Pore evolution in tight sandstone and its impact on oil saturation: a case study of Chang 6 to Chang 8 reservoirs in Triassic Yanchang Formation, Ganquan area, Ordos Basin
-
摘要: 致密砂岩储层的微观非均质性强,含油饱和度变化大。为了探究致密砂岩储层成岩过程中孔喉大小分布的变化及其对含油饱和度的影响,以鄂尔多斯盆地甘泉地区三叠系延长组长6—长8段致密砂岩储层为例,利用铸体薄片、扫描电镜、高压压汞等测试手段,定量计算了成岩作用对孔隙度的影响。在此基础上,以孔喉参数的统计模型为约束条件,建立了主要成藏期孔喉大小分布模型,利用积分方法计算出了主要成藏期的可动流体饱和度。甘泉地区长6—长8段致密砂岩储层在早成岩期—中成岩期受到强烈的压实作用,平均压实减孔率为81.85%,胶结作用进一步使孔隙度平均降低11.00%左右,溶蚀作用虽然增加了孔隙空间,但增幅较小,平均为4.38%;主要成藏期开始(128 Ma)和结束(111 Ma)对应的平均古孔隙度分别为13.82%和8.68%,大于最小流动孔喉半径(0.1 μm)的孔喉体积占比低,可动流体饱和度为35.05%~93.27%。主要成藏期孔喉半径及可动流体饱和度偏低是含油饱和度低的原因之一。受储层自生黏土矿物对岩石润湿性的影响,现今含油饱和度值并未急剧降低。成藏时期孔喉大小分布模型计算油层可动流体饱和度为研究类似地区油气储层孔喉大小演化及其与含油饱和度的关系提供了一种可行的分析方法。Abstract: Tight sandstone reservoirs exhibit strong microscopic heterogeneity and significant variations in oil saturation. To investigate the variations in pore and throat size distribution during the diagenesis of tight sandstone reservoirs as well as their impact on oil saturation, the study takes the Chang 6 to Chang 8 tight sandstone reservoirs of the Triassic Yanchang Formation in the Ganquan area of the Ordos Basin as a case study. The influence of diagenesis on porosity was quantitatively calculated using methods such as cast thin sections, scanning electron microscopy (SEM), and high-pressure mercury injection. On the basis of the test results, a pore and throat size distribution model during the main hydrocarbon accumulation period was established, constrained by statistical models of pore and throat parameters. The movable fluid saturation during the main hydrocarbon accumulation period was then calculated using integration methods. The results showed that the Chang 6 to Chang 8 tight sandstone reservoirs experienced strong compaction during the early and middle diagenetic stages, with an average porosity reduction of 81.85% due to compaction. Cementation further reduced porosity by about 11.00% on average. Although dissolution increased pore space, the increase was relatively smaller, with an average value of 4.38%. The average paleoporosity at the beginning (128 Ma) and the end (111 Ma) of the main hydrocarbon accumulation period was 13.82% and 8.68%, respectively. The volume proportion of pore and throat radii greater than the minimum flow throat radius (0.1 μm) was low, and the movable fluid saturation ranged from 35.05% to 93.27%. The low pore and throat radii and movable fluid saturation during the main hydrocarbon accumulation period was one of the reasons for low oil saturation. However, due to the influence of authigenic clay minerals on reservoir rock wettability, the current oil saturation has not decreased sharply. The pore and throat size distribution model during hydrocarbon accumulation provides a feasible method for analyzing the evolution of pore and throat size as well as its relationship with oil saturation in similar reservoirs.
-
图 2 鄂尔多斯盆地甘泉地区三叠系延长组长6—长8段储层铸体薄片及扫描电镜照片
a.碎屑颗粒间线接触和凹凸状接触,长6段,M66-2井,879.09 m;b.方解石和白云石充填孔隙,长7段,M14-2井,747.71 m;c.铁方解石填充次生溶孔,长8段,M14-2井,926.05 m;d.方解石交代长石,长7段,M66-2井,977.86 m;e.绿泥石衬边式充填孔隙,长6段,M66-2井,869.00 m;f.卷片状伊利石充填孔隙,长7段,M14-2井,747.51 m;g.伊利石胶结孔隙,长7段,M66-2井,977.86 m;h.柱状石英充填孔隙,长6段,M66-2井,869.00 m;i.长石粒内溶孔,长7段,M14-2井,746.66 m。
Figure 2. Cast thin sections and scanning electron microscope images of Chang 6 to Chang 8 reservoirs in Triassic Yanchang Formation, Ganquan area, Ordos Basin
表 1 鄂尔多斯盆地甘泉地区三叠系延长组长6—长8段储层成岩作用导致的孔隙度变化
Table 1. Porosity variations due to diagenesis in Chang 6 to Chang 8 reservoirs in Triassic Yanchang Formation, Ganquan area, Ordos Basin
表 2 鄂尔多斯盆地甘泉地区三叠系延长组长6—长8段储层古孔隙度及其沉积相特征
Table 2. Paleoporosity and depositional facies characteristics of Chang 6 to Chang 8 reservoirs in Triassic Yanchang Formation, Ganquan area, Ordos Basin
井名 样品号 深度/m 地层 Φ古(128 Ma)/% Φ古(111 Ma)/% Φ今/% 沉积微相 成岩相 孔喉分形维数 M66-2 P14 883.29 长6段 13.36 11.26 7.43 水下分流河道 绿泥石薄膜相 2.630 9 M57-1 P66 908.78 11.78 9.27 5.68 水下分流河道 方解石胶结相 2.637 6 M109 P71 889.25 12.97 7.75 4.08 水下分流河道 绿泥石薄膜相 2.693 9 M101 P73 799.83 12.48 8.76 4.71 水下分流河道 绿泥石薄膜相 2.568 1 M66-2 P1 972.72 长7段 12.07 9.12 4.46 浊积水道侧翼 方解石胶结相 2.659 9 M101 P75 856.48 12.50 8.96 4.71 浊积水道 绿泥石薄膜相 2.570 1 M101 P80 860.18 14.38 9.25 4.95 浊积水道 绿泥石薄膜相 2.619 2 M14-2 P46 911.33 长8段 14.32 8.94 4.61 水下分流河道 强压实相 2.537 9 M14-2 P53 921.31 12.93 7.83 4.27 河道侧翼 方解石胶结相 2.563 0 M14-2 P55 922.20 18.64 7.71 4.29 水下分流河道 绿泥石薄膜相 2.657 9 M14-2 P57 924.32 14.97 7.97 4.49 水下分流河道 强压实相 2.516 3 M14-2 P59 924.90 14.79 8.39 4.56 水下分流河道 强压实相 2.670 6 M14-2 P62 926.05 14.21 8.40 4.42 水下分流河道 绿泥石薄膜相 2.637 2 M14-2 P65 927.19 14.02 7.93 4.37 水下分流河道 强压实相 2.623 8 表 3 鄂尔多斯盆地甘泉地区三叠系延长组长6—长8段储层不同时刻的峰值孔喉半径及可动流体饱和度
Table 3. Peak pore and throat radii and movable fluid saturation at different times in Chang 6 to Chang 8 reservoirs in Triassic Yanchang Formation, Ganquan area, Ordos Basin
井名 样品号 深度/m 层位 r今/μm r古(111 Ma)/μm r古(128 Ma)/μm 可动流体饱和度/% 128 Ma 111 Ma 现今 M66-2 P14 883.29 长6段 0.067 0.117 8 0.149 4 80.07 67.97 40.28 M57-1 P66 908.78 0.045 0.098 9 0.129 9 70.05 58.42 12.95 M109 P71 889.25 0.045 0.080 1 0.144 6 73.15 35.62 2.21 M101 P73 799.83 0.041 0.091 7 0.138 5 77.40 50.97 11.52 M66-2 P1 972.72 长7段 0.042 0.095 7 0.133 5 74.97 54.01 12.58 M101 P75 856.48 0.044 0.095 1 0.138 8 70.99 51.84 4.95 M101 P80 860.18 0.041 0.097 5 0.162 0 82.80 64.24 36.11 M14-2 P46 911.33 长8段 0.039 0.094 9 0.161 3 82.69 59.25 26.61 M14-2 P53 921.31 0.038 0.081 1 0.144 1 78.09 52.96 26.61 M14-2 P55 922.20 0.028 0.079 7 0.214 6 93.27 48.22 13.66 M14-2 P57 924.32 0.048 0.082 9 0.169 3 80.66 35.50 1.78 M14-2 P59 924.90 0.043 0.088 0 0.167 1 77.43 49.45 6.63 M14-2 P62 926.05 0.046 0.086 2 0.159 9 86.11 42.29 8.21 M14-2 P65 927.19 0.043 0.082 3 0.157 6 84.41 41.92 10.87 -
[1] ZOU Caineng, GUO Qiulin, YANG Zhi, et al. Resource potential and core area prediction of lacustrine tight oil: the Triassic Yanchang Formation in Ordos Basin, China[J]. AAPG Bulletin, 2019, 103(6): 1493-1523. doi: 10.1306/11211816511 [2] SYED F I, MUTHER T, VAN V P, et al. Numerical trend analysis for factors affecting EOR performance and CO2 storage in tight oil reservoirs[J]. Fuel, 2022, 316: 123370. doi: 10.1016/j.fuel.2022.123370 [3] SUN Longde, ZOU Caineng, JIA Ailin, et al. Development characteristics and orientation of tight oil and gas in China[J]. Petroleum Exploration and Development, 2019, 46(6): 1073-1087. doi: 10.1016/S1876-3804(19)60264-8 [4] SONG Yan, LUO Qun, JIANG Zhenxue, et al. Enrichment of tight oil and its controlling factors in central and western China[J]. Petroleum Exploration and Development, 2021, 48(2): 492-506. doi: 10.1016/S1876-3804(21)60040-X [5] 罗群, 高阳, 张泽元, 等. 中国与美国致密油形成条件对比研究[J]. 石油实验地质, 2022, 44(2): 199-209. doi: 10.11781/sysydz202202199LUO Qun, GAO Yang, ZHANG Zeyuan, et al. A comparative study of geological conditions of tight oils in China and USA[J]. Petroleum Geology & Experiment, 2022, 44(2): 199-209. doi: 10.11781/sysydz202202199 [6] 胡渤, 蒲军, 苟斐斐. 基于数字岩心的致密砂岩微观孔喉结构定量表征[J]. 油气地质与采收率, 2022, 29(3): 102-112.HU Bo, PU Jun, GOU Feifei. Quantitative characterization of pore throat microstructure of tight sandstone based on digital core technology[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(3): 102-112. [7] 刘俊田, 谢佃和, 彭亚中, 等. 胜北构造带致密气成藏机理及富集规律[J]. 特种油气藏, 2022, 29(5): 18-27.LIU Juntian, XIE Dianhe, PENG Yazhong, et al. Accumulation mechanism and enrichment law of tight gas in Shengbei Structural Zone[J]. Special Oil & Gas Reservoirs, 2022, 29(5): 18-27. [8] 邹敏, 夏东领, 夏冬冬, 等. 致密砂岩储层非均质成因研究[J]. 西南石油大学学报(自然科学版), 2022, 44(1): 41-52.ZOU Min, XIA Dongling, XIA Dongdong, et al. A study on the cause of tight sandstone reservoir heterogeneity[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2022, 44(1): 41-52. [9] 钱玉贵. 机器深度学习技术在致密砂岩储层预测中的应用: 以川西坳陷新场须家河组为例[J]. 油气藏评价与开发, 2023, 13(5): 600-607.QIAN Yugui. Application of machine deep learning technology in tight sandstones reservoir prediction: a case study of Xujiahe Formation in Xinchang, western Sichuan Depression[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 600-607. [10] 詹国卫, 顾战宇, 庞河清, 等. 致密砂岩储层孔隙结构特征及其对开发的影响[J]. 西南石油大学学报(自然科学版), 2022, 44(3): 70-84.ZHAN Guowei, GU Zhanyu, PANG Heqing, et al. Pore structure characteristics of tight sandstone reservoir and its influence on development[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2022, 44(3): 70-84. [11] 白玉彬, 赵靖舟, 赵子龙, 等. 鄂尔多斯盆地志丹地区延长组长7致密油成藏条件与成藏特征[J]. 石油与天然气地质, 2013, 34(5): 631-639.BAI Yubin, ZHAO Jingzhou, ZHAO Zilong, et al. Accumulation conditions and characteristics of the Chang 7 tight oil reservoir of the Yanchang Formation in Zhidan area, Ordos Basin[J]. Oil & Gas Geology, 2013, 34(5): 631-639. [12] TANG Ying, TAN Shihao, WANG Ruifei, et al. Analysis of tight oil accumulation conditions and prediction of sweet spots in Ordos Basin: a case study[J]. Energy Geoscience, 2022, 3(4): 417-426. doi: 10.1016/j.engeos.2021.09.002 [13] 白杨, 张晓磊, 刚文哲, 等. 鄂尔多斯盆地平凉北地区上三叠统长8段储层低含油饱和度油藏特征及成因[J]. 岩性油气藏, 2023, 35(3): 66-75.BAI Yang, ZHANG Xiaolei, GANG Wenzhe, et al. Characteristics and genesis of Upper Triassic Chang 8 reservoir with low oil saturation in northern Pingliang area, Ordos Basin[J]. Lithologic Reservoirs, 2023, 35(3): 66-75. [14] 杨华, 李士祥, 刘显阳. 鄂尔多斯盆地致密油、页岩油特征及资源潜力[J]. 石油学报, 2013, 34(1): 1-11.YANG Hua, LI Shixiang, LIU Xianyang. Characteristics and resource prospects of tight oil and shale oil in Ordos Basin[J]. Acta Petrolei Sinica, 2013, 34(1): 1-11. [15] 罗腾跃, 米乃哲, 王念喜, 等. 延145—延128井区致密储层单砂体分布特征及开发潜力[J]. 特种油气藏, 2022, 29(3): 43-49.LUO Tengyue, MI Naizhe, WANG Nianxi, et al. Distribution characteristics and development potential of single sand bodies in tight reservoirs in well blocks Yan 145-Yan 128, Yangtze region[J]. Special Oil & Gas Reservoirs, 2022, 29(3): 43-49. [16] 王卓, 赵靖舟, 孟选刚, 等. 鄂尔多斯盆地东南部柴上塬区三叠系延长组长6致密油成藏主控因素及富集规律[J]. 石油实验地质, 2022, 44(2): 251-261. doi: 10.11781/sysydz202202251WANG Zhuo, ZHAO Jingzhou, MENG Xuangang, et al. Key controlling factors and enrichment mechanisms of tight reservoirs in 6th member of Triassic Yanchang Formation, Chaishangyuan area, southeastern Ordos Basin[J]. Petroleum Geology & Experiment, 2022, 44(2): 251-261. doi: 10.11781/sysydz202202251 [17] 吴伟涛, 邓静, 赵靖舟, 等. 鄂尔多斯盆地华庆地区长7油层组致密油成藏条件与成藏模式[J]. 石油与天然气地质, 2016, 37(6): 874-881.WU Weitao, DENG Jing, ZHAO Jingzhou, et al. Accumulation conditions and models of tight oil reservoirs in Chang-7 of Huaqing area, the Ordos Basin[J]. Oil & Gas Geology, 2016, 37(6): 874-881. [18] JIANG Fujie, ZHANG Chunlin, WANG Ke, et al. Characteristics of micropores, pore throats, and movable fluids in the tight sandstone oil reservoirs of the Yanchang Formation in the southwestern Ordos Basin, China[J]. AAPG Bulletin, 2019, 103(12): 2835-2859. doi: 10.1306/03061917284 [19] 屈童, 高岗, 梁晓伟, 等. 鄂尔多斯盆地长7段致密油成藏机理分析[J]. 地质学报, 2022, 96(2): 616-629.QU Tong, GAO Gang, LIANG Xiaowei, et al. Analysis of tight oil accumulation mechanism of Chang 7 member in the Ordos basin[J]. Acta Geologica Sinica, 2022, 96(2): 616-629. [20] 邓秀芹. 鄂尔多斯盆地三叠系延长组超低渗透大型岩性油藏成藏机理研究[D]. 西安: 西北大学, 2011.DENG Xiuqin. Accumulation mechanism research on ultra-low-permeability and large scale lithological reservoirs of Triassic Yanchang Formation in Ordos Basin[D]. Xi'an: Northwest University, 2011. [21] 马艳丽, 辛红刚, 马文忠, 等. 鄂尔多斯盆地陕北地区长7段页岩油富集主控因素及甜点区预测[J]. 天然气地球科学, 2021, 32(12): 1822-1829.MA Yanli, XIN Honggang, MA Wenzhong, et al. The main controlling factors on the enrichment and sweet-spot area prediction of Chang 7 member shale oil in northern Shaanxi area, Ordos Basin[J]. Natural Gas Geoscience, 2021, 32(12): 1822-1829. [22] 杨华, 窦伟坦, 刘显阳, 等. 鄂尔多斯盆地三叠系延长组长7沉积相分析[J]. 沉积学报, 2010, 28(2): 254-263.YANG Hua, DOU Weitan, LIU Xianyang, et al. Analysis on sedimentary facies of member 7 in Yanchang Formation of Triassic in Ordos Basin[J]. Acta Sedimentologica Sinica, 2010, 28(2): 254-263. [23] 崔景伟, 张忠义, 刘建良, 等. 鄂尔多斯盆地延长组多烃源层生排烃定量及成藏贡献厘定[J]. 天然气地球科学, 2021, 32(10): 1514-1531.CUI Jingwei, ZHANG Zhongyi, LIU Jianliang, et al. Hydrocarbon generation and expulsion quantification and hydrocarbon accumulation contribution of multiple source beds in Yanchang Formation, Ordos Basin[J]. Natural Gas Geoscience, 2021, 32(10): 1514-1531. [24] 钟红利, 吴雨风, 张凤奇, 等. 陕北斜坡东南部致密砂岩孔喉分布及其对含油性的影响[J]. 断块油气田, 2021, 28(1): 21-27.ZHONG Hongli, WU Yufeng, ZHANG Fengqi, et al. Pore throat distribution of tight sandstone in the southeast of the northern Shaanxi Slope and its influence on oil-bearing property[J]. Fault-Block Oil & Gas Field, 2021, 28(1): 21-27. [25] 孙雅雄, 张坦, 丁文龙, 等. 压汞法与数字图像分析技术在致密砂岩储层微观孔隙定量分析中的应用: 以鄂尔多斯盆地吴起油田X区块为例[J]. 石油实验地质, 2022, 44(6): 1105-1115. doi: 10.11781/sysydz2022061105SUN Yaxiong, ZHANG Tan, DING Wenlong, et al. Application of mercury intrusion method and digital image analysis in quantitative analysis of micro-scale pores in tight sandstone reservoirs: a case study of X block in Wuqi Oil Field, Ordos Basin[J]. Petroleum Geology & Experiment, 2022, 44(6): 1105-1115. doi: 10.11781/sysydz2022061105 [26] 柳广弟. 石油地质学[M]. 5版. 北京: 石油工业出版社, 2018.LIU Guangdi. Petroleum geology[M]. 5th ed. Beijing: Petroleum Industry Press, 2018. [27] BEARD D C, WEYL P K. Influence of texture on porosity and permeability of unconsolidated sand[J]. AAPG Bulletin, 1973, 57(2): 349-369. [28] 王瑞飞, 陈明强. 储层沉积—成岩过程中孔隙度参数演化的定量分析: 以鄂尔多斯盆地沿25区块、庄40区块为例[J]. 地质学报, 2007, 81(10): 1432-1438.WANG Ruifei, CHEN Mingqiang. Quantitative analysis of porosity evolution during the reservoir sedimentation-diagenesis: taking the Yan 25 and Zhuang 40 areas in the Ordos Basin as examples[J]. Acta Geologica Sinica, 2007, 81(10): 1432-1438. [29] 王艳忠, 操应长, 葸克来, 等. 碎屑岩储层地质历史时期孔隙度演化恢复方法: 以济阳坳陷东营凹陷沙河街组四段上亚段为例[J]. 石油学报, 2013, 34(6): 1100-1111.WANG Yanzhong, CAO Yingchang, XI Kelai, et al. A recovery method for porosity evolution of clastic reservoirs with geological time: a case study from the upper submember of Es4 in the Dongying Depression, Jiyang Subbasin[J]. Acta Petrolei Sinica, 2013, 34(6): 1100-1111. [30] ATHY L F. Density, porosity, and compaction of sedimentary rocks[J]. AAPG Bulletin, 1930, 14(1): 1-24. [31] HEGARTY K A, WEISSEL J K, MUTTER J C. Subsidence history of Australia's southern margin: constraints on basin models[J]. AAPG Bulletin, 1988, 72(5): 614-633. [32] 张凤奇, 钟红利, 魏登峰, 等. 鄂尔多斯盆地陕北斜坡东南部长7段致密砂岩油藏成藏物性下限[J]. 天然气地球科学, 2017, 28(2): 232-240.ZHANG Fengqi, ZHONG Hongli, WEI Dengfeng, et al. Lower limits of porosity and permeability for tight oil accumulations in the Chang 7 member, southeastern Shaanbei Slope, Ordos Basin[J]. Natural Gas Geoscience, 2017, 28(2): 232-240. [33] 潘高峰, 刘震, 赵舒, 等. 砂岩孔隙度演化定量模拟方法: 以鄂尔多斯盆地镇泾地区延长组为例[J]. 石油学报, 2011, 32(2): 249-256.PAN Gaofeng, LIU Zhen, ZHAO Shu, et al. Quantitative simulation of sandstone porosity evolution: a case from Yanchang Formation of the Zhenjing area, Ordos Basin[J]. Acta Petrolei Sinica, 2011, 32(2): 249-256. [34] RONALD C S, CROSSEY L J, HAGEN E S, et al. Organic-inorganic interactions and sandstone diagenesis[J]. AAPG Bulletin, 1989, 73(1): 1-23. [35] 杨超, 贺永红, 雷裕红, 等. 鄂南三叠系延长组自生成岩矿物成因及期次[J]. 西南石油大学学报(自然科学版), 2019, 41(4): 45-54.YANG Chao, HE Yonghong, LEI Yuhong, et al. The genesis and period of authigenic diagenetic mineral in Triassic Yanchang Formation, the southern Ordos Basin[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2019, 41(4): 45-54. [36] 梁正中, 许红涛, 高超利, 等. 鄂尔多斯盆地西南缘三叠系延长组流体包裹体特征及对油气充注调整的指示[J]. 中国石油勘探, 2023, 28(2): 81-91.LIANG Zhengzhong, XU Hongtao, GAO Chaoli, et al. Characteristics of fluid inclusion and its indication to hydrocarbon charge and adjustment of the Triassic Yanchang Formation in southwestern margin of Ordos Basin[J]. China Petroleum Exploration, 2023, 28(2): 81-91. [37] 陈瑞银, 罗晓容, 陈占坤, 等. 鄂尔多斯盆地中生代地层剥蚀量估算及其地质意义[J]. 地质学报, 2006, 80(5): 685-693.CHEN Ruiyin, LUO Xiaorong, CHEN Zhankun, et al. Estimation of denudation thickness of Mesozoic stata in the Ordos Basin and its geological significance[J]. Acta Geologica Sinica, 2006, 80(5): 685-693. [38] 于强, 任战利, 倪军, 等. 鄂尔多斯盆地富县地区中生界热演化史探讨[J]. 西北大学学报(自然科学版), 2012, 42(5): 801-805.YU Qiang, REN Zhanli, NI Jun, et al. The thermal evolution history of Mesozoic, Fuxian exploratory area of Ordos Basin[J]. Journal of Northwest University (Natural Science Edition), 2012, 42(5): 801-805. [39] 魏亚妮. 水作用下黄土三维微结构演化及湿陷机理研究[D]. 西安: 长安大学, 2019.WEI Yani. Research on three-dimensional microstructure evolution during wetting and collapsible mechanism of loess[D]. Xi'an: Chang'an University, 2019. [40] 高阳, 蒋裕强, 杨长城, 等. 最小流动孔喉半径法确定低渗储层物性下限[J]. 科技导报, 2011, 29(4): 34-38.GAO Yang, JIANG Yuqiang, YANG Changcheng, et al. Minimum flow pore throat radius for determination of the lower limits of parameters in low permeability reservoir[J]. Science & Technology Review, 2011, 29(4): 34-38. [41] 王浩男, 肖晖, 苗晨阳, 等. 致密砂岩储层油充注下限综合确定方法及其应用: 以鄂尔多斯盆地马岭地区长8油藏为例[J]. 大庆石油地质与开发, 2020, 39(2): 147-156.WANG Haonan, XIAO Hui, MIAO Chenyang, et al. Comprehensive determining method of the lower limit of the oil-charging in tight sandstone reservoirs and its application: a case of Chang-8 oil reservoir in Maling area of Ordos Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(2): 147-156. [42] 吴蒙, 秦勇, 王晓青, 等. 中国致密砂岩储层流体可动性及其影响因素[J]. 吉林大学学报(地球科学版), 2021, 51(1): 35-51.WU Meng, QIN Yong, WANG Xiaoqing, et al. Fluid mobility and its influencing factors of tight sandstone reservoirs in China[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(1): 35-51. [43] 王忠楠, 罗晓容, 刘可禹, 等. 鄂尔多斯盆地上三叠统延长组致密砂岩储层绿泥石对润湿性的影响[J]. 中国科学: 地球科学, 2021, 51(7): 1123-1134.WANG Zhongnan, LUO Xiaorong, LIU Keyu, et al. Impact of chlorites on the wettability of tight oil sandstone reservoirs in the Upper Triassic Yanchang Formation, Ordos Basin, China[J]. Science China Earth: Sciences, 2021, 64(6): 951-961.