留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

断裂封闭性研究现状及发展趋势

丁文龙 刘天顺 曹自成 李海英 韩俊 黄诚 王生晖

丁文龙, 刘天顺, 曹自成, 李海英, 韩俊, 黄诚, 王生晖. 断裂封闭性研究现状及发展趋势[J]. 石油实验地质, 2024, 46(4): 647-663. doi: 10.11781/sysydz202404647
引用本文: 丁文龙, 刘天顺, 曹自成, 李海英, 韩俊, 黄诚, 王生晖. 断裂封闭性研究现状及发展趋势[J]. 石油实验地质, 2024, 46(4): 647-663. doi: 10.11781/sysydz202404647
DING Wenlong, LIU Tianshun, CAO Zicheng, LI Haiying, HAN Jun, HUANG Cheng, WANG Shenghui. Current research status and development trends of fault sealing[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(4): 647-663. doi: 10.11781/sysydz202404647
Citation: DING Wenlong, LIU Tianshun, CAO Zicheng, LI Haiying, HAN Jun, HUANG Cheng, WANG Shenghui. Current research status and development trends of fault sealing[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(4): 647-663. doi: 10.11781/sysydz202404647

断裂封闭性研究现状及发展趋势

doi: 10.11781/sysydz202404647
基金项目: 

国家自然科学基金面上项目 42072173

国家自然科学基金面上项目 42372171

详细信息
    作者简介:

    丁文龙(1965—), 男, 教授, 博士生导师, 从事石油构造分析与控油气作用研究。E-mail: dingwenlong2006@126.com

    通讯作者:

    刘天顺(1996—), 男, 博士生, 从事石油构造分析与控油气作用研究。E-mail: liutianshun2020@126.com

  • 中图分类号: TE122.32

Current research status and development trends of fault sealing

  • 摘要: 断裂控油气作用主要表现在其对油气运移、聚集过程及分布规律的影响, 其实质是断裂封闭性问题。断裂封闭性往往是受多种因素控制的,不同地区不同层系在不同地质时期的断裂封闭机制与封闭性主控因素差异较大。目前,断裂封闭性、封闭机理与评价方法还没有形成完整的研究体系,其评价的精度也有待提高。依据全面系统地调研断裂封闭性方面近年来的研究热点,归纳总结了断裂封闭机理,分析了断裂封闭主控因素,梳理了断裂封闭性评价方法,讨论了断裂封闭性研究中面临的实际问题,并提出了未来研究发展趋势。目前,断裂的封闭机理可以分为垂向和侧向封闭机理,前者包括断裂面封闭机理和断裂带排替压力差封闭机理,后者包括砂泥对接封闭机理、泥岩涂抹形成的侧向封闭机理和断裂带高排替压力封闭机理。断裂发育特征、断裂两盘岩性、应力场环境以及压实、胶结、溶蚀等成岩作用是影响断裂封闭性的主要因素,不同因素对断裂封闭性的作用方式不同,断裂在不同位置、不同时期的封闭性有着明显的差别。断裂封闭性评价研究方法可归结为以下4类:(1)传统地质学方法,包括定性分析和半定量分析;(2)数学地质方法,涵盖逻辑信息法、非线性映射分析法、模糊综合评判法、灰色关联分析法等;(3)构造应力场数值模拟及断裂封闭性相关参数计算法;(4)地球化学方法。碳酸盐岩地层断裂启闭机制与封闭性评价、应力和流体及其耦合作用对断裂封闭性的影响机制、多因素的断裂封闭性综合定量评价、断裂封闭性的时空演化及通源能力评估等是未来断裂封闭性研究的发展方向。

     

  • 图  1  正断裂二元结构与裂缝密度和渗透率关系示意图

    据参考文献[86]修改。

    Figure  1.  Schematic representation of the binary structure of the fault in relation to fracture density and permeability

    图  2  典型走滑断裂平移段内部结构

    据参考文献[84],有修改。

    Figure  2.  Internal structure of a simple shear section of a typical strike-slip fault

    图  3  走滑断裂典型内部结构样式

    a-b.走滑断裂压扭段和张扭段构造变形实验横剖面,示锥形变形;实线是有断距的破裂,虚线是断层泥的痕迹,实块指失去的物质(据文献[73]);c-d.正花状构造(压扭段)和负花状构造(张扭段)示意;e-f.地震剖面上解释的正花状构造和负花状构造。

    Figure  3.  Typical internal structural styles of strike-slip faults

    图  4  ALLAN图解

    据参考文献[24],有修改。

    Figure  4.  ALLAN illustration

    图  5  断裂面受力分析剖面图(a)和平面图(b)

    Figure  5.  Cross section (a) and plain view (b) of force analysis on the fault surface

    图  6  断裂泥岩涂抹潜力(CSP)、涂抹因子(SSF)和断裂泥岩比率(SGR) 算法

    据参考文献[105],有修改。

    Figure  6.  Algorithms for clay smear potential (CSP), shale smear factor (SSF) and shale gouge ratio (SGR)

    表  1  断裂垂向封闭机理形式及特点

    Table  1.   Types and characteristics of fault vertical sealing mechanisms

    封闭机理形式 封闭机理运作方式
    断裂面(无断裂填充物) 封闭机理 断裂带内无填充物时,断裂面主要受到应力作用而封闭。断面应力主要是由区域构造应力和上覆地层重力组成。断面应力越大,断裂越紧闭,封闭性越好;反之,开启性越好。需要指出的是,断裂面的不平整会使得断裂面局部(陡角处)在应力作用较强的情况下仍然开启
    断裂带(存在断裂填充物)封闭机理 泥质填充物封闭机理 泥质含量高的填充物颗粒较细、孔渗低、排替压力高;而砂质含量高的填充物颗粒较粗、孔渗高、排替压力低。因此断裂带上部以泥质填充物为主,而下部填充物砂质含量较高时,就会在垂向上形成排替压力差,形成封闭作用。当断裂带上部填充物的砂质含量较高,而下部以泥质填充物为主时,就难以形成封闭作用
    后期成岩封闭机理 当流体(大气淡水、地层水、深部热液流体和成烃流体)沿着断裂从深部往浅部运移时,由于物理环境的变化,流体会与断裂面上的物质发生物理化学反应,导致矿物质过饱和而沉淀下来(如CaCO3沉淀形成方解石,SiO2沉淀形成石英,烃类流体氧化形成沥青),断裂内部胶结的矿物和形成的固体沥青使得断裂带中岩石孔渗降低,排替压力增大。如果断裂带上部胶结和沥青充填作用严重,而下部弱,则断裂在垂向上形成排替压力差,具有封闭能力
    注:据参考文献[1, 43, 63-64]总结。
    下载: 导出CSV

    表  2  断裂侧向封闭机理形式及特点

    Table  2.   Types and characteristics of fault lateral sealing mechanisms

    封闭机理形式 封闭机理运作方式
    砂泥对接封闭机理(无断裂填充物) 断裂带内无充填物时,目的层与其对置盘的排替压力差决定着断裂侧向封闭的能力。若目的层排替压力小于其对置盘的排替压力,断裂具有侧向封闭性,可以阻止油气进行侧向运移;若目的层排替压力大于其对置盘的排替压力,断裂不具有侧向封闭性,油气可以进行侧向运移。一般而言,当目的层为砂岩时,其孔渗高而排替压力低,而对置盘为泥岩时,其孔渗低而排替压力高,这种情况下泥岩对砂岩可以起到封闭油气的作用
    泥岩涂抹封闭机理(无断裂填充物) 同沉积断裂活动时,区域构造应力和重力等会使得断裂附近的泥岩挤入断裂带的空隙,这样就会在断裂面上形成薄的泥岩涂抹层,且其孔渗能力较围岩中泥岩更差,故而具有较高的排替压力,其侧向封闭能力尤其好。侧向封闭作用主要取决于泥岩涂抹的空间分布连续性。泥岩涂抹的连续性越好,其侧向封闭性越好,反之亦然
    断裂带封闭机理(存在断裂填充物) 泥质填充物封闭机理 若断裂填充物以泥质为主时,目的层砂岩与断裂的泥质填充物形成排替压力差,使得断裂具有侧向封闭性,可以阻止油气进行侧向运移。若断裂填充物以砂质为主时,目的层砂岩与砂质填充物难以形成排替压力差,故断裂侧向封闭性差
    后期成岩封闭机理 当断裂填充物以砂质为主时,后期的流体与断面物质的物理化学作用、在断裂带内胶结的矿物和形成的固体沥青仍然会使砂质填充物的孔渗降低、排替压力升高,致使目的层与填充物形成排替压力差,从而使断裂具备侧向封闭性,阻止油气进行侧向运移
    注:据参考文献[1-2, 28, 43, 66-67]总结。
    下载: 导出CSV

    表  3  断裂封闭性主要影响因素及作用方式

    Table  3.   Main factors and modes of action influencing fault sealing

    序号 影响因素 影响作用分析
    1 断裂内部结构 主动盘的开启性一般优于被动盘,主动盘具有纵横向输导的特征,而被动盘通常呈纵横向遮挡,不同部位的封闭性往往存在差异
    2 断裂力学性质 张性断裂封闭性通常较差,压性断裂具有较好的封闭性,扭性断裂在垂向上的封闭性最佳
    3 断裂走向 当区域水平最大主应力与断裂走向的锐夹角增加时,封闭性变好;夹角越接近0°时,断裂容易开启;夹角越接近90°时,断裂封闭性越好
    4 断裂倾角 在伸展盆地中,随着断裂倾角增加,封闭性越差;而在压缩盆地中,随着断裂倾角增加,封闭性越好
    5 断距 断距增大可以使断裂岩裂缝增多,有利于断裂泥的形成,因此需要综合考虑断距对封闭性的影响
    6 埋深 在伸展盆地中,随着深度增加,封闭性越好;在挤压性盆地中,随着深度增加,封闭性越差
    7 断裂形成时期 同沉积断裂由于岩石塑性强,容易形成涂抹层,或者使断裂带的孔隙度和渗透率减小。然而,随着沉积后岩石的固结,其脆性增强,被断裂错断后形成的岩石粒度增大,孔隙度和渗透率也增加。这样的变化容易导致封闭的断裂带重新开启,破坏涂抹层
    8 断裂活动时期 按照断裂活动时期,其封闭性由早期到晚期逐渐减弱,表现为早期>长期>晚期
    9 断裂活动性 活动的断裂封闭能力差,而静止的断裂封闭能力相对好
    10 断裂产状与地层产状配置关系 若地层与断裂产状一致时,断裂封闭流体能力较差;而当断裂与地层产状相反时,断裂封闭流体能力较好
    11 断裂组合形式 在相同条件下,地堑型断裂通常比地垒型断裂具有更好的封闭性
    12 对置盘岩性 砂岩与砂岩对置时,封闭性较差;而砂岩与泥岩对置时,封闭性则较好
    13 砂泥岩厚度比 砂泥比越小,砂岩与泥岩对接的可能性越大,且形成泥岩涂抹层的概率也较高,断裂封闭性越好
    14 泥岩涂抹系数 泥岩涂抹层越连续,则断裂封闭能力越好
    15 应力作用 断面应力高于岩石的抗压强度时,断面封闭性好;反之,封闭性较差
    16 断裂内流体作用 断裂带填充物为砂质时,断裂内的流体与填充物发生后期成岩作用,可能导致沉积物填塞孔隙;油气的氧化会生成沥青固结,使孔隙度降低
    17 断裂带充填物的胶结作用 胶结作用越强,孔隙度和渗透率就越低,差异排替压力就越高,断裂封闭能力越好
    18 压实作用 压实作用可使松散的断裂填充物变得更紧密,孔隙闭合,渗透率下降。它还能导致无填充物的断裂断面紧闭,阻止流体在断裂中的运移,提高断裂的封闭性
    19 溶蚀作用 当含烃流体通过断裂运移时,烃类脱羧基释放的CO2溶解于地层水中,同时生成有机酸,使地层水呈酸性,可能对岩石或裂隙中的胶结物产生溶蚀作用,影响断裂的封闭性,增加其输导能力
    注:据参考文献[1, 21, 28, 31, 43-44, 72, 87-90]等总结。
    下载: 导出CSV

    表  4  断裂封闭性评价的主要研究方法

    Table  4.   Main research methods for the evaluation of fault sealing

    评价方法 评价因素 量化程度
    传统地质学方法 从影响断裂封闭性的主控因素入手,评价断裂的封闭能力或好坏 任何单一因素 定性
    ALLAN图或断裂面构造图 对置盘岩性 半定量
    断裂面压力 应力作用 定量
    泥岩涂抹能力、涂抹因子、断裂泥比率 砂泥岩厚度比和泥岩涂抹系数 定量
    数学地质方法 逻辑信息法、非线性映取分析法、模糊综合评判法、灰色关联分析法 多种主控因素 定量
    构造应力场模拟方法 构造应力场数值模拟及断裂封闭相关参数计算法 应力作用与断裂几何学特征 定量
    地球化学方法 流体化学性质差异法 定性
    同位素法 胶结作用 定性
    注:据参考文献[1, 58, 89, 96, 110, 114-117]等总结。
    下载: 导出CSV
  • [1] 丁文龙, 金文正, 刘维军. 多信息断层封闭性综合评价系统研究及应用[M]. 北京: 地质出版社, 2012.

    DING Wenlong, JIN Wenzheng, LIU Weijun. Study of multi-information comprehensive evaluation system for fault sealing and application[M]. Beijing: Geological Press, 2012.
    [2] 丁文龙, 金之钧, 张义杰, 等. 新疆准噶尔盆地断裂控油气作用机理研究[J]. 地学前缘, 2002, 9(3): 102. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200203016.htm

    DING Wenlong, JIN Zhijun, ZHANG Yijie, et al. Mechanism of hydrocarbon control by faults in the Junggar Basin, Xinjiang[J]. Earth Science Frontiers, 2002, 9(3): 102. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200203016.htm
    [3] 郑和荣, 胡宗全, 云露, 等. 中国海相克拉通盆地内部走滑断裂发育特征及控藏作用[J]. 地学前缘, 2022, 29(6): 224-238. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202206015.htm

    ZHENG Herong, HU Zongquan, YUN Lu, et al. Strike-slip faults in marine cratonic basins in China: development characteristics and controls on hydrocarbon accumulation[J]. Earth Science Frontiers, 2022, 29(6): 224-238. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202206015.htm
    [4] 张仲培, 徐勤琪, 刘士林, 等. 塔里木盆地巴麦地区东段北东向走滑断裂体系特征及油气地质意义[J]. 石油实验地质, 2023, 45(4): 761-769. doi: 10.11781/sysydz202304761

    ZHANG Zhongpei, XU Qinqi, LIU Shilin, et al. Characteristics of NE strike-slip fault system in the eastern section of Bachu-Maigaiti area, Tarim Basin and its oil-gas geological significance[J]. Petroleum Geology & Experiment, 2023, 45(4): 761-769. doi: 10.11781/sysydz202304761
    [5] 宋兴国, 陈石, 谢舟, 等. 塔里木盆地富满油田东部走滑断裂发育特征与油气成藏[J]. 石油与天然气地质, 2023, 44(2): 335-349. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202302007.htm

    SONG Xingguo, CHEN Shi, XIE Zhou, et al. Strike-slip faults and hydrocarbon accumulation in the eastern part of Fuman oilfield, Tarim Basin[J]. Oil & Gas Geology, 2023, 44(2): 335-349. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202302007.htm
    [6] 刘军, 廖茂辉, 王来源, 等. 顺北油田顺北4号断裂带中段断控储集体连通性评价[J]. 新疆石油地质, 2023, 44(4): 456-464. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202304010.htm

    LIU Jun, LIAO Maohui, WANG Laiyuan, et al. Static connectivity evaluation on fault-controlled reservoir system in the middle section of Shunbei No. 4 fault zone, Shunbei Oilfield[J]. Xinjiang Petroleum Geology, 2023, 44(4): 456-464. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202304010.htm
    [7] 罗安湘, 刘广林, 刘正鹏, 等. 鄂尔多斯盆地中生界断裂及对油藏的控制研究[J]. 西南石油大学学报(自然科学版), 2023, 45(4): 43-54. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY202304004.htm

    LUO Anxiang, LIU Guanglin, LIU Zhengpeng, et al. Mesozoic faults and their control on oil reservoirs in Ordos Basin[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2023, 45(4): 43-54. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY202304004.htm
    [8] 沙子萱, 于丹, 付广. 下生上储式与上生下储式油源断裂油气输导差异[J]. 特种油气藏, 2022, 29(2): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202202002.htm

    SHA Zixuan, YU Dan, FU Guang. Difference in oil and gas transport between lower-source and upper-reservoir and upper-source and lower-reservoir oil source faults[J]. Special Oil & Gas Reservoirs, 2022, 29(2): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202202002.htm
    [9] 陈登超, 杨贵丽, 马立驰, 等. 潍北凹陷走滑断裂体系特征及其控藏作用[J]. 地质学报, 2020, 94(8): 2410-2421. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202008017.htm

    CHEN Dengchao, YANG Guili, MA Lichi, et al. Characteristics of the strike-slip fault system and their control actions on the hydrocarbon accumulation for Weibei Sag[J]. Acta Geologica Sinica, 2020, 94(8): 2410-2421. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202008017.htm
    [10] 管树巍, 姜华, 鲁雪松, 等. 四川盆地中部走滑断裂系统及其控油气作用[J]. 石油学报, 2022, 43(11): 1542-1557. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202211002.htm

    GUAN Shuwei, JIANG Hua, LU Xuesong, et al. Strike-slip fault system and its control on oil & gas accumulation in central Sichuan Basin[J]. Acta Petrolei Sinica, 2022, 43(11): 1542-1557. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202211002.htm
    [11] 肖雷. 断裂输导形成上覆油气藏有利部位预测方法及其应用[J]. 特种油气藏, 2023, 30(1): 22-28. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202301003.htm

    XIAO Lei. Method for predicting the favorable site of overlying oil and gas reservoir formed by fault conduit and its application[J]. Special Oil & Gas Reservoirs, 2023, 30(1): 22-28. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202301003.htm
    [12] 汪洋, 张哨楠, 刘永立. 塔里木盆地塔河油田走滑断裂活动对油气成藏的控制作用: 以托甫39断裂带为例[J]. 石油实验地质, 2022, 44(3): 394-401. doi: 10.11781/sysydz202203394

    WANG Yang, ZHANG Shaonan, LIU Yongli. Controls of strike-slip fault activities on hydrocarbon accumulation in Tahe Oil field, Tarim Basin: a case study of TP 39 fault zone[J]. Petroleum Geology & Experiment, 2022, 44(3): 394-401. doi: 10.11781/sysydz202203394
    [13] 陈平, 能源, 吴鲜, 等. 塔里木盆地顺北5号走滑断裂带分层分段特征及构造演化[J]. 新疆石油地质, 2023, 44(1): 33-42. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202301005.htm

    CHEN Ping, NENG Yuan, WU Xian, et al. Stratification and segmentation characteristics and tectonic evolution of Shunbei No. 5 strike-slip fault zone in Tarim Basin[J]. Xinjiang Petroleum Geology, 2023, 44(1): 33-42. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202301005.htm
    [14] 汪如军, 冯建伟, 李世银, 等. 塔北—塔中隆起奥陶系富油气三角带断裂特征及控藏分析[J]. 特种油气藏, 2023, 30(2): 26-35. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202302004.htm

    WANG Rujun, FENG Jianwei, LI Shiyin, et al. Analysis on fault characteristics and reservoir control of Ordovician hydrocarbon-rich triangle zone in Tabei-Tazhong Uplift[J]. Special Oil & Gas Reservoirs, 2023, 30(2): 26-35. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202302004.htm
    [15] 李海英, 韩俊, 陈平, 等. 塔里木盆地顺北4号走滑断裂带变形特征及有利区评价[J]. 新疆石油地质, 2023, 44(2): 127-135. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202302001.htm

    LI Haiying, HAN Jun, CHEN Ping, et al. Deformation and favorable area evaluation of Shunbei No. 4 strike-slip fault zone in Tarim Basin[J]. Xinjiang Petroleum Geology, 2023, 44(2): 127-135. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202302001.htm
    [16] HUBBERT M K. Entrapment of petroleum under hydrodynamic conditions[J]. AAPG Bulletin, 1953, 37(8): 1954-2026.
    [17] SMITH W W, BUDD R A, CORNFIELD J. Estimation of radiation dose-reduction factor for β-mercaptoethylamine by endogenous spleen colony counts[J]. Radiation Research, 1966, 27(3): 363-368. doi: 10.2307/3571956
    [18] 景紫岩, 杨兆平, 李国斌, 等. 勘探前期断层封闭性三维定量评价及软件研发[J]. 东北石油大学学报, 2021, 45(4): 27-34. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY202104003.htm

    JING Ziyan, YANG Zhaoping, LI Guobin, et al. 3D quantitative evaluation of fault sealing in early exploration stage and software development[J]. Journal of Northeast Petroleum University, 2021, 45(4): 27-34. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY202104003.htm
    [19] 王东晔, 查明, 吴孔友. 有关断层封闭性若干问题的探讨[J]. 新疆石油地质, 2007, 28(4): 513-515. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD200704040.htm

    WANG Dongye, ZHA Ming, WU Kongyou. A discussion on several issues about fault sealing[J]. Xinjiang Petroleum Geology, 2007, 28(4): 513-515. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD200704040.htm
    [20] 邵燕林, 乔禹达, 张娜, 等. 高陡构造带碳酸盐岩储气库断层封闭性评价: 以川东WSC气田为例[J]. 长江大学学报(自然科学版), 2022, 19(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-CJDL202201001.htm

    SHAO Yanlin, QIAO Yuda, ZHANG Na, et al. Fault sealing evaluation of carbonate gas storage in high-steep structural belt: taking WSC gas field in eastern Sichuan as an example[J]. Journal of Yangtze University (Natural Science Edition), 2022, 19(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-CJDL202201001.htm
    [21] 付晓飞, 李坤, 董柔, 等. 断层封闭性研究综述[J]. 能源技术与管理, 2021, 46(3): 24-26. https://www.cnki.com.cn/Article/CJFDTOTAL-JSMT202103011.htm

    FU Xiaofei, LI Kun, DONG Rou, et al. Literature review on fault sealing[J]. Energy Technology and Management, 2021, 46(3): 24-26. https://www.cnki.com.cn/Article/CJFDTOTAL-JSMT202103011.htm
    [22] CHU Rong, WANG Yougong, SHI Haitao. Quantitative evaluation of fault sealing capacity and hydrocarbon migration: insight from the Liuzhuang fault in the Bohai Bay Basin, China[J]. International Journal of Earth Sciences, 2024, 113(2): 459-475. doi: 10.1007/s00531-024-02387-w
    [23] SU Shengmin, JIANG Youlu, GUO Gang. Diagenesis and lateral sealing types of fault zones in the Lishu Depression, Songliao Basin, NE China[J]. Marine and Petroleum Geology, 2024, 163: 106802. doi: 10.1016/j.marpetgeo.2024.106802
    [24] ALLAN U S. Model for hydrocarbon migration and entrapment within faulted structures[J]. AAPG Bulletin, 1989, 73(7): 803-811.
    [25] BOUVIER J D, KAARS-SIJPESTEIJN C H, KLUESNER D F, et al. Three-dimensional seismic interpretation and fault sealing investigations, Nun River Field, Nigeria[J]. AAPG Bulletin, 1989, 73(11): 1397-1414.
    [26] SMITH D A. Sealing and nonsealing faults in Louisiana Gulf Coast Salt Basin[J]. AAPG Bulletin, 1980, 64(2): 145-72.
    [27] PEI Yangwen, PATON D A, KNIPE R J, et al. A review of fault sealing behavior and its evaluation in siliciclastic rocks[J]. Earth-Science Reviews, 2015, 150: 121-138. doi: 10.1016/j.earscirev.2015.07.011
    [28] 付晓飞, 付广, 赵平伟. 断层封闭机理及主要影响因素研究[J]. 天然气地球科学, 1999, 10(3/4): 54-62. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX1999Z2007.htm

    FU Xiaofei, FU Guang, ZHAO Pingwei. Research on the mechanism of fault closure and main influencing factors[J]. Natural Gas Geoscience, 1999, 10(3/4): 54-62. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX1999Z2007.htm
    [29] 王来斌, 徐怀民. 断层封闭性的研究进展[J]. 新疆石油学院学报, 2003, 15(1): 11-15. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSY200301003.htm

    WANG Laibin, XU Huaimin. Advances of research on fault sealing[J]. Xinjiang Oil Gas, 2003, 15(1): 11-15. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSY200301003.htm
    [30] 周林帅, 张卫海, 黄峰, 等. 断裂带充填物中泥质质量分数的确定及断层封闭性评价[J]. 断块油气田, 2010, 17(2): 173-176. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201002012.htm

    ZHOU Linshuai, ZHANG Weihai, HUANG Feng, et al. Determination of shale content in fault filling material and evaluation of fault sealing[J]. Fault-Block Oil & Gas Field, 2010, 17(2): 173-176. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201002012.htm
    [31] 王建忠, 向才富, 庞雄奇. 碳酸盐岩层系断层封闭机理研究[J]. 中国矿业大学学报, 2013, 42(4): 616-624. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201304016.htm

    WANG Jianzhong, XIANG Caifu, PANG Xiongqi. Faultsealing mechanisms in the carbonate sequence[J]. Journal of China University of Mining & Technology, 2013, 42(4): 616-624. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201304016.htm
    [32] 许新明, 姜建, 陈胜红, 等. 珠江口盆地恩平凹陷断层封闭性评价[J]. 现代地质, 2016, 30(1): 122-129. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201601012.htm

    XU Xinming, JIANG Jian, CHEN Shenghong, et al. Study on the evaluation method of fault sealing and its application: an example of Neogene layer in Enping Sag, Pearl River Mouth Basin[J]. Geoscience, 2016, 30(1): 122-129. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201601012.htm
    [33] XIE Liujuan, PEI Yangwen, LI Anren, et al. Implications of meso- to micro-scale deformation for fault sealing capacity: insights from the Lenghu5 fold-and-thrust belt, Qaidam Basin, NE Tibetan Plateau[J]. Journal of Asian Earth Sciences, 2018, 158: 336-351. doi: 10.1016/j.jseaes.2018.03.004
    [34] YU Wenquan. The quantitative evaluation of fault sealing during the Cenozoic in Gaoyou Depression, Subei Basin[J]. Geological Journal, 2022, 57(10): 4099-4109. doi: 10.1002/gj.4531
    [35] 曹瑞成, 陈章明. 早期勘探区断层封闭性评价方法[J]. 石油学报, 1992, 13(1): 13-22. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB199201001.htm

    CAO Ruicheng, CHEN Zhangming. A method of estimating of property sealing of a fault in a non mature region[J]. Acta Petrolei Sinica, 1992, 13(1): 13-22. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB199201001.htm
    [36] 吕延防, 陈章明, 陈发景. 非线性映射分析判断断层封闭性[J]. 石油学报, 1995, 16(2): 36-41. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB502.005.htm

    LÜ Yanfeng, CHEN Zhangming, CHEN Fajing. Evaluation of sealing ability of faults using nonlinear mapping analysis[J]. Acta Petrolei Sinica, 1995, 16(2): 36-41. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB502.005.htm
    [37] 刘文碧, 周文, 李德发. 川西拗陷上三叠统断层封闭性研究[J]. 西南石油学院学报, 1996, 18(3): 12-19. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY603.001.htm

    LIU Wenbi, ZHOU Wen, LI Defa. Study of fault confining of the Early Triassic period in West Sichuan Depression areas[J]. Journal of Southwest Petroleum Institute, 1996, 18(3): 12-19. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY603.001.htm
    [38] 曹龙, 王少鹏, 高鹏宇, 等. 黄河口凹陷新近系岩性—构造油藏断层封闭性评价[J]. 断块油气田, 2022, 29(4): 502-507. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202204011.htm

    CAO Long, WANG Shaopeng, GAO Pengyu, et al. Fault sealing of Neogene lithology-structural reservoirs in the Huanghekou Sag[J]. Fault-Block Oil and Gas Field, 2022, 29(4): 502-507. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202204011.htm
    [39] 刘建党, 兰正凯, 贾超. 江陵凹陷断层封闭性评价及勘探潜力[J]. 特种油气藏, 2022, 29(3): 36-42. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202203005.htm

    LIU Jiandang, LAN Zhengkai, JIA Chao. Fault trap evaluation and exploration potential in Jiangling Sag[J]. Special Oil & Gas Reservoirs, 2022, 29(3): 36-42. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202203005.htm
    [40] 孙思尧, 范昌育, 蒲仁海, 等. 西湖凹陷平湖构造带断裂垂向封闭性研究[J]. 断块油气田, 2022, 29(3): 353-359. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202203011.htm

    SUN Siyao, FAN Changyu, PU Renhai, et al. Research on vertical sealing of faults in Pinghu structural belt of Xihu Sag[J]. Fault-Block Oil and Gas Field, 2022, 29(3): 353-359. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202203011.htm
    [41] 吕延防, 李国会, 王跃文, 等. 断层封闭性的定量研究方法[J]. 石油学报, 1996, 17(3): 39-45. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB603.005.htm

    LÜ Yanfang, LI Guohui, WANG Yuewen, et al. Quantitative analyses in fault sealing properties[J]. Acta Petrolei Sinica, 1996, (3): 39-45. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB603.005.htm
    [42] 白新华, 罗群. 断层封闭性评价研究[J]. 大庆石油学院学报, 1998, 22(1): 91-94. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY801.030.htm

    BAI Xinhua, LUO Qun. Research of fault seal property[J]. Journal of Daqing Petroleum Institute, 1998, 22(1): 91-94. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY801.030.htm
    [43] 鲁兵, 丁文龙, 刘忠, 等. 断层封闭性研究进展[J]. 地质科技情报, 1998, 17(3): 76-81. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ803.013.htm

    LU Bing, DING Wenlong, LIU Zhong, et al. Advances of research on fault sealing[J]. Geological Science and Technology Information, 1998, 17(3): 76-81 https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ803.013.htm
    [44] 张丹凤, 方石, 邱善坤. 断层封启性的研究现状与发展方向[J]. 吉林大学学报(地球科学版), 2021, 51(1): 65-80. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202101006.htm

    ZHANG Danfeng, FANG Shi, QIU Shankun. Current research states and development directions of fault sealing properties[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(1): 65-80. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202101006.htm
    [45] 景紫岩, 李国斌, 付晓飞, 等. 基于砂箱物理模拟的断层封闭有效性评价新方法[J]. 地质论评, 2022, 68(1): 348-358. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202201026.htm

    JING Ziyan, LI Guobin, FU Xiaofei, et al. New methods for evaluation fault sealing effectiveness based on sand box physical simulation[J]. Geological Review, 2022, 68(1): 348-358. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202201026.htm
    [46] 李强, 田晓平, 何京, 等. 断层封闭性定量表征及对油气富集的控制作用[J]. 西南石油大学学报(自然科学版), 2018, 40(4): 40-50. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201804005.htm

    LI Qiang, TIAN Xiaoping, HE Jing, et al. Quantitative characte-rization of fault sealing and its control on hydrocarbon accumulation[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2018, 40(4): 40-50. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201804005.htm
    [47] 吕延防, 王伟, 胡欣蕾, 等. 断层侧向封闭性定量评价方法[J]. 石油勘探与开发, 2016, 43(2): 310-316. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201602024.htm

    LÜ Yanfeng, WANG Wei, HU Xinlei, et al. Quantitative evaluation method of fault lateral sealing[J]. Petroleum Exploration and Development, 2016, 43(2): 310-316. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201602024.htm
    [48] 陈龙, 曹永春. 断层封闭性研究进展与发展趋势[J]. 陕西煤炭, 2015, 34(2): 38-41. https://www.cnki.com.cn/Article/CJFDTOTAL-SXMJ201502015.htm

    CHEN Long, CAO Yongchun. Research progress of fault sealing and its development trend[J]. Shaanxi Coal, 2015, 34(2): 38-41. https://www.cnki.com.cn/Article/CJFDTOTAL-SXMJ201502015.htm
    [49] 朱海军. 断层封闭性研究现状与展望[J]. 科学技术与工程, 2014, 14(1): 124-131. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201401027.htm

    ZHU Haijun. Present status and prospects of research on fault closure property[J]. Science Technology and Engineering, 2014, 14(1): 124-131. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201401027.htm
    [50] 张新顺, 王建平, 李亚晶, 等. 断层封闭性研究方法评述[J]. 岩性油气藏, 2013, 25(2): 123-128. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201302030.htm

    ZHANG Xinshun, WANG Jianping, LI Yajing, et al. A comment on research methods of fault sealing capacity[J]. Lithologic reservoirs, 2013, 25(2): 123-128. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201302030.htm
    [51] 陈发景. 盆地构造分析在我国油气普查和勘探中的作用[J]. 石油与天然气地质, 1989, 10(3): 247-255. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT198903006.htm

    CHEN Fajing. The role of basin tectonic analysis in hydrocarbon census and exploration in China[J]. Oil & Gas Geology, 1989, 10(3): 247-255. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT198903006.htm
    [52] WEBER K J, MANDL G J, PILAAR W F, et al. The role of faults in hydrocarbon migration and trapping in Nigerian growth fault structures[C]//Proceedings of the Offshore Technology Conference. Houston, Texas: OTC, 1978.
    [53] ENGELDER J T. Cataclasis and the generation of fault gouge[J]. GSA Bulletin, 1974, 85(10): 1515-1522.
    [54] KNIPE R J. Faulting processes and fault seal[M]//LARSEN R M, BREKKE H, LARSEN B T, et al. Structural and tectonic modelling and its application to petroleum geology. Amsterdam: Elsevier, 1992: 325-342.
    [55] GIBSON R G. Fault-zone seals in siliciclastic strata of the Columbus Basin, offshore Trinidad[J]. AAPG Bulletin, 1994, 78(9): 1372-1385.
    [56] ANTONELLINI M A, AYDIN A. Effect of faulting on fluid flow in porous sandstones: petrophysical properties[J]. AAPG, 1994, 78(3): 355-377.
    [57] BERG R R, AVERY A H. Sealing properties of Tertiary growth faults, Texas Gulf Coast[J]. AAPG Bulletin, 1995, 79(3): 375-392.
    [58] 吴李泉, 曹代勇, 郝银全, 等. 东营凹陷北部陡坡带断层应力封闭研究[J]. 中国矿业大学学报, 2006, 35(3): 414-418. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200603024.htm

    WU Liquan, CAO Daiyong, HAO Yinyuan, et al. Characteristics of stress sealing of fault in north zone of Dongying Basin[J]. Journal of China University of Mining & Technology, 2006, 35(3): 414-418. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200603024.htm
    [59] 吴孔友, 李继岩, 崔世凌, 等. 断层成岩封闭及其应用[J]. 地质力学学报, 2011, 17(4): 414-418. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201104006.htm

    WU Kongyou, LI Jiyan, CUI Shiling, et al. Diagenetic sealing characteristics of faulting zone and its application[J]. Journal of Geomechanics, 2011, 17(4): 414-418. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201104006.htm
    [60] 赵乐强, 贾凡建, 曹剑, 等. 准噶尔盆地西北地区断层内流体活动过程及对断层启闭性的影响[J]. 石油实验地质, 2017, 39(4): 461-466. doi: 10.11781/sysydz201704461

    ZHAO Leqiang, JIA Fanjian, CAO Jian, et al. Fluid activity in faults in the northwestern Junggar Basin and its influence on fault opening and sealing[J]. Petroleum Geology & Experiment. 2017, 39(4): 461-466. doi: 10.11781/sysydz201704461
    [61] 吕延防, 付广, 张云峰. 断层封闭性研究[J]. 北京: 石油工业出版社, 2002. https://cdmd.cnki.com.cn/Article/CDMD-10496-1022694330.htm

    LÜ Yanfeng, FU Guang, ZHANG Yunfeng. Study on fault sealing[J]. Beijin: Petroleum Industry Press, 2002. https://cdmd.cnki.com.cn/Article/CDMD-10496-1022694330.htm
    [62] 黄峰. 高邮凹陷西部地区控油断层封闭性研究[D]. 青岛: 中国石油大学(华东), 2008.

    HUANG Feng. Research on faults sealing in western Gaoyou Depression of Subei Basin[D]. Qingdao: China University of Petroleum (East China), 2008.
    [63] 吴向阳. 苏北复杂断裂带成藏规律研究与目标评价[D]. 青岛: 中国石油大学(华东), 2006.

    WU Xiangyang. Reservoir-forming law study and target evaluation of complex fault zones in Subei area[D]. Qingdao: China University of Petroleum (East China), 2006.
    [64] 王亚民. 乌尔逊凹陷断层垂向封闭性时空演化及与油气关系研究[D]. 大庆: 大庆石油大学, 2006.

    WANG Yamin. Research on evolution of vertical seal of faults in time and space and relation between them and oil-gas in Wuerxun Depression[D]. Daqing: Daqing Petroleum University, 2006.
    [65] 付广, 史集建, 吕延防. 断层侧向封闭性定量研究方法的改进[J]. 石油学报, 2012, 33(3): 414-418. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201203010.htm

    FU Guang, SHI Jijian, LÜ Yanfang. An improvement in quantitatively studying lateral seal of faults[J]. Acta Petrolei Sinica, 2012, 33(3): 414-418. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201203010.htm
    [66] 张吉, 张烈辉, 杨辉廷, 等. 断层封闭机理及其封闭性识别方法[J]. 河南石油, 2003, 17(3): 7-9. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN200303002.htm

    ZHANG Ji, ZHANG Liehui, YANG Huiting, et al. Identification methods of sealing mechanism and sealing ability of faults[J]. Henan Petroleum, 2003, 17(3): 7-9. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN200303002.htm
    [67] 张加太. 断层封闭机理及其油气运聚特性研究[D]. 青岛: 中国石油大学(华东), 2021.

    ZHANG Jiatai. Research on fault sealing mechanism and hydrocarbon migration and accumulation characteristics[D]. Qingdao: China University of Petroleum (East China), 2021.
    [68] 吕延防, 马福建. 断层封闭性影响因素及类型划分[J]. 吉林大学学报(地球科学版), 2003, 33(2): 163-166. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200302011.htm

    LÜ Yanfang, MA Fujian. Controlling factors and classification of fault seal[J]. Journal of Jilin University (Earth Science Edition), 2003, 33(2): 163-166. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200302011.htm
    [69] 徐海霞, 赵万优, 王长生, 等. 断层封闭性演化史研究方法及应用[J]. 断块油气田, 2008, 15(3): 40-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT200803015.htm

    XU Haixia, ZHAO Wanyu, WANG Changsheng, et al. A method for study on evolution history of fault sealing property and its application[J]. Fault-Block Oil & Gas Field, 2008, 15(3): 40-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT200803015.htm
    [70] 闻竹, 付晓飞, 吕延防. 断层封闭性评价及断圈含油气预测[J]. 中南大学学报(自然科学版), 2016, 47(4): 1209-1218. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201604018.htm

    WEN Zhu, FU Xiaofei, LÜ Yanfang. Evaluation of fault seal and hydrocarbon potential prediction of fault traps[J]. Journal of Central South University (Science and Technology), 2016, 47(4): 1209-1218. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201604018.htm
    [71] ISHⅡ E. Far-field stress dependency of the failure mode of damage- zone fractures in fault zones: results from laboratory tests and field observations of siliceous mudstone[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(1): 70-91. doi: 10.1002/2015JB012238
    [72] 罗胜元, 何生, 王浩. 断层内部结构及其对封闭性的影响[J]. 地球科学进展, 2012, 27(2): 154-164. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201202003.htm

    LUO Shengyuan, HE Sheng, WANG Hao. Review on fault internal structure and the influence on fault sealing ability[J]. Advances in Earth Science, 2012, 27(2): 154-164 https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201202003.htm
    [73] 付晓飞, 方德庆, 吕延防, 等. 从断裂带内部结构出发评价断层垂向封闭性的方法[J]. 地球科学(中国地质大学学报), 2005, 30(3): 328-336. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200503008.htm

    FU Xiaofei, FANG Deqing, LÜ Yanfang, et al. Method of evaluating vertical sealing of faults in terms of the internal structure of fault zones[J]. Earth Science(Journal of China University of Geosciences), 2005, 30(3): 328-336. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200503008.htm
    [74] 罗群, 黄捍东, 王保华, 等. 低序级断层的成因类型特征与地质意义[J]. 油气地质与采收率, 2007, 14(3): 19-21. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS200703005.htm

    LUO Qun, HUANG Handong, WANG Baohua, et al. Genetic types of low-grade faults and their geologic significance[J]. Petroleum Geo-logy and Recovery Efficiency, 2007, 14(3): 19-21. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS200703005.htm
    [75] 吴智平, 陈伟, 薛雁, 等. 断裂带的结构特征及其对油气的输导和封堵性[J]. 地质学报, 2010, 84(4): 570-578. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201004012.htm

    WU Zhiping, CHEN Wei, XUE Yan, et al. Structural characteristics of faulting zone and its ability in transporting and sealing oil and gas[J]. Acta Geologica Sinica, 2010, 84(4): 570-578. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201004012.htm
    [76] SHIPTON Z K, COWIE P A. Damage zone and slip-surface evolution over μm to km scales in high-porosity Navajo sandstone, Utah[J]. Journal of Structural Geology, 2001, 23(12): 1825-1844. doi: 10.1016/S0191-8141(01)00035-9
    [77] DE PAOLA N, COLLETTINI C, FAULKNER D R, et al. Fault zone architecture and deformation processes within evaporitic rocks in the upper crust[J]. Tectonics, 2008, 27(4): 341-361.
    [78] 付晓飞, 肖建华, 孟令东. 断裂在纯净砂岩中的变形机制及断裂带内部结构[J]. 吉林大学学报(地球科学版), 2014, 44(1): 25-37. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201401003.htm

    FU Xiaofei, XIAO Jianhua, MENG Lingdong. Fault deformation mechanisms and internal structure characteristics of fault zone in pure sandstone[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(1): 25-37. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201401003.htm
    [79] 贾茹, 付晓飞, 孟令东, 等. 断裂及其伴生微构造对不同类型储层的改造机理[J]. 石油学报, 2017, 38(3): 286-296. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201703005.htm

    JIA Ru, FU Xiaofei, MENG Lingdong, et al. Transformation mechanism of fault and its associated microstructures for different kinds of reservoirs[J]. Acta Petrolei Sinica, 2017, 38(3): 286-296. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201703005.htm
    [80] CHILDS C, MANZOCCHI T, WALSH J J, et al. A geometric model of fault zone and fault rock thickness variations[J]. Journal of Structural Geology, 2009, 31(2): 117-127.
    [81] SCHÖPFER M P J, CHILDS C, WALSH J J, et al. Evolution of the internal structure of fault zones in three-dimensional numerical models of normal faults[J]. Tectonophysics, 2016, 666: 158-163.
    [82] 宋佳佳, 孙建孟, 王敏, 等. 断层内部结构研究进展[J]. 地球物理学进展, 2018, 33(5): 1956-1966. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201805024.htm

    SONG Jiajia, SUN Jianmeng, WANG Min, et al. Research progress in the internal structure of the fault[J]. Progress in Geophysics, 2018, 33(5): 1956-1966. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201805024.htm
    [83] 王燮培. 石油勘探构造分析[M]. 武汉: 中国地质大学出版社, 1990.

    WANG Xiepei. Tectonic analysis of petroleum exploration[M]. Wuhan: China University of Geosciences Press, 1990.
    [84] 张子隆, 杨威, 王千军, 等. 走滑断裂不同结构单元输导、运聚特性及其差异控藏模式: 以准噶尔盆地乌尔禾沥青矿地区为例[J]. 断块油气田, 2023, 30(3): 424-433. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202303009.htm

    ZHANG Zilong, YANG Wei, WANG Qianjun, et al. Hydrocarbon transport and migration characteristics of different structural units of strike-slip fault system and their differential control on hydrocarbon accumulation patterns: a case study of bituminous vein area in Wuerhe, Junggar Basin[J]. Fault-Block Oil & Gas Field, 2023, 30(3): 424-433. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202303009.htm
    [85] ZHANG Jingkun, CAO Jian, WANG Yan, et al. Origin of giant vein-type bitumen deposits in the northwestern Junggar Basin, NW China: implications for fault-controlled hydrocarbon accumulation[J]. Journal of Asian Earth Sciences, 2019, 179: 287-299.
    [86] CHOI J H, EDWARDS P, KO K, et al. Definition and classification of fault damage zones: a review and a new methodological approach[J]. Earth-Science Reviews, 2015, 152: 70-87.
    [87] 崔殿. 准噶尔盆地克夏断裂带成岩作用对断层输导性能的影响[D]. 青岛: 中国石油大学(华东), 2011.

    CUI Dian. The affection of diagenesis on fault sealing of Kexia fracture belt in Junggar Basin[D]. Qingdao: China University of Petroleum (East China), 2011.
    [88] 靳加林, 邓清海, 张继标, 等. 走滑断裂派生裂缝发育规律影响因素探讨[J]. 地震研究, 2022, 45(3): 452-459. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ202203013.htm

    JIN Jialin, DENG Qinghai, ZHANG Jibiao, et al. Discussion on influencing factors of the development law of strike-slip-fault derived fractures[J]. Journal of Seismological Research, 2022, 45(3): 452-459. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ202203013.htm
    [89] 周新桂, 孙宝珊, 谭成轩, 等. 现今地应力与断层封闭效应[J]. 石油勘探与开发, 2000, 27(5): 127-131. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200005038.htm

    ZHOU Xingui, SUN Baoshan, TAN Chengxuan, et al. State of current geo stress and effect of fault sealing[J]. Petroleum Exploration and Development, 2000, 27(5): 127-131. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200005038.htm
    [90] 赵密福. 断层封闭性研究现状[J]. 新疆石油地质, 2004, 25(3): 333-336. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD200403035.htm

    ZHAO Mifu. A review on fault seal study[J]. Xinjiang Petroleum Geology, 2004, 25(3): 333-336. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD200403035.htm
    [91] 付广, 吕延防, 马福建, 等. 断层垂向封闭性综合评价方法及其应用[J]. 新疆石油地质, 2003, 24(5): 451-454. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD200305029.htm

    FU Guang, LÜ Yanfang, MA Fujian, et al. Comprehensive evaluation method for vertical sealing of fault and its application[J]. Xinjiang Petroleum Geology, 2003, 24(5): 451-454. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD200305029.htm
    [92] 吕延防, 黄劲松, 付广, 等. 砂泥岩薄互层段中断层封闭性的定量研究[J]. 石油学报, 2009, 30(6): 824-829. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200906006.htm

    LÜ Yanfang, HUANG Jinsong, FU Guang, et al. Quantitative study on fault sealing ability in sandstone and mudstone thin interbed[J]. Acta Petrolei Sinica, 2009, 30(6): 824-829. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200906006.htm
    [93] 吕延防, 沙子萱, 付晓飞, 等. 断层垂向封闭性定量评价方法及其应用[J]. 石油学报, 2007, 28(5): 34-38. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200705007.htm

    LÜ Yanfang, SHA Zixuan, FU Xiaofei, et al. Quantitative evaluation method for fault vertical sealing ability and its application[J]. Acta Petrolei Sinica, 2007, 28(5): 34-38. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200705007.htm
    [94] 任健, 韩芮, 黄振, 等. 渤海海域多期伸展型交汇断层封闭性评价方法[J]. 高校地质学报, 2022, 28(4): 623-633. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX202204015.htm

    REN Jian, HAN Rui, HUANG Zhen, et al. Evaluation of sealing properties of multi-stage extensional abutting faults in Bohai Sea[J]. Geological Journal of China Universities, 2022, 28(4): 623-633. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX202204015.htm
    [95] 任森林, 刘琳, 徐雷. 断层封闭性研究方法[J]. 岩性油气藏, 2011, 23(5): 101-105. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201105023.htm

    REN Senlin, LIU Lin, XU Lei. Research methods of fault sealing[J]. Lithologic reservoirs, 2011, 23(5): 101-105. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201105023.htm
    [96] 孙国强, 张功成, 王琪, 等. 利用模糊综合评价法进行断层封闭性预测[J]. 断块油气田, 2011, 18(3): 281-284. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201103006.htm

    SUN Guoqiang, ZHANG Gongcheng, WANG Qi, et al. Prediction of fault sealing using fuzzy comprehensive evaluation method[J]. Fault-Block Oil & Gas Field, 2011, 18(3): 281-284. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201103006.htm
    [97] 王则, 商琳, 龚丽荣, 等. 基于地质力学方法对不同结构断层破碎带封闭性评价: 以渤海湾盆地济阳坳陷车镇凹陷M区为例[J]. 石油实验地质, 2019, 41(6): 893-900. doi: 10.11781/sysydz201906893

    WANG Ze, SHANG Lin, GONG Lirong, et al. Sealing performance evaluation of fault fracture zone of different structures based on geomechanical methods: a case study in M area, Chezhen Sag, Jiyang Depression, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2019, 41(6): 893-900. doi: 10.11781/sysydz201906893
    [98] 张立宽, 罗晓容, 廖前进, 等. 断层连通概率法定量评价断层的启闭性[J]. 石油与天然气地质, 2007, 28(2): 181-190. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200702011.htm

    ZHANG Likuan, LUO Xiaorong, LIAO Qianjin, et al. Quantitative evaluation of fault sealing property with fault connectivity probabilistic method[J]. Oil & Gas Geology, 2007, 28(2): 181-190. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200702011.htm
    [99] 王新新, 戴俊生, 李旭航, 等. 多种方法评价断层封闭性: 以金湖凹陷石港断裂带为例[J]. 沉积与特提斯地质, 2013, 33(3): 69-75. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD201303010.htm

    WANG Xinxin, DAI Junsheng, LI Xuhang, et al. Assessment of fault sealing ability: an example from the Shigang fault zone in the Jinhu Depression, northern Jiangsu[J]. Sedimentary Geology and Tethyan Geology, 2013, 33(3): 69-75. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD201303010.htm
    [100] LINDSAY N G, MURPHY F C, WALSH J J, et al. Outcrop studies of shale smears on fault surface[J]. Special Publication International Association of Sedimentologist, 1993, 15: 113-123.
    [101] KNOTT S D. Fault seal analysis in the North Sea[J]. AAPG Bulletin, 1993, 77(5): 778-792.
    [102] FULLJAMES J R, ZIJERVELD L J J, FRANSSEN R C M W. Fault seal processes: systematic analysis of fault seals over geological and production time scales[J]. Norwegian Petroleum Society Special Publications, 1997, 7: 51-59.
    [103] LEHNER F K, PILAAR W F. On a mechanism of clay smear emplacement in synsedimentary normal faults[C]//AAPG Annual Convention Dallas. Texas: AAPG, 1991.
    [104] KNIPE R J. Juxtaposition and seal diagrams to help analyze fault seals in hydrocarbon reservoirs[J]. AAPG Bulletin, 1997, 81(2): 187-195.
    [105] YIELDING G, FREEMAN B, NEEDHAM D T. Quantitative fault seal prediction[J]. AAPG Bulletin, 1997, 81(6): 897-917.
    [106] 王朋岩. 利用灰色关联分析法评判断层的封闭性[J]. 大庆石油学院学报, 2003, 27(1): 4-6. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY200301001.htm

    WANG Pengyan. Evaluation method of grey relationship analysis of fault sealing[J]. Journal of Daqing Petroleum Institute, 2003, 27(1): 4-6. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY200301001.htm
    [107] 侯读杰, 朱俊章, 唐友军, 等. 应用地球化学方法评价断层的封闭性[J]. 地球科学(中国地质大学学报), 2005, 30(1): 97-101. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202308002.htm

    HOU Dujie, ZHU Junzhang, TANG Youjun, et al. Evaluating fault sealing using geochemical techniques[J]. Earth Science(Journal of China University of Geosciences), 2005, 30(1): 97-101. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202308002.htm
    [108] 刘玉梅, 于兴河, 李胜利. 模糊法综合评价垦东断裂带断层封闭性[J]. 重庆科技学院学报(自然科学版), 2009, 11(2): 11-13. https://www.cnki.com.cn/Article/CJFDTOTAL-CQSG200902004.htm

    LIU Yumei, YU Xinghe, LI Shengli. On the comprehensive evaluation of fault sealing of Ken East fracture zone using fuzzy method[J]. Journal of Chongqing University of Science and Technology (Natural Sciences Edition), 2009, 11(2): 11-13. https://www.cnki.com.cn/Article/CJFDTOTAL-CQSG200902004.htm
    [109] 王珂, 戴俊生. 地应力与断层封闭性之间的定量关系[J]. 石油学报, 2012, 33(1): 74-81. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201201008.htm

    WANG Ke, DAI Junsheng. A quantitative relationship between the crustal stress and fault sealing ability[J]. Acta Petrolei Sinica, 2012, 33(1): 74-81. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201201008.htm
    [110] 马强, 张殿伟, 王贵文, 等. 断层流体锶、碳、氧同位素示踪评价断层垂向封闭性: 以焦石坝背斜带为例[J]. 沉积学报, 2017, 35(6): 1205-1216. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201706012.htm

    MA Qiang, ZHANG Dianwei, WANG Guiwen, et al. Evaluation of vertical sealing of faults by strontium, carbon and oxygen isotope tracing of fault fluid: a case from the anticlinal belt in Jiaoshiba area[J]. Acta Sedimentologica Sinica, 2017, 35(6): 1205-1216. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201706012.htm
    [111] 高长海, 查明, 江汝锋. 火山岩区断层封闭性的综合因子评价方法[J]. 中国石油大学学报(自然科学版), 2017, 41(4): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201704001.htm

    GAO Changhai, ZHA Ming, JIANG Rufeng. Evaluation method of comprehensive factor of fault sealing in volcanic rock area[J]. Journal of China University of Petroleum (Edition of Natural Science), 2017, 41(4): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201704001.htm
    [112] 许倩. 准中莫—永地区走滑断裂带内部结构及封闭性评价[D]. 青岛: 中国石油大学(华东), 2022.

    XU Qian. Structural characteristics and sealing assessment of the strike-slip fault zones in Mo-Yong area, central Junggar Basin[D]. Qingdao: China University of Petroleum (East China), 2022.
    [113] 孔永吉. 塔里木盆地顺北地区走滑断裂结构特征及封闭性评价[D]. 青岛: 中国石油大学(华东), 2020.

    KONG Yongji. Structural characteristics and sealing evaluation of strike-slip faults in the Shunbei area, Tarim Basin[D]. Qingdao: China University of Petroleum (East China), 2020.
    [114] 李勇, 罗力元, 王剑, 等. 断层封闭性演化地球化学评价方法及其控藏作用: 以准噶尔盆地西北缘红车断裂带为例[J]. 天然气工业, 2023, 43(8): 12-25. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202308002.htm

    LI Yong, LUO Liyuan, WANG Jian, et al. A geochemical evaluation method of fault sealing evolution and its controlling effect on hydrocarbon accumulation: a case study of the Hongche fault zone in the northwest margin of the Junggar Basin[J]. Natural Gas Industry, 2023, 43(8): 12-25. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202308002.htm
    [115] 邓铭哲, 蔡芃睿, 陆建林, 等. 走滑断裂演化程度的表征参数研究[J]. 石油实验地质, 2023, 45(5): 1007-1015. doi: 10.11781/sysydz2023051007

    DENG Mingzhe, CAI Pengrui, LU Jianlin, et al. Characterization parameters of the evolution degree of strike-slip faults[J]. Petroleum Geology & Experiment, 2023, 45(5): 1007-1015. doi: 10.11781/sysydz2023051007
    [116] 王力, 陈世加, 丁玉盛, 等. 应用地球化学方法评价断层封闭性: 以苏北盆地金湖凹陷坝田地区为例[J]. 新疆石油地质, 2017, 38(2): 209-214. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201702017.htm

    WANG Li, CHEN Shiga, DING Yusheng, et al. Using geochemical methods to evaluate fault sealing: a case study from Batian area in Jinhu Sag, Subei Basin[J]. Xinjiang Petroleum Geology, 2017, 38(2): 209-214. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201702017.htm
    [117] 吕延防, 王帅. 断层封闭性定量评价[J]. 大庆石油学院学报, 2010, 34(5): 35-41. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY201005007.htm

    LÜ Yanfang, WANG Shuai. Quantitative evaluation of fault seal[J]. Journal of Daqing Petroleum Institute, 2010, 34(5): 35-41. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY201005007.htm
    [118] 闵伟. 应用模糊综合评价方法评价断层封闭性: 以胜坨油田坨28断块为例[J]. 油气地质与采收率, 2005, 12(3): 39-41. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS200503012.htm

    MIN Wei. Fuzzy comprehensive evaluation method for evaluating sealing property of the faults-taking Tuo 28 fault block in Shengtuo oilfield as example[J]. Oil & Gas Recovery Technology, 2005, 12(3): 39-41. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS200503012.htm
    [119] 李朋, 倪金龙, 杨淞月, 等. 临南洼陷临邑断层封闭性的模糊综合评价[J]. 海洋地质前沿, 2011, 27(1): 42-46. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201101009.htm

    LI Peng, NI Jinlong, YANG Songyue, et al. Fuzzy comprehensive evaluation of fault sealing in Linnan Depression[J]. Marine Geology Frontiers, 2011, 27(1): 42-46. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201101009.htm
    [120] 王生奥, 韩复兴, 孙章庆, 等. 地应力测量及其对油气运移和断层封堵性影响的发展现状与趋势[J]. 地球物理学进展, 2021, 36(2): 675-688. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202102026.htm

    WANG Sheng'ao, HAN Fuxing, SUN Zhangqing, et al. Present situation and the development trend of in-situ stress measurement and its effect on hydrocarbon migration and fault block[J]. Progress in Geophysics, 2021, 36(2): 675-688. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202102026.htm
    [121] 孙莹. 断层封闭性的地球化学评价方法[J]. 内蒙古石油化工, 2013, 39(9): 53-54. https://www.cnki.com.cn/Article/CJFDTOTAL-NMSH201309022.htm

    SUN Ying. Geochemical evaluation method of fault sealing[J]. Inner Mongolia Petrochemical Industry, 2013, 39(9): 53-54. https://www.cnki.com.cn/Article/CJFDTOTAL-NMSH201309022.htm
    [122] 王志伟. 新北油田右旋走滑应力场内断层封堵性及其对成藏的控制作用[J]. 地质科技情报, 2019, 38(4): 145-52. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904015.htm

    WANG Zhiwei. Analysis of fault sealing in the right hand strike-slip stress field of the Xinbei Oilfield and its controlling effect on the reservoir[J]. Geological Science and Technology Information, 2019, 38(4): 145-152. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904015.htm
    [123] 付广, 袁大伟. 断层垂向封闭性演化的定量研究[J]. 断块油气田, 2009, 16(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT200901002.htm

    FU Guang, YUAN Dawei. Quantitative research for evolution of vertical seal of fault[J]. Fault-Block Oil & Gas Field, 2009, 16(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT200901002.htm
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  543
  • HTML全文浏览量:  179
  • PDF下载量:  153
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-05
  • 修回日期:  2024-07-01
  • 刊出日期:  2024-07-28

目录

    /

    返回文章
    返回