatic-method-for-estimation-of-in-situ-effective-contact-angle-from-X-ray-micro-tomography-images-of-two-phase-flow-in-porous-media.pdf
    [21] 孙先达. 纳米CT技术在水驱后微观剩余油分布形态及量化分析中的应用[J]. 电子显微镜学报, 2015, 34(3): 216-221. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV201503007.htm

    SUN Xianda. Application of Nano-CT technology to the study of distribution patterns and quantitative analysis in microscopic residual oil after water flooding and quantitative analysis[J]. Journal of Chinese Electron Microscopy Society, 2015, 34(3): 216-221. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV201503007.htm
    [22] 马勇, 曾溅辉, 冯枭. 致密砂岩微米级孔隙网络系统石油驱替实验三维在线模拟[J]. 石油实验地质, 2020, 42(1): 139-146. doi: 10.11781/sysydz202001139

    MA Yong, ZENG Jianhui, FENG Xiao. Three-dimensional simulation of oil distribution during waterflooding in a micrometer-sized pore network system of tight sandstone[J]. Petroleum Geology & Experiment, 2020, 42(1): 139-146. doi: 10.11781/sysydz202001139
    [23] 乔俊程, 曾溅辉, 夏宇轩, 等. 微纳米孔隙网络中天然气充注的三维可视化物理模拟[J]. 石油勘探与开发, 2022, 49(2): 306-318. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202202007.htm

    QIAO Juncheng, ZENG Jianhui, XIA Yuxuan, et al. A three dimensional visualized physical simulation for natural gas charging in the micro-nano pore system[J]. Petroleum Exploration and Development, 2022, 49(2): 306-318. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202202007.htm
    [24] YI Zhixing, LIN Mian, JIANG Wenbin, et al. Pore network extraction from pore space images of various porous media systems[J]. Water Resources Research, 2017, 53(4): 3424-3445. http://www.onacademic.com/detail/journal_1000039863455710_5bab.html
    [25] JU Yang, XI Chaodong, ZHENG Jiangtao, et al. Study on three-dimensional immiscible water-oil two-phase displacement and trapping in deformed pore structures subjected to varying geostress via in situ computed tomography scanning and additively printed models[J]. International Journal of Engineering Science, 2022, 171: 103615. http://www.sciencedirect.com/science/article/pii/S0020722521001555
    [26] ZENG Jianhui, FENG Xiao, FENG Sen, et al. Influence of tight sandstone micro-nano pore-throat structures on petroleum accumulation: evidence from experimental simulation combining X-ray tomography[J]. Journal of Nanoscience and Nanotechnology, 2017, 17(9): 6459-6469.
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  475
  • HTML全文浏览量:  195
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-16
  • 修回日期:  2023-01-28
  • 刊出日期:  2023-03-28

目录

    /

    返回文章
    返回